JPH0340340B2 - - Google Patents

Info

Publication number
JPH0340340B2
JPH0340340B2 JP57140095A JP14009582A JPH0340340B2 JP H0340340 B2 JPH0340340 B2 JP H0340340B2 JP 57140095 A JP57140095 A JP 57140095A JP 14009582 A JP14009582 A JP 14009582A JP H0340340 B2 JPH0340340 B2 JP H0340340B2
Authority
JP
Japan
Prior art keywords
surfactant
zinc
colorimetric determination
salt
reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57140095A
Other languages
Japanese (ja)
Other versions
JPS5930061A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14009582A priority Critical patent/JPS5930061A/en
Publication of JPS5930061A publication Critical patent/JPS5930061A/en
Publication of JPH0340340B2 publication Critical patent/JPH0340340B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式〔〕で示される2−ピリジル
アゾアミノフエノール誘導体又はその塩を発色剤
とする亜鉛又はニツケルの比色定量方法に関す
る。 (式中、X、Yはハロゲン又は水素を、R1
水素又は低級アルキル基を、R2、R3は水素、低
級アルキル基、−(CH2oSO3H(n=1〜4)、
The present invention relates to a method for colorimetric determination of zinc or nickel using a 2-pyridylazoaminophenol derivative represented by the general formula [ ] or a salt thereof as a coloring agent. (In the formula, X and Y are halogen or hydrogen, R 1 is hydrogen or a lower alkyl group, R 2 and R 3 are hydrogen or a lower alkyl group, -(CH 2 ) o SO 3 H (n = 1 to 4 ),

【式】(l=0〜4、 m=0〜4)を表わす。) 環境衛生上及び生化学的診断法に於て、微量金
属の定量は近年その重要性を増しつつある。 亜鉛は生体微量金属であり生体内に広く分布し
成長に必要な必須金属元素の1つである。最近腸
性肢端皮膚炎、味覚障害、SLE(全身性エリテマ
トーデス)、高カロリー輸液投与中に見られる亜
鉛欠乏症などで血清亜鉛濃度が低下することが報
告され、これらの疾患の診断、治療および予後の
観察に血清亜鉛測定の必要性が望まれるようにな
つてきた。 一方、ニツケルは、桂ニツケル鉱をしてそれ自
体の鉱石としても産出されるが、鉄や銅と化学的
性質が類似しているのでこれらの金属中に不純物
として混入している場合が多く、大部分は鉄や銅
を伴つて産出される。 又、ニツケルは触媒や表面処理に多く利用され
たり、ニツケルを含む合金は耐食性機材として広
く一般に使用されている。従つて、鉱物中や廃液
中のニツケルの分析は資源開発上、環境衛生上
等、操業の管理分析として極めて重要な意味をも
つ。 今日まで亜鉛、ニツケルの微量金属定量方法
は、主に原子吸光法、炎光々度法、比色定量法に
よつているが、多数の検体を迅速に処理でき、特
殊分析装置を必要としないという点からは比色定
量法が有利である。 亜鉛の比色試薬としては、ジチゾン、ジンコ
ン、PAN(1−(2−ピリジルアゾ)−2−ナフト
ール)が主に用いられ、ニツケルの比色法として
は、ジメチルグリオキシム法、ジエチルジチオカ
ルバミン酸法、1−(2−ピリジルアゾ)−2−ナ
フトール(PAN)法があるが、いずれも特異性
という点からは必ずしも完壁とはいえず、鉄、
銅、コバルトマンガンの妨害を除く為、シアン化
合物や種々のマスキング剤を組合せて使用した
り、有機溶媒による抽出を必要としていた。 一方、前記一般式〔〕で示される2−ピリジ
ルアゾアミノフエノール誘導体又はその塩は近年
開発された亜鉛、ニツケルを主な測定対象物とす
る比色定量用試薬であり、分子吸光係数が7.0〜
13.3×104と極めて高感度であるが、従来の比色
定量法同様、鉄、銅、コバルトにも感応するなど
特定金属に対する特異性には欠ける場合が多い。 従つてこれらは使用するにあたり、特定目的物
以外の金属を従来同様マスキングする必要があ
る。 通常この目的には、鉄のマスキング剤としてク
エン酸塩、縮合リン酸塩、フツ化ナトリウム、ニ
トリロ三酢酸、1−ヒドロキシエタン−1,1−
ジホスホン酸、銅のマスキング剤としてサリチル
アルドキシム、2−メルカプトベンゾチアゾー
ル、ジチオカルボキシザルコシン、ジチオカルボ
キシグリシン、コバルトのマスキング剤としてジ
チオカルボキシザルコシン、2−メルカプトベン
ゾチアゾール、亜鉛のマスキング剤としてグリコ
ールエーテルジアミン四酢酸、1−ヒドロキシエ
タン−1,1−ジホスホン酸PH8以下に於けるク
エン酸、酒石酸、縮合リン酸が用いられている。 しかるにこれらのマスキング剤の内には、目的
物である亜鉛又はニツケルをもマスクして感度低
下をきたしたり(例えば、亜鉛に於けるクエン
酸、縮合リン酸、ニツケルに於ける2−メルカプ
トベンゾチアゾール。)、又、銅やコバルトのマス
キング剤として使用される部分構造
[Formula] represents (l=0-4, m=0-4). ) In recent years, the determination of trace metals has been gaining importance in environmental hygiene and biochemical diagnostic methods. Zinc is a biological trace metal that is widely distributed in living organisms and is one of the essential metal elements necessary for growth. Recently, it has been reported that serum zinc concentration decreases in acrodermatitis, taste disorders, SLE (systemic lupus erythematosus), and zinc deficiency seen during administration of high-calorie infusions. It has become desirable to measure serum zinc levels for observation. On the other hand, nickel is also produced as an ore of its own as Katsura nickelite, but since its chemical properties are similar to iron and copper, it is often mixed in as an impurity in these metals. Most of it is produced with iron and copper. Further, nickel is often used in catalysts and surface treatments, and alloys containing nickel are widely used as corrosion-resistant materials. Therefore, the analysis of nickel in minerals and waste liquids has extremely important meaning in terms of resource development, environmental hygiene, and operational management analysis. To date, methods for quantifying trace metals such as zinc and nickel have mainly relied on atomic absorption spectrometry, flame photometry, and colorimetry, but these methods can process large numbers of samples quickly and do not require special analytical equipment. From this point of view, the colorimetric method is advantageous. Dithizone, zincone, and PAN (1-(2-pyridylazo)-2-naphthol) are mainly used as colorimetric reagents for zinc, and colorimetric methods for nickel include dimethylglyoxime method, diethyldithiocarbamate method, There is a 1-(2-pyridylazo)-2-naphthol (PAN) method, but none of them are necessarily perfect in terms of specificity;
In order to eliminate the interference of copper, cobalt and manganese, it was necessary to use a combination of cyanide compounds and various masking agents, or to extract with organic solvents. On the other hand, the 2-pyridylazoaminophenol derivative or its salt represented by the above general formula [] is a colorimetric reagent developed in recent years that mainly measures zinc and nickel, and has a molecular extinction coefficient of 7.0 to 7.0.
Although it has an extremely high sensitivity of 13.3×10 4 , it often lacks specificity for specific metals, as it is also sensitive to iron, copper, and cobalt, just like conventional colorimetric methods. Therefore, when using these, it is necessary to mask metals other than those for specific purposes as in the past. Commonly used iron masking agents for this purpose are citrate, condensed phosphate, sodium fluoride, nitrilotriacetic acid, 1-hydroxyethane-1,1-
diphosphonic acid, salicylaldoxime as a masking agent for copper, 2-mercaptobenzothiazole, dithiocarboxysarcosine, dithiocarboxyglycine as a masking agent for cobalt, dithiocarboxysarcosine, 2-mercaptobenzothiazole as a masking agent for zinc, glycol ether as a masking agent for zinc. Diaminetetraacetic acid, 1-hydroxyethane-1,1-diphosphonic acid, citric acid, tartaric acid, and condensed phosphoric acid at a pH of 8 or less are used. However, some of these masking agents also mask the target substance, zinc or nickel, resulting in a decrease in sensitivity (for example, citric acid and condensed phosphoric acid for zinc, and 2-mercaptobenzothiazole for nickel). ), and partial structures used as masking agents for copper and cobalt.

【式】や −SH基含有物質は調製後の安定性が著しく悪か
つたり、又鉄3価を還元して2価とする為、鉄の
発色促進剤となる場合もあり甚だ不都合である。 我々はこれらの欠点を改良すべく、安定性に優
れ特定金属のみに特異的に作用するマスキング剤
について鋭意研究し種々検索した結果、界面活性
剤が特定金属のマスキング剤として多大な効果が
あることを見出し本発明を完成するに至つた。 即ち、本発明は一般式〔〕で示される2−ピ
リジルアゾアミノフエノール誘導体又はその塩を
発色剤とする亜鉛又はニツケルの比色定量方法に
於て、マスキング剤として一種又は二種以上の界
面活性剤を使用することを特徴とする微量金属の
比色定量方法である。 本発明で使用する界面活性剤は特に限定されな
いが、発色剤の至適PH4〜10の範囲で澄明に溶解
するものが好ましい。 亜鉛に関しては、特にノニオン系、カチオン系
又は、両性界面活性剤が亜鉛の発色を阻害せず、
鉄、銅、コバルト、ニツケルの発色をも抑制す
る。又、アニオン系界面活性剤とノニオン系界面
活性剤を併用した場合においても同様の効果が得
られる。これら界面活性剤は、既存のマスキング
剤と併用するとその効果は著しく増大する。 ニツケルに関しては、アニオン系界面活性剤を
既存の鉄、銅、コバルト、亜鉛のマスキング剤と
併用した場合、ニツケルの発色を阻害せず鉄、
銅、コバルト、亜鉛の発色を更に抑制する。 本発明に特に有効なノニオン系界面活性剤とし
ては、TritonX−100〔ポリオキシエチレンイソオ
クチルフエニルエーテル、ローム&ハース社商品
名〕、Brij−35〔ポリオキシエチレンラウリルエー
テル、花王アトラス(株)商品名〕、エマルゲン120
〔ポリオキシエチレンラウリルエーテル、花王ア
トラス(株)商品名〕、Tween20〔ポリオキシエチレ
ンソルビタンモノラウリルエーテル、花王アトラ
ス(株)商品名〕、Tween80〔ポリオキシエチレンソ
ルビタンモノオレイルエーテル、花王アトラス(株)
商品名〕、ソフタノール90〔ポリオキシエチレンア
ルキルエーテル、日本触媒化学工業(株)〕、
TritonX−405〔ポリオキシエチレン、ローム&ハ
ース社商品名〕、エマルゲン147〔ポリオキシエチ
レンラウリルエーテル、花王アトラス(株)商品名〕、
エマルゲン920〔ポリオキシエチレンラウリルエー
テル、花王アトラス(株)商品名〕、エマルゲン950
〔ポリオキシエチレンノニルフエニルエーテル、
花王アトラス(株)商品名〕、エマルゲンPP290N〔オ
キシエチレン−オキシプロピレンブロツクポリマ
ー、花王アトラス(株)商品名〕、エマゾール3130〔ポ
リオキシエチレンソルビタンモノステアレート、
花王アトラス(株)商品名〕などが用いられるがこれ
らに限定されるものではない。 アニオン系界面活性剤としては、サンデツト
EMN〔ポリエチレンアルキルエーテル硫酸エス
テルNa塩、三洋化成工業(株)商品名〕、エマール
NC〔ポリオキシエチレンアルキルフエニルエー
テル硫酸エステル、花王アトラス(株)商品名〕、ア
ラノンACE〔N−ココイル−N−メチル−β−ア
ラニンNa塩、川研フアインケミカル(株)商品名〕、
エマール20C〔ポリオキシエチレンアルキルサル
フエートNa塩、花王アトラス(株)商品名〕、ノニポ
ールS−40〔ポリエチレンアルキルフエニルエー
テル硫酸エステルNa塩、三洋化成工業(株)商品
名〕、ラウリル硫酸ナトリウム〔ラウリル硫酸エ
ステルNa塩〕、サンデツトBL〔アルキルベンゼン
スルホン酸ホルマリン縮合物、三洋化成工業(株)商
品名〕、レベノールWX〔ポリオキシエチレンアル
キルサルフエートNa塩、花王アトラス(株)商品
名〕、ウルトラホンW〔ペンタデシールベンズイミ
ダゾールスルホン酸Na塩、日本チバガイギー(株)
商品名〕、デモールN〔ナフタレンスルフオン酸ホ
ルマリン縮合物、花王アトラス(株)商品名〕、ソフ
タノール30S−25〔第二級アルキル硫酸ソーダ塩、
日本触媒化学工業(株)商品名〕、レベノールWZ〔ポ
リオキシエチレンアルキルサルフエートNa塩、
花王アトラス(株)商品名〕などが用いられるがこれ
らに限定されるものではない。 カチオン系界面活性剤としては、コータミン
24P〔ラウリルトリメチルアンモニウムクロリド、
花王アトラス(株)商品名〕、コータミン86P〔ステア
リルトリメチルアンモニウムクロリド、花王アト
ラス(株)商品名〕、レバソープNL〔臭化ラウリルピ
リジニウム、三好油脂(株)商品名〕などが用いられ
るがこれらに限定されるものではない。 両性界面活性剤としては、アンヒトール24B
〔ラウリルベタイン、花王アトラス(株)商品名〕、ア
ンヒトール86B〔ステアリルベタイン、花王アト
ラス(株)商品名〕などが用いられるがこれらに限定
されるものではない。 本発明における界面活性剤の有効濃度は特に限
定されないが、好ましくは0.01〜20.0%である。 発色剤である2−ピリジルアゾアミノフエノー
ル誘導体又はその塩は、部分構造 を発色団として有する。 代表的な化合物は一般式〔〕で示される2−
ピリジルアゾアミノフエノール誘導体又はその塩
に包含される。 (式中、X、Yはハロゲン又は水素を、R1
水素又は低級アルキル基を、R2、R3は水素、低
級アルキル基、−(CH2oSO3H(n=1〜4)、
[Formula] and -SH group-containing substances have extremely poor stability after preparation, and since they reduce trivalent iron to divalent iron, they may act as color accelerators for iron, which is extremely inconvenient. In order to improve these shortcomings, we conducted extensive research into masking agents that are highly stable and act specifically on specific metals, and as a result of various searches, we found that surfactants are highly effective as masking agents for specific metals. This discovery led to the completion of the present invention. That is, the present invention provides a method for colorimetric determination of zinc or nickel using a 2-pyridylazoaminophenol derivative represented by the general formula [ ] or a salt thereof as a coloring agent, in which one or more surfactants are used as a masking agent. This is a method for colorimetric determination of trace metals, which is characterized by using a chemical agent. The surfactant used in the present invention is not particularly limited, but it is preferably one that dissolves clearly within the optimum pH range of 4 to 10 for the color former. Regarding zinc, nonionic, cationic, or amphoteric surfactants do not inhibit the color development of zinc;
It also suppresses the color development of iron, copper, cobalt, and nickel. Further, similar effects can be obtained when an anionic surfactant and a nonionic surfactant are used together. When these surfactants are used in combination with existing masking agents, their effectiveness is significantly increased. Regarding nickel, when an anionic surfactant is used in combination with existing masking agents for iron, copper, cobalt, and zinc, it does not inhibit the color development of nickel, and can be used to mask iron, copper, and zinc.
Further suppresses color development of copper, cobalt, and zinc. Examples of nonionic surfactants that are particularly effective in the present invention include Triton Product name], Emulgen 120
[Polyoxyethylene lauryl ether, Kao Atlas Co., Ltd. trade name], Tween20 [Polyoxyethylene sorbitan monolauryl ether, Kao Atlas Co., Ltd. trade name], Tween80 [Polyoxyethylene sorbitan monooleyl ether, Kao Atlas Co., Ltd.]
Product name], Softanol 90 [polyoxyethylene alkyl ether, Nippon Shokubai Chemical Co., Ltd.],
TritonX-405 [polyoxyethylene, Rohm & Haas product name], Emulgen 147 [polyoxyethylene lauryl ether, Kao Atlas Co., Ltd. product name],
Emulgen 920 [polyoxyethylene lauryl ether, Kao Atlas Co., Ltd. trade name], Emulgen 950
[Polyoxyethylene nonyl phenyl ether,
Kao Atlas Co., Ltd. trade name], Emulgen PP290N [oxyethylene-oxypropylene block polymer, Kao Atlas Co., Ltd. trade name], Emazol 3130 [polyoxyethylene sorbitan monostearate,
Kao Atlas Co., Ltd. product name] etc. are used, but are not limited to these. As an anionic surfactant, Sandet
EMN [Polyethylene alkyl ether sulfate ester sodium salt, Sanyo Chemical Industries, Ltd. trade name], Emar
NC [polyoxyethylene alkyl phenyl ether sulfate, Kao Atlas Co., Ltd. trade name], alanone ACE [N-cocoyl-N-methyl-β-alanine sodium salt, Kawaken Fine Chemical Co., Ltd. trade name],
Emar 20C [polyoxyethylene alkyl sulfate sodium salt, Kao Atlas Co., Ltd. trade name], Nonipol S-40 [polyethylene alkyl phenyl ether sulfate ester sodium salt, Sanyo Chemical Co., Ltd. trade name], sodium lauryl sulfate [ Lauryl sulfate sodium salt], Sandet BL [alkylbenzenesulfonic acid formalin condensate, Sanyo Chemical Industries, Ltd. trade name], Lebenol WX [polyoxyethylene alkyl sulfate sodium salt, Kao Atlas Co., Ltd. trade name], Ultraphone W [Pentadecylbenzimidazole sulfonic acid sodium salt, Nippon Ciba Geigy Co., Ltd.
Product name], Demol N [naphthalene sulfonic acid formalin condensate, Kao Atlas Co., Ltd. product name], Softanol 30S-25 [secondary alkyl sulfate sodium salt,
Nippon Shokubai Kagaku Kogyo Co., Ltd. trade name], Lebenol WZ [polyoxyethylene alkyl sulfate sodium salt,
Kao Atlas Co., Ltd. product name] etc. are used, but are not limited to these. As a cationic surfactant, Cortamine
24P [Lauryltrimethylammonium chloride,
Kao Atlas Co., Ltd. trade name], Cortamine 86P [stearyltrimethylammonium chloride, Kao Atlas Co., Ltd. trade name], Revathorp NL [laurylpyridinium bromide, Miyoshi Yushi Co., Ltd. trade name], etc. are used, but are limited to these. It is not something that will be done. As an amphoteric surfactant, Amhitol 24B
[Lauryl betaine, trade name of Kao Atlas Co., Ltd.], amphitol 86B [stearyl betaine, trade name of Kao Atlas Co., Ltd.], etc. are used, but are not limited to these. The effective concentration of the surfactant in the present invention is not particularly limited, but is preferably 0.01 to 20.0%. The 2-pyridylazoaminophenol derivative or its salt, which is a coloring agent, has a partial structure has as a chromophore. Representative compounds are 2- represented by the general formula []
Included in pyridylazoaminophenol derivatives or salts thereof. (In the formula, X and Y are halogen or hydrogen, R 1 is hydrogen or a lower alkyl group, R 2 and R 3 are hydrogen or a lower alkyl group, -(CH 2 ) o SO 3 H (n = 1 to 4 ),

【式】(l=0〜4、 m=0〜4)を表わす。) 例えば、 などがあげられる。 その塩とは、例えばこれらのジエチルアミン
塩、トリエチルアミン塩などの有機アミン塩、又
は、アンモニウム塩、アルカリ金属塩、アルカリ
土類金属塩などの無機塩を表わす。 界面活性剤は、難溶性発色剤の可溶化剤、吸収
波長のシフト、試料の混濁防止及び澄明化、呈色
の安定化、目的金属の分解遊離、生成キレートの
有機溶媒への抽出の目的で比色分析法に於て利用
されているが、本発明者らは、界面活性剤が金属
のマスキング剤となることを見出した。 即ち、本発明は、2−ピリジルアゾアミノフエ
ノール誘導体〔〕又はその塩を発色剤とする亜
鉛又は、ニツケルの比色定量方法に於て、界面活
性剤が特定金属のマスキング剤として極めて有効
に作用することを見出し完成させたものである。 以下に実施例を挙げ、本発明の界面活性剤の効
果に付説明する。 実験例 1 (1) 発色試液 5Br−PAPS(2−(5−ブロモ−2−ピリジ
ルアゾ)−5−(N−プロピル−N−スルホプロ
ピルアミノ)フエノールNa塩)0.05mmol、ク
エン酸ナトリウム33g、サリチルアルドキシム
1g、ホウ砂0.03molを水に溶かして全量を1
とし、塩酸でPHを9.5とする。 (2) 試料液A 酢酸亜鉛14mg(亜鉛として5mg)を水に溶解
して全量を100mlとする。 (3) 試料液B 硫酸第2鉄アンモニウム48mg(鉄として10
mg)を0.1N−HClに溶解して全量を100mlとす
る。 (4) 試料液C 硫酸銅18mg(銅として5mg)を水に溶解して
全量を100mlとする。 (5) 試料液D 塩化ニツケル11mg(ニツケルとして5mg)を
水に溶解して全量を100mlとする。 (6) 試料液E 塩化コバルト11mg(コバルトとして5mg)を
水に溶解して全量を100mlとする。 実験方法 試料液A〜E20μに発色試液3mlを加え室温
で20分間放置後555nmの吸光度を試薬盲検を対照
に測定する。 表1に、各金属の吸光度、亜鉛の発色度を100
としたときの各金属の相対的な値、及びニツケル
の発色度を100としたときの各金属の相対的な値
を示す。
[Formula] represents (l=0-4, m=0-4). ) for example, etc. The salts refer to organic amine salts such as diethylamine salts and triethylamine salts, or inorganic salts such as ammonium salts, alkali metal salts, and alkaline earth metal salts. Surfactants are used for the purposes of solubilizing poorly soluble color formers, shifting the absorption wavelength, preventing and clarifying sample turbidity, stabilizing color development, decomposing and liberating target metals, and extracting formed chelates into organic solvents. Although used in colorimetric analysis, the present inventors have discovered that surfactants act as masking agents for metals. That is, the present invention provides a method for colorimetric determination of zinc or nickel using a 2-pyridylazoaminophenol derivative [ ] or a salt thereof as a coloring agent, in which a surfactant acts extremely effectively as a masking agent for a specific metal. This is what I discovered and completed. Examples are given below to further explain the effects of the surfactant of the present invention. Experimental example 1 (1) Coloring reagent 5Br-PAPS (2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropylamino)phenol Na salt) 0.05 mmol, sodium citrate 33 g, salicyl Dissolve 1 g of aldoxime and 0.03 mol of borax in water and bring the total amount to 1
and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution A Dissolve 14 mg of zinc acetate (5 mg as zinc) in water to make a total volume of 100 ml. (3) Sample solution B 48 mg ferric ammonium sulfate (10
mg) in 0.1N HCl to make a total volume of 100 ml. (4) Sample solution C Dissolve 18 mg of copper sulfate (5 mg as copper) in water to make a total volume of 100 ml. (5) Sample solution D Dissolve 11 mg of nickel chloride (5 mg as nickel) in water to make a total volume of 100 ml. (6) Sample solution E Dissolve 11 mg of cobalt chloride (5 mg as cobalt) in water to make a total volume of 100 ml. Experimental method: Add 3 ml of coloring reagent to 20μ of sample solutions A to E, let stand at room temperature for 20 minutes, and then measure the absorbance at 555 nm using a reagent blind control. Table 1 shows the absorbance of each metal and the coloring degree of zinc.
The relative values of each metal are shown, and the relative values of each metal are shown when the degree of color development of nickel is set to 100.

【表】 実験例 2 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、ホウ砂
0.03mol、界面活性剤としてトリトンX−100、
ブリツジ−35、エマルゲン120、ツイーン20、
ツイーン80、ソフタノール90、エマゾール
3130、アンヒトール24B、コータミン24P、コ
ータミン86P、レベノールWX、ラウリル硫酸
ナトリウム、又はデモールNを夫々単独で1.6
%用いるか、又はブリツジ−35 1%とトリト
ンX−100 1%を併用するかあるいは、ラウリ
ル硫酸ナトリウム1%とデモールN1%を併用
し、水に溶かして全量を1とし、塩酸でPHを
9.5とする。 (2) 試料液A 実験例1に同じ。 (3) 試料液B 実験例1に同じ。 (4) 試料液C 実験例1に同じ。 (5) 試料液D 実験例1に同じ。 (6) 試料液E 実験例1に同じ。 実験方法 試料液A〜E20μに各々の界面活性剤を含む
発色試液3mlを加え室温で20分間放置後、555nm
の吸光度を試薬盲検を対照に測定する。 表2に、実験例1の発色に対する各金属の発色
率、及び亜鉛の発色度を100としたときの各金属
の相対的な値を示す。
[Table] Experimental example 2 Reagents (1) Color reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, borax
0.03mol, Triton X-100 as surfactant,
Bridge 35, Emulgen 120, Tween 20,
Tween 80, Softanol 90, Emazol
3130, Amhitol 24B, Cortamine 24P, Cortamine 86P, Lebenol WX, Sodium Lauryl Sulfate, or Demol N each alone at 1.6
%, or use a combination of 1% Bridzi-35 and 1% Triton
9.5. (2) Sample solution A Same as Experimental Example 1. (3) Sample solution B Same as Experimental Example 1. (4) Sample solution C Same as Experimental Example 1. (5) Sample solution D Same as Experimental Example 1. (6) Sample solution E Same as Experimental Example 1. Experimental method Add 3 ml of coloring test solution containing each surfactant to 20μ of sample solutions A to E, leave at room temperature for 20 minutes, and then test at 555 nm.
The absorbance of the sample is measured using a reagent blind control. Table 2 shows the color development rate of each metal with respect to the color development of Experimental Example 1, and the relative value of each metal when the color development degree of zinc is set as 100.

【表】【table】

【表】 (発色率上段は実験例1の発色に対する各金属
の発色率、下段は亜鉛の発色度を100としたとき
の各金属の相対的な値) 表1、2より明らかなように界面活性剤の添加
により亜鉛に対する特異性は飛躍的に向上する。
特に、鉄、銅に対する発色抑制はすぐれており、
これは臨床化学分析に於て極めて重要な事実であ
る。 実験例 3 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、界面活性剤
としてサンデツトEMN、エマールNC、アラ
ノンACE、又はエマール20C1.6%、ホウ砂
0.03molを水に溶かして全量を1とし、塩酸
でPHを9.5とする。 (2) 試料液A 実験例1に同じ。 (3) 試料液B 実験例1に同じ。 (4) 試料液C 実験例1に同じ。 (5) 試料液D 実験例1に同じ。 (6) 試料液E 実験例1に同じ。 実験方法 試料液A〜E20μに各々の界面活性剤を含む
発色試液3mlを加え室温で20分間放置後、555nm
の吸光度を試薬盲検を対照に測定する。 表3に、実験例1の発色に対する各金属の発色
率、及びニツケルの発色度を100としたときの各
金属の相対的な値を示す。
[Table] (The color development rate in the upper row is the color development rate of each metal relative to the color development in Experimental Example 1, and the lower row is the relative value of each metal when the color development degree of zinc is set as 100.) As is clear from Tables 1 and 2, the interface The specificity for zinc is dramatically improved by adding an activator.
In particular, it has excellent color suppression against iron and copper.
This is an extremely important fact in clinical chemistry analysis. Experimental example 3 Reagent (1) Coloring reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, surfactants such as Sandet EMN, Emar NC, Alanone ACE, or Emar 20C 1.6%, borax
Dissolve 0.03mol in water to bring the total amount to 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution A Same as Experimental Example 1. (3) Sample solution B Same as Experimental Example 1. (4) Sample solution C Same as Experimental Example 1. (5) Sample solution D Same as Experimental Example 1. (6) Sample solution E Same as Experimental Example 1. Experimental method Add 3 ml of coloring test solution containing each surfactant to 20μ of sample solutions A to E, leave at room temperature for 20 minutes, and then test at 555 nm.
The absorbance of the sample is measured using a reagent blind control. Table 3 shows the color development rate of each metal with respect to the color development of Experimental Example 1, and the relative value of each metal when the color development degree of nickel is set as 100.

【表】 (発色率上段は実験例1の発色に対する各金属
の発色率、下段はニツケルの発色度を100とした
ときの各金属の相対的な値) 表1、3より明らかなように界面活性剤の添加
によりニツケルに対する特異性は飛躍的に向上す
る。 実験例 4 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、界面活性剤
としてアラノンACE1.6%又は、アラノン
ACE0.7%及びブリツジ351%、ホウ砂0.03mol
を水に溶かして全量を1とし、塩酸でPHを
9.5とする。 (2) 試料液A 実験例1に同じ。 (3) 試料液B 実験例1に同じ。 (4) 試料液C 実験例1に同じ。 (5) 試料液D 実験例1に同じ。 (6) 試料液E 実験例1に同じ。 実験方法 試料液A〜E20μに各々の界面活性剤を含む
発色試液3mlを加え室温で20分間放置後、555nm
の吸光度を試薬盲検を対照に測定する。 表4に、実験例1の発色に対する各金属の発色
率、及び亜鉛の発色度を100としたときの各金属
の相対的な値を示す。
[Table] (The color development rate in the upper row is the color development rate of each metal relative to the color development in Experimental Example 1, and the lower row is the relative value of each metal when the color development degree of nickel is set as 100.) As is clear from Tables 1 and 3, the interface Addition of an activator dramatically improves the specificity for nickel. Experimental example 4 Reagent (1) Coloring reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, alanone ACE 1.6% or alanone as a surfactant
ACE 0.7% and Buritsuji 351%, Borax 0.03mol
Dissolve in water to bring the total volume to 1, and adjust the pH with hydrochloric acid.
9.5. (2) Sample solution A Same as Experimental Example 1. (3) Sample solution B Same as Experimental Example 1. (4) Sample solution C Same as Experimental Example 1. (5) Sample solution D Same as Experimental Example 1. (6) Sample solution E Same as Experimental Example 1. Experimental method Add 3 ml of coloring test solution containing each surfactant to 20μ of sample solutions A to E, leave at room temperature for 20 minutes, and then test at 555 nm.
The absorbance of the sample is measured using a reagent blind control. Table 4 shows the color development rate of each metal with respect to the color development of Experimental Example 1, and the relative value of each metal when the color development degree of zinc is set as 100.

【表】 (発色率上段は実験例1の発色に対する各金属
の発色率、下段は亜鉛の発色度を100としたとき
の各金属の相対的な値) 表4より明らかなようにアニオン系界面活性剤
単独では亜鉛の発色が0〜1%であるが、これに
ノニオン系界面活性剤を共存させると亜鉛が脱マ
スクされるのに対し、コバルトは更にマスクされ
る。 以上説明のように、試料中に共存が予想される
妨害金属から、従来使用のマスキング剤及び界面
活性剤を適宜選択、組み合せて用いることにより
精度良く亜鉛又はニツケルの定量を行うことがで
きる。 以下実施例を示す。 実施例 1 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、ホウ砂0.03molブリ
ツジ−35 10gを水に溶かして全量を1とし、
塩酸でPH8.5とする。 (2) 試料液 亜鉛約100μg/d程度含むと推定される
試料液。 測定方法 試料液1mlに発色試液3mlを加え室温で5分間
放置後555nmの吸光度を試薬盲検を対照に測定
し、亜鉛の濃度を測定する。 このとき、表1及び表2より明らかなように鉄
の影響はブリツジ35の無添加の場合に比べ約1/6
になる。 実施例 2 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、ブリツジ35
20g、トリトンX−100 20g、0.05M炭酸塩緩
衝液に溶かして全量を1とし、塩酸でPHを
9.5とする。 (2) 試料液 血清 (3) EDTA・4Na塩溶液 IM EDTA・4Na塩溶液を調整する。 測定方法 試料液200μに発色試液2.5mlを加え室温で5
分間放置後555nmの吸光度を測定する。その後
EDTA・4Na塩溶液1滴を加え脱色して10分間
放置後、EDTAを添加した試薬盲検を対照にし
て555nmの吸光度を測定し検体盲検とする。試料
の吸光度から検体盲検の吸光度を差引いて、亜鉛
の濃度を算出する。 このとき、鉄、銅は存在しても表2より明らか
なように殆んど影響しない。 実施例 3 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、エマゾール
3130 16g、ホウ砂0.03molを水に溶かして全
量を1とし、塩酸でPHを9.5とする。 (2) 試料液 実施例1に同じ。 測定方法 試料液1mlに発色試液3mlを加え室温で5分間
放置後555nmの吸光度を試薬盲検を対照に測定
し、亜鉛の濃度を算出する。 このとき、表2より明らかなように鉄、銅は存
在しても殆んど影響しない。 実施例 4 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、サリチルアルドキシ
ム1g、アラノンACE7g、ブリツジ35 10g、
ホウ砂0.03molを水に溶かして全量を1と
し、塩酸でPHを9.5とする。 (2) 試料液 実施例1に同じ。 測定方法 試料液1.0mlに発色試液3mlを加え室温で5分
間放置後555nmの吸光度を試薬盲検を対照に測定
し、亜鉛の濃度を算出する。 このとき、表4より明らかなようにコバルトが
共存しても妨害しない。 実施例 5 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、エマール
20C16g、ホウ砂0.03molを水に溶かして全量
を1とし、塩酸でPHを9.5とする。 (2) 試料液 ニツケルを100μg/dl程度含むと推定され
る試料液。 測定方法 試料液1mlに発色試液3mlを加え室温で5分間
放置後555nmの吸光度を試薬盲検を対照に測定し
ニツケルの濃度を算出する。 このとき、表3より明らかなように亜鉛、銅、
コバルトが共存してもニツケル測定に影響しな
い。 実施例 6 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、レベノール
WX16g、ホウ砂0.03molを水に溶解して全量
を1とし、塩酸でPHを9.5とする。 (2) 試料液 実施例1に同じ。 測定方法 試料液1mlに発色試液3mlを加え室温で5分間
放置後555nmの吸光度を試薬盲検を対照に測定
し、亜鉛の濃度を算出する。 このとき、表2より明らかなように鉄、銅が存
在しても殆んど影響しない。 実施例 7 試 薬 (1) 発色試液 5Br−PAPS0.05mmol、クエン酸ナトリウム
33g、サリチルアルドキシム1g、ラウリル硫
酸ナトリウム10g、デモールN10g、ホウ砂
0.03molを水に溶かして全量を1とし、塩酸
でPHを9.5とする。 (2) 試料液 実施例1に同じ。 測定方法 試料液1mlに発色試液3mlを加え5分間放置後
555nmの吸光度を試薬盲検を対照に測定し、亜鉛
の濃度を算出する。 このとき、表2より明らかなように鉄、銅が存
在しても測定の妨げとはならない。
[Table] (The color development rate in the upper row is the color development rate of each metal relative to the color development in Experimental Example 1, and the lower row is the relative value of each metal when the color development degree of zinc is set as 100.) As is clear from Table 4, the anionic interface When the activator is used alone, the color development of zinc is 0 to 1%, but when a nonionic surfactant is used together, the zinc is unmasked, whereas the cobalt is further masked. As explained above, zinc or nickel can be accurately quantified by appropriately selecting and combining conventionally used masking agents and surfactants from interfering metals expected to coexist in a sample. Examples are shown below. Example 1 Reagent (1) Coloring reagent solution 5Br-PAPS0.05mmol, borax 0.03molBritzy-35 10g was dissolved in water to bring the total amount to 1,
Adjust the pH to 8.5 with hydrochloric acid. (2) Sample solution A sample solution estimated to contain approximately 100μg/d of zinc. Measurement method: Add 3 ml of coloring reagent to 1 ml of sample solution, let stand at room temperature for 5 minutes, then measure absorbance at 555 nm using reagent blind as a control to measure zinc concentration. At this time, as is clear from Tables 1 and 2, the effect of iron is about 1/6 compared to the case of Bridge 35 without additives.
become. Example 2 Reagent (1) Color reagent solution 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, Britsuji 35
20g, Triton
9.5. (2) Sample solution Serum (3) EDTA/4Na salt solution IM Prepare the EDTA/4Na salt solution. Measurement method: Add 2.5ml of coloring reagent to 200μ of sample solution and incubate at room temperature.
After standing for a minute, measure the absorbance at 555 nm. after that
Add 1 drop of EDTA/4Na salt solution to decolorize and leave to stand for 10 minutes, then measure the absorbance at 555 nm using a reagent-blind test to which EDTA has been added as a specimen-blind test. Calculate the concentration of zinc by subtracting the sample-blind absorbance from the absorbance of the sample. At this time, even if iron and copper are present, as is clear from Table 2, they have almost no effect. Example 3 Reagent (1) Coloring reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, emazol
Dissolve 16g of 3130 and 0.03mol of borax in water to make a total volume of 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution Same as Example 1. Measurement method: Add 3 ml of coloring reagent to 1 ml of sample solution, let stand at room temperature for 5 minutes, then measure the absorbance at 555 nm using a reagent blind control to calculate the zinc concentration. At this time, as is clear from Table 2, even if iron and copper are present, they have almost no effect. Example 4 Reagents (1) Color reagent 5Br-PAPS0.05mmol, salicylaldoxime 1g, alanone ACE 7g, Bridge 35 10g,
Dissolve 0.03 mol of borax in water to bring the total volume to 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution Same as Example 1. Measurement method: Add 3 ml of coloring reagent to 1.0 ml of sample solution, let stand at room temperature for 5 minutes, then measure absorbance at 555 nm using reagent blind control to calculate zinc concentration. At this time, as is clear from Table 4, there is no interference even if cobalt coexists. Example 5 Reagent (1) Color reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, emal
Dissolve 16g of 20C and 0.03mol of borax in water to make a total volume of 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample liquid A sample liquid estimated to contain approximately 100 μg/dl of nickel. Measurement method: Add 3 ml of color reagent to 1 ml of sample solution, let stand at room temperature for 5 minutes, then measure the absorbance at 555 nm using a reagent blind control to calculate the concentration of nickel. At this time, as is clear from Table 3, zinc, copper,
Coexistence of cobalt does not affect nickel measurements. Example 6 Reagent (1) Color reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, lebenol
Dissolve 16g of WX and 0.03mol of borax in water to make a total volume of 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution Same as Example 1. Measurement method: Add 3 ml of coloring reagent to 1 ml of sample solution, let stand at room temperature for 5 minutes, then measure the absorbance at 555 nm using a reagent blind control to calculate the zinc concentration. At this time, as is clear from Table 2, the presence of iron and copper has almost no effect. Example 7 Reagent (1) Color reagent 5Br-PAPS0.05mmol, sodium citrate
33g, salicylaldoxime 1g, sodium lauryl sulfate 10g, Demol N 10g, borax
Dissolve 0.03mol in water to bring the total amount to 1, and adjust the pH to 9.5 with hydrochloric acid. (2) Sample solution Same as Example 1. Measurement method: Add 3 ml of color reagent to 1 ml of sample solution and leave for 5 minutes.
The absorbance at 555 nm is measured using a reagent blind control, and the concentration of zinc is calculated. At this time, as is clear from Table 2, the presence of iron and copper does not interfere with the measurement.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕で示される2−ピリジルア
ゾアミノフエノール誘導体又はその塩を発色剤と
する亜鉛又はニツケルの比色定量方法に於て、マ
スキング剤として一種又は二種以上の界面活性剤
を使用することを特徴とする微量金属の比色定量
方法。 (式中、X、Yはハロゲン又は水素を、R1
水素又は低級アルキル基を、R2、R3は水素、低
級アルキル基、−(CH2oSO3H(n=1〜4)、
【式】(l=0〜4、 m=0〜4)を表わす。) 2 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
亜鉛の比色定量方法に於て、既存のFe、Cu、
Co、Niのマスキング剤に加えて界面活性剤を併
用する特許請求の範囲第1項記載の比色定量方
法。 3 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
亜鉛の比色定量方法に於て、界面活性剤としてノ
ニオン系界面活性剤を用いる特許請求の範囲第1
項又は第2項記載の比色定量方法。 4 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
亜鉛の比色定量方法に於て、界面活性剤としてカ
チオン系界面活性剤を用いる特許請求の範囲第1
項又は第2項記載の比色定量方法。 5 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
亜鉛の比色定量方法に於て、界面活性剤として両
性界面活性剤を用いる特許請求の範囲第1項又は
第2項記載の比色定量方法。 6 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
亜鉛の比色定量方法に於て、界面活性剤としてア
ニオン系界面活性剤とノニオン系界面活性剤を併
用する特許請求の範囲第1項又は第2項記載の比
色定量方法。 7 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
ニツケルの比色定量方法に於て、既存のFe、Cu、
Co、Znのマスキング剤に加えて界面活性剤を併
用する特許請求の範囲第1項記載の比色定量方
法。 8 一般式〔〕で示される2−ピリジルアゾア
ミノフエノール誘導体又はその塩を発色剤とする
ニツケルの比色定量方法に於て、界面活性剤とし
てアニオン系界面活性剤を用いる特許請求の範囲
第1項又は第7項記載の比色定量方法。
[Scope of Claims] 1. One or more masking agents in a method for colorimetric determination of zinc or nickel using a 2-pyridylazoaminophenol derivative represented by the following general formula [] or a salt thereof as a coloring agent. A method for colorimetric determination of trace metals, characterized by using a surfactant. (In the formula, X and Y are halogen or hydrogen, R 1 is hydrogen or a lower alkyl group, R 2 and R 3 are hydrogen or a lower alkyl group, -(CH 2 ) o SO 3 H (n = 1 to 4 ),
[Formula] represents (l=0-4, m=0-4). ) 2 In the colorimetric determination method for zinc using a 2-pyridylazoaminophenol derivative represented by the general formula [ ] or its salt as a coloring agent, existing Fe, Cu,
The colorimetric determination method according to claim 1, which uses a surfactant in addition to the Co and Ni masking agents. 3. Claim 1 in which a nonionic surfactant is used as a surfactant in a method for colorimetric determination of zinc using a 2-pyridylazoaminophenol derivative represented by the general formula [] or a salt thereof as a coloring agent.
The colorimetric determination method described in item 1 or 2. 4 Claim 1 in which a cationic surfactant is used as a surfactant in a method for colorimetric determination of zinc using a 2-pyridylazoaminophenol derivative represented by the general formula [] or a salt thereof as a coloring agent
The colorimetric determination method described in item 1 or 2. 5. Claim 1, in which an amphoteric surfactant is used as a surfactant in a method for colorimetric determination of zinc using a 2-pyridylazoaminophenol derivative represented by the general formula [] or a salt thereof as a coloring agent. Or the colorimetric determination method described in Section 2. 6 In the method for colorimetric determination of zinc using a 2-pyridylazoaminophenol derivative represented by the general formula [] or its salt as a coloring agent, an anionic surfactant and a nonionic surfactant are used together as a surfactant. A method for colorimetric determination according to claim 1 or 2. 7 In the nickel colorimetric determination method using a 2-pyridylazoaminophenol derivative represented by the general formula [] or its salt as a coloring agent, existing Fe, Cu,
The colorimetric determination method according to claim 1, which uses a surfactant in addition to the Co and Zn masking agents. 8 Claim 1 in which an anionic surfactant is used as a surfactant in a method for colorimetric determination of nickel using a 2-pyridylazoaminophenol derivative represented by the general formula [ ] or a salt thereof as a coloring agent The colorimetric determination method described in Section 7 or Section 7.
JP14009582A 1982-08-12 1982-08-12 Colorimetric determination of trace metal Granted JPS5930061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14009582A JPS5930061A (en) 1982-08-12 1982-08-12 Colorimetric determination of trace metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14009582A JPS5930061A (en) 1982-08-12 1982-08-12 Colorimetric determination of trace metal

Publications (2)

Publication Number Publication Date
JPS5930061A JPS5930061A (en) 1984-02-17
JPH0340340B2 true JPH0340340B2 (en) 1991-06-18

Family

ID=15260830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14009582A Granted JPS5930061A (en) 1982-08-12 1982-08-12 Colorimetric determination of trace metal

Country Status (1)

Country Link
JP (1) JPS5930061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097468A1 (en) * 2006-02-23 2007-08-30 Shino-Test Corporation Method of determining metal by colorimetry and determination reagent

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221626A (en) * 1983-12-02 1993-06-22 Wako Pure Chemical Industries Ltd. Colorimetrically measuring method of zinc
JPS60120249A (en) * 1983-12-02 1985-06-27 Wako Pure Chem Ind Ltd Colorimetric quantitative analysis of zinc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359490A (en) * 1976-11-09 1978-05-29 Nippon Tokushiyu Bunseki Kenki Reagent for measuring concentration of zinc in solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359490A (en) * 1976-11-09 1978-05-29 Nippon Tokushiyu Bunseki Kenki Reagent for measuring concentration of zinc in solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097468A1 (en) * 2006-02-23 2007-08-30 Shino-Test Corporation Method of determining metal by colorimetry and determination reagent
JP5360707B2 (en) * 2006-02-23 2013-12-04 株式会社シノテスト Metal colorimetric measurement method and reagent

Also Published As

Publication number Publication date
JPS5930061A (en) 1984-02-17

Similar Documents

Publication Publication Date Title
Vogels et al. Differential analyses of glyoxylate derivatives
EP0016129A1 (en) Semi-quantitative assay of metabolic acids
Heinonen et al. A method for the concentration and for the colorimetric determination of nanomoles of inorganic pyrophosphate
US5563072A (en) Method for measuring bilirubin
JPH0340340B2 (en)
JPH0340828B2 (en)
US4703015A (en) Method and reactive composition suitable for the colorimetric determination of metals
JPH04287695A (en) Composition for analyzing ethanol
GB1566856A (en) Process and reagent for the determination of ascorbic acid
US5221626A (en) Colorimetrically measuring method of zinc
Cluley The absorptiometric determination of minor amounts of copper in metals
CA2071001A1 (en) Reagent and methods for serum iron assay
JP2000316600A (en) Method for determining free fatty acid and reagent for determining free fatty acid
JP3216138B2 (en) How to measure bilirubin
US7648839B2 (en) Metal indicator
JPS6069552A (en) Method and reagent for colorimetric determination of copper
CA1335251C (en) Quantitative determination of phosphorus
US6426182B1 (en) Apparatus and method for determining whether formaldehyde in aqueous solution has been neutralized
JP2015042156A (en) Atp measurement method of blood sample and kit therefor
Tanaka et al. Determination of surfactants by use of acid phosphatase
Rockhold et al. Vanadium Concentration of Urine: Rapid Colorimetric Method for Its Estimation
DE69720602T2 (en) enzyme substrate
Behre A clinical test for urinary acetone and diacetic acid
JPS6066994A (en) Method for stabilizing coloring test solution
Girotti et al. Spectrophotometric determination of citric acid by an enzymatic method with 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2h-tetrazolinium chloride