JPH0340308B2 - - Google Patents

Info

Publication number
JPH0340308B2
JPH0340308B2 JP58099660A JP9966083A JPH0340308B2 JP H0340308 B2 JPH0340308 B2 JP H0340308B2 JP 58099660 A JP58099660 A JP 58099660A JP 9966083 A JP9966083 A JP 9966083A JP H0340308 B2 JPH0340308 B2 JP H0340308B2
Authority
JP
Japan
Prior art keywords
solution
heat
upper chamber
heat exchanger
concentrated solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58099660A
Other languages
Japanese (ja)
Other versions
JPS59225270A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9966083A priority Critical patent/JPS59225270A/en
Publication of JPS59225270A publication Critical patent/JPS59225270A/en
Publication of JPH0340308B2 publication Critical patent/JPH0340308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、伝熱管の外周に物質交換に供する
溶液を流し、この溶液に蒸気を吸収させて発熱さ
せ、この熱を伝熱管中を流れる流体に伝達する物
質移動熱交換装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention involves flowing a solution for mass exchange around the outer periphery of a heat transfer tube, causing the solution to absorb steam to generate heat, and passing this heat through the heat transfer tube. The present invention relates to a mass transfer heat exchange device for transferring heat to a fluid.

〔従来の技術〕[Conventional technology]

従来この種の装置の一例として第1図に示すも
のがあつた。図において、1は筐体、2は筐体1
内に水平に配した伝熱管、3は物質交換に供する
濃溶液10を溜める散布トイ、4は散布トイ3の
下部に設けられた散布口、5は物質交換後の希溶
液11を取り出す希溶液導出管、6は濃溶液10
を散布トイ3に導入する濃溶液挿入管、7は筐体
1内に蒸気12を導入する蒸気導入管、8はポン
プ、9は希溶液取出管である。
An example of a conventional device of this type is shown in FIG. In the figure, 1 is the housing, 2 is the housing 1
3 is a dispersion toy for storing the concentrated solution 10 to be used for mass exchange; 4 is a dispersion port provided at the bottom of the dispersion toy 3; 5 is a diluted solution for taking out the dilute solution 11 after mass exchange. Outlet tube, 6 is concentrated solution 10
7 is a steam introduction pipe that introduces steam 12 into the housing 1, 8 is a pump, and 9 is a dilute solution take-out pipe.

次に動作について説明する。筐体1に設けられ
た濃溶液導入管6から流入した濃溶液10は散布
トイ3に溜まり、散布トイ3の下部に設けられた
散布口4から伝熱管2上に散布される。散布され
た濃溶液10は、伝熱管2の外周面を流下する際
に蒸気導入管7より導入された蒸気12を吸収
し、発熱を伴つて希溶液11となる。この蒸気1
2が濃溶液10に吸収される時に発生した熱は、
伝熱管2を介して管中の流体に伝達される。一
方、蒸気12を吸収した溶液11は、希溶液導出
管5からポンプ8によつて、希溶液取出管9を経
て装置外へ取り出される。
Next, the operation will be explained. A concentrated solution 10 flowing from a concentrated solution inlet pipe 6 provided in the housing 1 is collected in a spraying toy 3 and is sprayed onto the heat transfer tube 2 from a spraying port 4 provided at the lower part of the spraying toy 3. The sprayed concentrated solution 10 absorbs the steam 12 introduced from the steam introduction tube 7 while flowing down the outer peripheral surface of the heat transfer tube 2, and becomes a dilute solution 11 with heat generation. This steam 1
The heat generated when 2 is absorbed into the concentrated solution 10 is
The heat is transferred through the heat transfer tube 2 to the fluid inside the tube. On the other hand, the solution 11 that has absorbed the vapor 12 is taken out from the dilute solution outlet pipe 5 to the outside of the apparatus via the dilute solution take-out pipe 9 by the pump 8.

〔発明が解決使用とする課題〕[Problem to be solved by the invention]

従来の物質移動熱交換装置は以上のように構成
されているので、水平に配された伝熱管2が軸方
向に長い場合、散布口4から散布された濃溶液1
0で伝熱管2の外周面を均一に濡らすことは困難
であり、特に下段の伝熱管2においてはこの傾向
が顕著である。また、上記のように伝熱管2を水
平に配置した場合、散布口4の数が多く必要とな
り、濃溶液10の均一な分配が困難となる。さら
に、筐体1が傾いて設置された場合には、第2図
に示すように、伝熱管2の外周面に均一に濃溶液
10が散布されない。また濃溶液導入管6から導
入される濃溶液10の量が負荷変動等の外乱によ
つて変動する場合に、散布口4から散布される濃
溶液10の流量を一定に確保できなかつた。すな
わち、濃溶液導入管6から導入される濃溶液10
よりも、散布口4から散布される濃溶液10の方
が多くなり、濃溶液10の液切れを生ずることが
あつた。逆に濃溶液導入管6から導入される濃溶
液10の量が多くなると、その結果過剰な濃溶液
10が伝熱管2上を流れて必要以上の冷媒蒸気吸
収が行われ最適な物質移動特性が得られないこと
があつた。
Since the conventional mass transfer heat exchange device is configured as described above, when the horizontally arranged heat transfer tubes 2 are long in the axial direction, the concentrated solution 1 sprayed from the spray port 4
It is difficult to uniformly wet the outer peripheral surface of the heat exchanger tube 2 at 0, and this tendency is particularly noticeable in the lower heat exchanger tube 2. Furthermore, when the heat exchanger tubes 2 are arranged horizontally as described above, a large number of spray ports 4 are required, making it difficult to uniformly distribute the concentrated solution 10. Furthermore, when the housing 1 is installed at an angle, the concentrated solution 10 is not evenly spread over the outer circumferential surface of the heat exchanger tube 2, as shown in FIG. Further, when the amount of the concentrated solution 10 introduced from the concentrated solution introduction pipe 6 fluctuates due to disturbances such as load fluctuations, it is not possible to ensure a constant flow rate of the concentrated solution 10 sprayed from the spray port 4. That is, the concentrated solution 10 introduced from the concentrated solution introduction pipe 6
The amount of the concentrated solution 10 sprayed from the spraying port 4 was larger than that of the spray opening 4, which sometimes caused the concentrated solution 10 to run out. Conversely, if the amount of the concentrated solution 10 introduced from the concentrated solution introduction pipe 6 increases, as a result, an excess of the concentrated solution 10 flows over the heat transfer tube 2, and more refrigerant vapor is absorbed than necessary, resulting in optimal mass transfer characteristics. There were some things I couldn't get.

以上のように、従来の物質移動熱交換装置は、
熱交換器筐体の傾きや負荷変動等の外的因子の影
響をうけ、安定な熱物質伝達特性が得られないと
いう問題点があつた。
As mentioned above, conventional mass transfer heat exchange equipment
There was a problem in that stable heat and mass transfer characteristics could not be obtained due to the influence of external factors such as the inclination of the heat exchanger housing and load fluctuations.

この発明は以上のような問題点を解決するため
になされたもので、熱交換器筐体の傾きや負荷変
動などの外的因子の影響を受けることなく常に安
定な熱物質伝達特性の得られる信頼性の高い物質
移動熱交換装置を提供することを目的としてい
る。
This invention was made to solve the above-mentioned problems, and it is possible to always obtain stable heat and mass transfer characteristics without being affected by external factors such as the tilt of the heat exchanger housing or load fluctuations. The purpose is to provide a highly reliable mass transfer heat exchange device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る物質移動熱交換装置は、直立す
る伝熱管を収納する筐体、上記伝熱管が間隙を介
して貫通し、上記筐体を上室と下室とに分ける仕
切板、物質交換前の濃溶液を上記上室に導入する
濃溶液導入管、物質交換後の希溶液を上記下室よ
り導出し、その一部を上記上室に導入するポン
プ、上記上室と下室とに連通し、上室で余剰とな
つた希溶液と濃溶液とを混合した中間濃度溶液を
下室に送る回帰管および上記下室へ蒸気を導入す
る蒸気導入管を備え、上気上室の中間濃度溶液を
上気仕切板と伝熱管との間隙から伝熱管に沿わせ
て流下させ流下時に蒸気を吸収して発熱させ、そ
の熱を伝熱管中の流体に伝達するようにしたもの
である。
The mass transfer heat exchange device according to the present invention includes a casing that houses upright heat transfer tubes, a partition plate through which the heat transfer tubes penetrate through a gap and divides the casing into an upper chamber and a lower chamber, and a partition plate that divides the casing into an upper chamber and a lower chamber, A concentrated solution introduction pipe that introduces the concentrated solution into the upper chamber, a pump that leads out the dilute solution after substance exchange from the lower chamber and introduces a part of it into the upper chamber, and communicates with the upper chamber and the lower chamber. The intermediate concentration solution in the upper chamber is a mixture of the dilute solution and the concentrated solution left in the upper chamber. The solution is made to flow down along the heat exchanger tube from the gap between the upper air partition plate and the heat exchanger tube, absorbing steam as it flows down to generate heat, and transmitting the heat to the fluid in the heat exchanger tube.

〔作用〕[Effect]

この発明においては、直立した伝熱管の外周面
を中間濃度溶液が流下するため、筐体の若干の傾
きに対してもその影響が少なく、中間濃度溶液が
伝熱管外周面の全面に沿つて流下する。また、下
室内の希溶液はその一部が下室よりポンプを介し
て上室へ導入されるため、上室内の中間濃度溶液
の量が濃溶液導入管により上室へ導入される濃溶
液の量にのみ依存しない。さらには、回帰管が上
室と下室とを均圧して蒸気圧差をなくすので、仕
切板と伝熱管との間隙から伝熱管に沿つて流下す
る中間濃度溶液の流量が上室内の中間濃度溶液の
量(液面高さ)によつて決定される。また、何等
かの理由によつて上室内の中間濃度溶液の量(液
面高さ)が増加しても、回帰管がその一部を下室
へ導く。
In this invention, since the intermediate concentration solution flows down the outer peripheral surface of the upright heat exchanger tube, there is little effect even if the housing is slightly tilted, and the intermediate concentration solution flows down along the entire outer peripheral surface of the heat exchanger tube. do. In addition, since a part of the dilute solution in the lower chamber is introduced from the lower chamber to the upper chamber via the pump, the amount of the intermediate concentration solution in the upper chamber is smaller than that of the concentrated solution introduced into the upper chamber by the concentrated solution introduction pipe. It does not depend only on quantity. Furthermore, since the return tube equalizes the pressure between the upper chamber and the lower chamber and eliminates the vapor pressure difference, the flow rate of the intermediate concentration solution flowing down from the gap between the partition plate and the heat exchanger tube along the heat exchanger tube is lower than that of the intermediate concentration solution in the upper chamber. is determined by the amount of water (liquid level height). Further, even if the amount (liquid level height) of the intermediate concentration solution in the upper chamber increases for some reason, the return pipe guides a portion of it to the lower chamber.

〔実施例〕〔Example〕

第4図はこの発明の一実施例による物質移動熱
交換装置を示す構成図である。図において、2は
直立する伝熱管、13は筐体1内を上室1aと下
室1bとに分ける仕切板であり、伝熱管2は仕切
板13を間隙17を介して貫通している。なお、
間隙17はこの場合伝熱管2の全周囲に亘つて設
けられている。6は上室1aに濃溶液10を導く
濃溶液導入管である。また、下室1bには下部に
希溶液11を導出する希溶液導出管5が設けられ
ており、希溶液導出管5はポンプ8を介して希溶
液取出管9と希溶液導入管14とに接続されてお
り、希溶液導入管14の他端は上室1aに接続し
ている。下室1bには蒸気12を導入する蒸気導
入管12が設けられている。15は上室1aと下
室1bを連通する回帰管で、上室1aで余剰とな
つた希溶液11と濃溶液10とを混合した中間濃
度溶液16を下室1bに導く。図中の矢印は流体
の流れる方向を示す。
FIG. 4 is a block diagram showing a mass transfer heat exchange device according to an embodiment of the present invention. In the figure, 2 is an upright heat exchanger tube, 13 is a partition plate that divides the inside of the housing 1 into an upper chamber 1a and a lower chamber 1b, and the heat exchanger tube 2 passes through the partition plate 13 with a gap 17 in between. In addition,
In this case, the gap 17 is provided around the entire circumference of the heat exchanger tube 2. 6 is a concentrated solution introduction tube that introduces the concentrated solution 10 into the upper chamber 1a. Further, the lower chamber 1b is provided with a dilute solution outlet pipe 5 at the lower part thereof, which leads out the dilute solution 11, and the dilute solution outlet pipe 5 is connected to the dilute solution take-out pipe 9 and the dilute solution inlet pipe 14 via the pump 8. The other end of the dilute solution introduction pipe 14 is connected to the upper chamber 1a. A steam introduction pipe 12 for introducing steam 12 is provided in the lower chamber 1b. A return pipe 15 communicates the upper chamber 1a and the lower chamber 1b, and guides an intermediate concentration solution 16, which is a mixture of the dilute solution 11 and the concentrated solution 10, which are surplus in the upper chamber 1a, to the lower chamber 1b. Arrows in the figure indicate the direction of fluid flow.

次に動作について説明する。濃溶液導入管6よ
り導入された濃溶液10は上室1aに入り、仕切
板13上に溜まる。上室1aにはさらに、ポンプ
8により希溶液導入管14を通つて導入された希
溶液11も溜まり、上室1a内は濃溶液10と希
溶液11とが混合した中間濃度溶液16となつて
いる。中間濃度溶液16は、仕切板13と伝熱管
2との間隙17から伝熱管2の外周面に流下し、
蒸気導入管7より流入した蒸気12を吸収し、発
熱して希溶液11となる。蒸気12が吸収される
際に発生した熱は伝熱管2を介して管中の流体に
伝達される。一方、蒸気12を吸収した溶液11
は希溶液導出管5よりポンプ8を介して希溶液取
出管9と希溶液導入管14とに例えば1対1に分
配される。第3図には図示していないが、一般に
は希溶液取出管9を出た希溶液11は再生器で再
生されて濃溶液10となり再び濃溶液導入管6に
導入される。また、希溶液導入管14を流れる溶
液は上室1aへ流入する。
Next, the operation will be explained. The concentrated solution 10 introduced through the concentrated solution introduction pipe 6 enters the upper chamber 1a and accumulates on the partition plate 13. The dilute solution 11 introduced by the pump 8 through the dilute solution introduction pipe 14 is also collected in the upper chamber 1a, and the upper chamber 1a becomes an intermediate concentration solution 16 in which the concentrated solution 10 and the dilute solution 11 are mixed. There is. The intermediate concentration solution 16 flows down from the gap 17 between the partition plate 13 and the heat exchanger tube 2 to the outer peripheral surface of the heat exchanger tube 2,
It absorbs the steam 12 flowing in through the steam introduction pipe 7, generates heat, and becomes a dilute solution 11. The heat generated when the steam 12 is absorbed is transferred via the heat transfer tube 2 to the fluid in the tube. On the other hand, the solution 11 that has absorbed the vapor 12
is distributed from the dilute solution outlet tube 5 via the pump 8 to the dilute solution outlet tube 9 and the dilute solution inlet tube 14 in a one-to-one ratio, for example. Although not shown in FIG. 3, in general, the dilute solution 11 exiting the dilute solution take-out pipe 9 is regenerated by a regenerator to become a concentrated solution 10 and introduced into the concentrated solution inlet pipe 6 again. Further, the solution flowing through the dilute solution introduction pipe 14 flows into the upper chamber 1a.

以上のように構成された物質移動熱交換装置に
おいては、伝熱管2を垂直に形成したので、流下
液が伝熱管2の外周面に均一に流れやすいなど、
従来のものに比べ伝熱管2上でより効率的な物質
伝達が行なわれることから性能が向上し、その結
果装置の小形化も可能となる。また、筐体1の若
干の傾きに対しても、直立した伝熱管2の外周面
を中間濃度溶液16が流下する方式であるため、
その影響が少なく、従来装置のように濡れない伝
熱管2が生じることは無い。
In the mass transfer heat exchange device configured as described above, since the heat exchanger tubes 2 are formed vertically, the flowing liquid can easily flow uniformly on the outer peripheral surface of the heat exchanger tubes 2.
Since more efficient mass transfer is performed on the heat exchanger tube 2 than in the conventional type, the performance is improved, and as a result, it is possible to downsize the device. In addition, even if the housing 1 is slightly tilted, the intermediate concentration solution 16 flows down the outer circumferential surface of the upright heat transfer tube 2.
The influence is small, and there is no possibility that the heat exchanger tubes 2 will not get wet as in the conventional device.

また、上室1aへの溶液流入量が定格値に近い
場合においては回帰管15は上室1aと下室1b
間の蒸気圧力を均圧する役目を果たしており、間
隙17を通つて伝熱管2に沿つて流れる中間濃度
溶液16の流量は、仕切板13上の溶液の液面高
さと間隙17の寸法のみに依存する。したがつ
て、仕切板13上の溶液の液面高さを安定させれ
ば、伝熱管2に沿つて流れる中間濃度溶液16の
流量を安定させることができる。
In addition, when the amount of solution flowing into the upper chamber 1a is close to the rated value, the return pipe 15 is connected to the upper chamber 1a and the lower chamber 1b.
The flow rate of the intermediate concentration solution 16 flowing along the heat transfer tube 2 through the gap 17 depends only on the liquid level height of the solution on the partition plate 13 and the dimensions of the gap 17. do. Therefore, by stabilizing the liquid level of the solution on the partition plate 13, the flow rate of the intermediate concentration solution 16 flowing along the heat transfer tube 2 can be stabilized.

ここで、濃溶液導入管6から上室1aに流入す
る濃溶液10、あるいは希溶液導入管14から希
溶液11の量が定格値より著しく増加した場合は
仕切板13上の液面が上昇することになる。この
場合には、回帰管15は均圧の効果とともに余剰
な溶液を下室1bにオーバーフローさせる機能を
果たす。このときオーバーフローする溶液は回帰
管15の管内壁に沿つて流れる。これにより、下
室1b内の溶液量減少にともなうポンプ8の空運
転を防止できる。また、オーバーフローしない中
間濃度溶液16は安定した流量で間隙17を通つ
て伝熱管2を流下し吸収発熱動作をする。
Here, if the amount of the concentrated solution 10 flowing into the upper chamber 1a from the concentrated solution introduction pipe 6 or the amount of the dilute solution 11 from the dilute solution introduction pipe 14 increases significantly from the rated value, the liquid level on the partition plate 13 rises. It turns out. In this case, the return pipe 15 functions to equalize the pressure and to overflow excess solution into the lower chamber 1b. At this time, the overflowing solution flows along the inner wall of the return pipe 15. Thereby, it is possible to prevent the pump 8 from running idle due to a decrease in the amount of solution in the lower chamber 1b. Further, the intermediate concentration solution 16 that does not overflow flows through the heat exchanger tube 2 through the gap 17 at a stable flow rate and performs an absorption heat generation operation.

さらに、物質交換に供する溶液の落下量に見合
う分例えば、落下量の半分をポンプ8により希溶
液導入管14を通つて帰還させているので、液切
れの心配が少ない。
Furthermore, since half of the falling amount of the solution used for substance exchange is returned through the dilute solution introduction pipe 14 by the pump 8, there is less fear of running out of the solution.

以上のことから、この発明に係る物質移動熱交
換装置においては、仕切板13上の溶液の量(液
面高さ)を所定の範囲内に維持でき、ひいては、
伝熱管2に沿つて流れる中間濃度溶液16の流量
の安定化でき、常に安定な熱物質伝達特性が得ら
れる。
From the above, in the mass transfer heat exchange device according to the present invention, the amount of solution (liquid level height) on the partition plate 13 can be maintained within a predetermined range, and as a result,
The flow rate of the intermediate concentration solution 16 flowing along the heat exchanger tube 2 can be stabilized, and stable heat mass transfer characteristics can always be obtained.

次に、第4図を用いてこの発明の他の実施例を
説明する。第4図は第3図に示す装置における伝
熱管の部分の他の実施例を示す構成図である。図
において、18は針状または歯状のフインであ
り、伝熱管2の外周面にその先端を水平方向より
上向くように巻き付けるかあるいは切り起こしな
どにより形成されている。このように構成する
と、伝熱面積の増加やフイン18の効果により流
下液が伝熱管2の外周面に均一に濡れやすいこと
などにより、物質伝達が促進されると共に、フイ
ン18が流路抵抗となるため流下液の流下速度が
小さくなり物質伝達時間が長くなつて蒸気を良く
吸収する結果となる。また、筐体1が傾いてもフ
イン18による液体保持力のため伝熱管2の外周
面が均一に濡れ、特性が垂直の場合と変わらない
ことはいうまでもない。
Next, another embodiment of the present invention will be described using FIG. 4. FIG. 4 is a configuration diagram showing another embodiment of the heat exchanger tube portion in the apparatus shown in FIG. 3. In the figure, reference numeral 18 indicates a needle-like or tooth-like fin, which is formed by winding the tip of the fin around the outer circumferential surface of the heat transfer tube 2 with its tip facing upward from the horizontal direction, or by cutting and bending the fin. With this configuration, mass transfer is promoted by increasing the heat transfer area and making it easier for the flowing liquid to uniformly wet the outer peripheral surface of the heat transfer tube 2 due to the effect of the fins 18, and the fins 18 reduce the flow path resistance. As a result, the velocity of the flowing liquid decreases, the mass transfer time becomes longer, and vapor is better absorbed. It goes without saying that even if the housing 1 is tilted, the outer circumferential surface of the heat transfer tube 2 will be uniformly wetted due to the liquid holding power of the fins 18, and the characteristics will be the same as when the housing is vertical.

〔発明の効果〕〔Effect of the invention〕

この発明においては、直立する伝熱管を収納す
る筐体、伝熱管が間隙を介して貫通し、筐体を上
室と下室とに分ける仕切板、物質交換前の濃溶液
を上室に導入する濃溶液導入管、物質交換後の希
溶液を下室より導出し、その一部を上室に導入す
るポンプ、上室と下室とに連通し、上室で余剰と
なつた希溶液と濃溶液とを混合した中間濃度溶液
を下室に送る回帰管、および下室へ蒸気を導入す
る蒸気導入管を備え、上室の中間濃度溶液を仕切
板と伝熱管との間隙から伝熱管に沿わせて流下さ
せ、流下時に蒸気を吸収して発熱させ、その熱を
伝熱管中の流体に伝達するようにしたので、熱交
換器筐体の傾きや負荷変動などの外的因子の影響
を受けることなく常に安定な熱物質伝達特性の得
られる信頼性の高い物質移動熱交換装置が得られ
る。
In this invention, a casing that houses an upright heat transfer tube, a partition plate through which the heat transfer tube penetrates through a gap and divides the casing into an upper chamber and a lower chamber, and a concentrated solution before mass exchange is introduced into the upper chamber. A concentrated solution inlet pipe, a pump that leads out the dilute solution after substance exchange from the lower chamber and introduces a part of it into the upper chamber, and a pump that communicates with the upper and lower chambers to remove the excess dilute solution in the upper chamber. Equipped with a return tube that sends an intermediate concentration solution mixed with a concentrated solution to the lower chamber, and a steam introduction tube that introduces steam to the lower chamber, the intermediate concentration solution in the upper chamber is passed through the gap between the partition plate and the heat exchanger tube into the heat exchanger tube. The system absorbs steam as it flows down, generates heat, and transfers that heat to the fluid in the heat exchanger tube, thereby eliminating the influence of external factors such as the tilt of the heat exchanger housing and load fluctuations. A highly reliable mass transfer heat exchange device that can always obtain stable heat and mass transfer characteristics without being subjected to any damage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の物質移動熱交換装置の一例を示
す構成図、第2図は第1図に示す装置において筐
体が傾いた場合の伝熱管と流下液の状態を示す構
成図、第3図はこの発明の一実施例による物質移
動熱交換装置を示す構成図、第4図は第3図に示
す装置における伝熱管の部分の他の実施例を拡大
して示す構成図である。 図において、1は筐体、1aは上室、1bは下
室、2は伝熱管、6は濃溶液導入管、7は蒸気導
入管、8はポンプ、10は濃溶液、11は希溶
液、12は蒸気、13は仕切板、15は回帰管、
16は中間濃度溶液、17は間隙である。なお、
図中同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram showing an example of a conventional mass transfer heat exchange device, Fig. 2 is a block diagram showing the state of heat transfer tubes and flowing liquid when the housing is tilted in the device shown in Fig. 1, and Fig. 3 is a block diagram showing an example of a conventional mass transfer heat exchange device. This figure is a block diagram showing a mass transfer heat exchange device according to one embodiment of the present invention, and FIG. 4 is a block diagram showing another embodiment of the heat exchanger tube portion in the device shown in FIG. 3 in an enlarged manner. In the figure, 1 is a housing, 1a is an upper chamber, 1b is a lower chamber, 2 is a heat transfer tube, 6 is a concentrated solution introduction tube, 7 is a steam introduction tube, 8 is a pump, 10 is a concentrated solution, 11 is a diluted solution, 12 is steam, 13 is a partition plate, 15 is a return pipe,
16 is an intermediate concentration solution, and 17 is a gap. In addition,
The same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 直立する伝熱管を収納する筐体、上記伝熱管
が間隙を介して貫通し、上記筐体を上室と下室と
に分ける仕切板、物質交換前の濃溶液を上記上室
に導入する濃溶液導入管、物質交換後の希溶液を
上記下室より導出し、その一部を上記上室に導入
するポンプ、上記上室と下室とに連通し、上室で
余剰となつた希溶液と濃溶液とを混合した中間濃
度溶液を下室に送る回帰管、および上記下室へ蒸
気を導入する蒸気導入管を備え、上記上室の中間
濃度溶液を上記仕切板と伝熱管との間隙から伝熱
管に沿わせて流下させ、流下時に蒸気を吸収して
発熱させ、その熱を伝熱管中の流体に伝達するよ
うにした物質移動熱交換装置。 2 直立する伝熱管は、その外周面に複数の針状
または歯状フインを上向きに傾斜させて固着した
ものである特許請求の範囲第1項記載の物質移動
熱交換装置。
[Scope of Claims] 1. A casing for storing an upright heat transfer tube, a partition plate through which the heat transfer tube passes through a gap and divides the casing into an upper chamber and a lower chamber, and a partition plate for storing a concentrated solution before mass exchange. A concentrated solution inlet pipe is introduced into the upper chamber, a pump which leads out the dilute solution after substance exchange from the lower chamber and introduces a part of it into the upper chamber, and a pump which communicates with the upper and lower chambers and connects the upper chamber to the upper chamber. A return pipe is provided to send an intermediate concentration solution, which is a mixture of a dilute solution and a concentrated solution left over from the above, to the lower chamber, and a steam introduction pipe is provided to introduce steam into the lower chamber, and the intermediate concentration solution in the upper chamber is separated from the above partition. A mass transfer heat exchange device that allows steam to flow down from the gap between a plate and a heat exchanger tube along the heat exchanger tube, absorbs steam as it flows down, generates heat, and transfers the heat to the fluid in the heat exchanger tube. 2. The mass transfer heat exchange device according to claim 1, wherein the upright heat transfer tube has a plurality of needle-like or tooth-like fins fixed to the outer circumferential surface thereof in an upwardly inclined manner.
JP9966083A 1983-06-03 1983-06-03 Material movement heat exchanging device Granted JPS59225270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9966083A JPS59225270A (en) 1983-06-03 1983-06-03 Material movement heat exchanging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9966083A JPS59225270A (en) 1983-06-03 1983-06-03 Material movement heat exchanging device

Publications (2)

Publication Number Publication Date
JPS59225270A JPS59225270A (en) 1984-12-18
JPH0340308B2 true JPH0340308B2 (en) 1991-06-18

Family

ID=14253197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9966083A Granted JPS59225270A (en) 1983-06-03 1983-06-03 Material movement heat exchanging device

Country Status (1)

Country Link
JP (1) JPS59225270A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228861A (en) * 1984-04-27 1985-11-14 株式会社日立製作所 Absorption type water chiller
JPS624402A (en) * 1985-06-28 1987-01-10 Kimura Kakoki Kk High vacuum evaporator and absorber used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432471Y1 (en) * 1965-03-01 1968-02-01
JPS5715302A (en) * 1980-06-30 1982-01-26 Matsushita Electric Works Ltd Daylight utilization system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS432471Y1 (en) * 1965-03-01 1968-02-01
JPS5715302A (en) * 1980-06-30 1982-01-26 Matsushita Electric Works Ltd Daylight utilization system

Also Published As

Publication number Publication date
JPS59225270A (en) 1984-12-18

Similar Documents

Publication Publication Date Title
JPS60103275A (en) Absorber
US2852090A (en) Liquid type air conditioning apparatus and method for marine applications
JPH0340308B2 (en)
US2384861A (en) Refrigeration
US9915452B2 (en) Support sheet arrangement for falling film evaporator
US2986906A (en) Absorption refrigerating machine
US3304742A (en) Absorption refrigeration systems
SU425412A3 (en) HEAT EXCHANGER
US3279212A (en) Absorption refrigeration control
JPH06307734A (en) Absorber
JPS5950910B2 (en) Direct-fired absorption type high-temperature regenerator
US2494978A (en) Refrigeration
JP2872083B2 (en) Regenerator for absorption refrigerator
JPH11325401A (en) Steam generating device
CN112023427A (en) Phase-change heat accumulating type falling film evaporator
JP3027646B2 (en) Absorption chiller / heater
JPH0238023Y2 (en)
JPS61110860A (en) Absorption type heat pump
SU1060914A2 (en) Cooling device
JPS5827205Y2 (en) Steam boiler with thermal efficiency improvement device
SU1555602A1 (en) Apparatus for heat-and-moisture treatment of gas
SU853340A1 (en) Method and apparatus for cooling gas
JPH0634281A (en) Cooling method for water and water-cooling device
SU1179078A1 (en) Air capacitor
SU1451517A1 (en) Surface-contact heat exchanger