JPH0340238B2 - - Google Patents

Info

Publication number
JPH0340238B2
JPH0340238B2 JP57153382A JP15338282A JPH0340238B2 JP H0340238 B2 JPH0340238 B2 JP H0340238B2 JP 57153382 A JP57153382 A JP 57153382A JP 15338282 A JP15338282 A JP 15338282A JP H0340238 B2 JPH0340238 B2 JP H0340238B2
Authority
JP
Japan
Prior art keywords
intake
control valve
valve
support shaft
rotatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57153382A
Other languages
Japanese (ja)
Other versions
JPS5943922A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57153382A priority Critical patent/JPS5943922A/en
Publication of JPS5943922A publication Critical patent/JPS5943922A/en
Publication of JPH0340238B2 publication Critical patent/JPH0340238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10072Intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10255Arrangements of valves; Multi-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 本発明は各気筒に対して2個の吸気弁を具えた
2吸気弁式内燃機関、特にその吸気装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-intake valve type internal combustion engine having two intake valves for each cylinder, and particularly to an intake system thereof.

2吸気弁式内燃機関は各気筒の燃焼室に対し2
個の吸気弁を設けたものであり、両吸気弁は夫々
の吸気通路を介してサージタンクに連結される。
吸気通路の一方には吸入空気量の少いとき(部分
負荷時あるいは高負荷低回転数時)に閉弁し、吸
入空気量の多いとき(高負荷高回転時)に開弁す
る吸気制御弁が設けられ、部分負荷時あるいは高
負荷中、低回転数時における出力トルクの向上
(吸入空気流速の増大による燃焼速度の増大と吸
気慣性効果利用による体積効率の増大)と、高負
荷高回転時における吸入空気の体積効率の向上と
を同時に達成するものである。
A two-intake valve internal combustion engine has two intake valves for each cylinder's combustion chamber.
Both intake valves are connected to a surge tank through respective intake passages.
On one side of the intake passage, there is an intake control valve that closes when the amount of intake air is small (during partial load or high load and low speed) and opens when the amount of intake air is large (during high load and high speed). is provided, which improves output torque at partial loads, high loads, and low rotational speeds (increases combustion speed by increasing intake air flow velocity and increases volumetric efficiency by utilizing the intake inertia effect), and improves output torque at high loads and high rotational speeds. This simultaneously improves the volumetric efficiency of intake air.

即ち、このような2吸気弁式内燃機関において
は、高負荷高回転運転時に制御弁を開放したとき
に最大トルクを発生する回転数は非常に高回転数
側にあるが、制御弁を閉じることにより最大トル
クを発生する回転数が中速域側にずれる訳であ
る。このように制御弁の開閉によりトルク特性曲
線が変化するのは吸気通路が吸気弁の近傍におい
て相互に連通されている場合だけに生じることが
判明している。即ち、吸気通路が完全に相互に独
立分離している場合には制御弁を開閉してもトル
ク特性は変化しない。そのために吸気通路の吸気
弁近傍部には合流部が設けられるのが常である。
In other words, in such a two-intake valve type internal combustion engine, when the control valve is opened during high-load, high-speed operation, the rotation speed that generates the maximum torque is on the extremely high rotation speed side, but when the control valve is closed, This causes the rotational speed that generates maximum torque to shift toward the middle speed range. It has been found that this change in the torque characteristic curve due to the opening and closing of the control valve occurs only when the intake passages are interconnected in the vicinity of the intake valve. That is, when the intake passages are completely independent and separated from each other, the torque characteristics do not change even if the control valve is opened or closed. For this purpose, a merging section is usually provided in the intake passage near the intake valve.

このようにして吸気制御弁の開閉制御による吸
気制御により中、低速域のトルクを回復すること
ができることが知られている。
It is known that torque in the middle and low speed ranges can be recovered by controlling the intake air by controlling the opening and closing of the intake control valve in this manner.

一方、これとは別に、部分負荷域で安定した希
薄燃焼を達成する手段の1つとして吸入スワール
を発生させた上で燃料を吸気行程後半に吸気ポー
ト内に噴射することにより燃焼室内を成層化する
方法が知られている。
On the other hand, as a means to achieve stable lean combustion in the partial load range, the combustion chamber is stratified by generating an intake swirl and then injecting fuel into the intake port in the latter half of the intake stroke. There are known ways to do this.

従来上述の如き高負荷(全負荷)中、低速域で
のトルクの回復を企図した2吸気弁式内燃機関に
おいて部分負荷域での安定した希薄燃焼という構
想を組み入れたものはなく、実際この2つの要求
を共に充足することはできなかつた。
Until now, there has been no two-intake valve internal combustion engine designed to recover torque in the low-speed range under high loads (full load) as described above, and in fact, there has been no one that incorporates the concept of stable lean combustion in the partial load range. It was not possible to satisfy both demands.

本発明は特殊な吸気制御弁装置を用いることに
より高負荷中、低速域でのトルク向上という本来
の目的を持つた2吸気弁式内燃機関において本発
明により開発した特殊な吸気制御弁装置を用いる
ことにより部分負荷域での安定した希薄燃焼とい
う要求も可能ならしめる吸気装置を提供せんとす
るものである。
The present invention uses a special intake control valve device developed by the present invention in a two-intake valve type internal combustion engine, which has the original purpose of improving torque at low speeds under high loads by using a special intake control valve device. Therefore, it is an object of the present invention to provide an intake system that can meet the requirements for stable lean combustion in a partial load range.

以下添付図面を参照して説明する。 This will be explained below with reference to the attached drawings.

第1図においてシリンダヘツド8に形成される
燃焼室15には2個の吸気弁3a,3bと、2個
の排気弁10a,10bとが設けられる。各吸気
弁3a,3bは吸気管14の夫々の吸気通路2
a,2bを介してサージタンク(図示せず)に連
結される。吸気通路2a,2bは隔壁6により分
離せしめられるが吸気弁の近傍において合流部5
により連通せしめられる。燃料噴射弁4は合流部
においてその噴射方向が両吸気弁の中心に向くよ
うにして吸気管14に取り付けられる。
In FIG. 1, a combustion chamber 15 formed in a cylinder head 8 is provided with two intake valves 3a, 3b and two exhaust valves 10a, 10b. Each intake valve 3a, 3b is connected to a respective intake passage 2 of the intake pipe 14.
It is connected to a surge tank (not shown) via a and 2b. The intake passages 2a and 2b are separated by a partition wall 6, but there is a confluence part 5 near the intake valve.
communication is established. The fuel injection valve 4 is attached to the intake pipe 14 so that its injection direction is directed toward the center of both intake valves at the merging portion.

尚、11は点火栓、13は排気管を夫々示す。 Note that 11 represents a spark plug, and 13 represents an exhaust pipe.

吸気通路の一方、例えば2b内には吸気制御弁
27が設けられる。この吸気制御弁27は本発明
における吸気制御弁装置を構成するものである
が、本発明における特別な制御態様について説明
する前に吸気制御弁27の一般的な制御態様並び
に機能について説明する。
An intake control valve 27 is provided in one of the intake passages, for example 2b. This intake control valve 27 constitutes the intake control valve device of the present invention, but before explaining the special control mode of the present invention, the general control mode and function of the intake control valve 27 will be explained.

制御弁27は一般的に高負荷中、低回転時の如
く吸入空気量が少いときに閉じられ(第1図bに
示す第2位置に相当)吸気通路面積を絞ることに
より吸気流速を高めそれにより燃焼速度の増大を
計るとともに吸気慣性効果により低中速の軸トル
クを向上させる。他方、制御弁27は高負荷、高
回転時の如く吸入空気量の多いときに開放せしめ
られ(第1図cに示す第3位置に相当)吸気通路
面積を最大にして体積効率の増大をはかる。
The control valve 27 is generally closed when the amount of intake air is small, such as during high load or low rotation (corresponding to the second position shown in Figure 1b), and increases the intake flow velocity by narrowing the intake passage area. This increases the combustion speed and improves the shaft torque at low and medium speeds due to the intake inertia effect. On the other hand, the control valve 27 is opened when the amount of intake air is large, such as when the load is high and the rotation speed is high (corresponding to the third position shown in FIG. 1c) to maximize the area of the intake passage and increase the volumetric efficiency. .

第7図は機関回転数Nと軸トルク(出力)Te
との関係を示す一般的なトルク特性線図である。
制御弁27を全開にすると一般には第7図のA1
で示す如き軸トルクが得られる。A1で示す如く
回転数NがN0(N=N0)で軸トルクは最大値を
とるが一般にはN0は5000rpm以上の大きな値で
ある。吸気弁3a,3bが第1図に示す如く2個
設けられている場合には最大軸トルク値も相当大
きな値となりいわゆる“よく廻る機関”となる
が、反面、中、低回転域の軸トルクはむしろ吸気
弁を1個しかもたない場合よりも更に低下してし
まい、通常走行時はかえつて好ましからざるもの
となる。そこでこのような状態のときに制御弁2
7を第2位置に制御して吸気通路面積を絞るとト
ルク特性曲線が第7図のA2で示す如くなること
が判明している。即ち、軸トルク最大値を与える
NがN0から低回転数側のN1に移行する。これは
吸気制御弁27を第2の位置に制御することによ
り吸気管の等価管長が長くなつたことによるもの
である。
Figure 7 shows engine speed N and shaft torque (output) Te
FIG. 2 is a general torque characteristic diagram showing the relationship between
When the control valve 27 is fully opened, generally A 1 in Fig. 7
The shaft torque shown in is obtained. As shown by A1 , the shaft torque takes a maximum value when the rotational speed N is N0 (N= N0 ), but generally N0 is a large value of 5000 rpm or more. When two intake valves 3a and 3b are provided as shown in Fig. 1, the maximum shaft torque value is also considerably large, resulting in a so-called "fast-running engine," but on the other hand, the shaft torque in the middle and low rotation ranges is In fact, it becomes even lower than when there is only one intake valve, which is even less desirable during normal driving. Therefore, in such a state, control valve 2
7 to the second position to narrow down the intake passage area, it has been found that the torque characteristic curve becomes as shown by A2 in FIG. That is, N that gives the maximum shaft torque shifts from N 0 to N 1 on the low rotation speed side. This is because the equivalent length of the intake pipe is increased by controlling the intake control valve 27 to the second position.

従つて吸気制御弁27を予じめ定めた所定の回
転数NSで閉弁するように開閉切替制御すること
により全負荷時における中速あるいは低速軸トル
クが回復、向上せしめられる。
Therefore, by controlling the opening/closing of the intake control valve 27 so as to close it at a predetermined rotational speed N S , the mid-speed or low-speed shaft torque under full load can be recovered and improved.

以上の如き従来の2吸気弁式内燃機関において
本発明は更に部分負荷時(第7図にA3で示す領
域に相当)における良好なリーンバーン(希薄燃
焼)又は大量EGRを可能ならしめんとするもの
である。このような部分負荷時におけるリーンバ
ーンの達成という目的を有しない従来技術におい
ては吸気制御弁27は一般に合流部5の上流側
(燃焼室から遠い方の側)に配設され、全閉と全
開の2つの弁位置を占めるだけである。これに対
し、本発明においては吸気制御弁27は3つの弁
位置を占める。即ち、合流部5から吸気弁の一
方、例えば第2吸気弁3bに至る吸気通路を遮断
して混合気を第1吸気弁3aのみから燃焼室に導
入する第1位置(第1図aに相当)と、第2吸気
通路2bを閉鎖しかつ合流部5から第2吸気弁3
bに至る吸気通路を開放して第1、第2吸気弁3
a,3bの双方から混合気を導入する第2位置
(第1図bに相当)と、第2吸気通路を開放して
第1,第2吸気弁3a,3bの双方から混合気を
導入する第3位置(第1図cに相当)の3種類の
位置をとることができる。第2位置及び第3位置
は夫々従来の吸気制御弁全閉位置及び全開位置に
相当するものである。従つて本発明は従来技術に
対し更に第1位置の制御態様が付加されたもので
あると言うことができる。また上述の3種類の位
置は夫夫第1位置では第2吸気弁の働きが無効に
され第2吸気通路の働きは有効であり、第2位置
では第2吸気通路の働きが無効にされ第2吸気弁
の働きは有効であり、第3位置では第2吸気弁、
第2吸気通路は共に有効であると言い換えること
ができる。尚、第1吸気弁及び第1吸気通路は常
に有効である。
In the conventional two-intake valve type internal combustion engine as described above, the present invention further aims to enable good lean burn or high-volume EGR at partial load (corresponding to the area indicated by A 3 in Figure 7). It is something to do. In conventional technologies that do not have the purpose of achieving lean burn during such partial loads, the intake control valve 27 is generally disposed on the upstream side of the merging section 5 (the side far from the combustion chamber), and is fully closed and fully open. It only occupies two valve positions. In contrast, in the present invention, the intake control valve 27 occupies three valve positions. That is, a first position (corresponding to FIG. 1a) in which the air-fuel mixture is introduced into the combustion chamber only from the first intake valve 3a by blocking the intake passage from the merging portion 5 to one of the intake valves, for example, the second intake valve 3b. ), the second intake passage 2b is closed and the second intake valve 3 is opened from the confluence part 5.
Open the intake passage leading to b and open the first and second intake valves 3.
A second position (corresponding to FIG. 1 b) where the mixture is introduced from both the first and second intake valves 3a and 3b, and a second position where the mixture is introduced from both the first and second intake valves 3a and 3b by opening the second intake passage. Three types of positions can be taken: the third position (corresponding to FIG. 1c). The second position and the third position correspond to the conventional intake control valve fully closed position and fully open position, respectively. Therefore, it can be said that the present invention has a first position control mode added to the prior art. Furthermore, in the three positions mentioned above, in the first position, the function of the second intake valve is disabled and the function of the second intake passage is effective, and in the second position, the function of the second intake passage is disabled and the function of the second intake passage is valid. The function of the 2nd intake valve is effective, and in the 3rd position, the 2nd intake valve,
In other words, the second intake passages are both effective. Note that the first intake valve and the first intake passage are always effective.

吸気制御弁27は上述の如く高負荷高回転時に
は第3位置を、また高負荷中、低回転時には第2
位置をとり高負荷時の高出力トルクを確保するも
のであると同時に部分負荷時には第1位置をとり
リーンバーン又は大量EGRを保証するものであ
る。第1位置においては、第2吸気通気2bから
の空気は合流部5を介して第1吸気弁3aから燃
焼室に導入されることになるが、合流部5を通る
際にその方向が曲げられるので燃料噴射弁4から
の噴射燃料12は第1図aに示す如く曲げられ、
第1吸気弁3aから燃焼室15内に吸入される混
合気には矢印で示す如く強力なスワールが付与さ
れる。これとは別に、更に積極的に吸気スワール
を発生させるために第1吸気通路2aをヘリカル
ポートとすることも可能である。このようにして
混合気の成層化によるリーンバーンの前提条件で
ある吸気スワールの発生が確保される。更にまた
混合気の成層化を生じるために公知の如く燃料噴
射開始時期を噴射燃料のすべてが吸気行程の後半
に燃焼室に吸入されるように機関回転数及び負荷
に応じて制御すればよい。このように制御するこ
とにより点火栓11の付近がリツチ、ピストン
(図示せず)付近がリーンになり混合気の成層化
がなされることが知られている。この成層化によ
り第8図に示す如く燃焼可能なリーン限界空燃比
A/Fが従来、即ち点火と同時に燃料噴射する場
合(破線で図示)に比し本発明(実線で図示)で
はA/Fの値にして3〜5リーン化でき、良好な
燃費及び排気エミツシヨンを得ることができる。
As mentioned above, the intake control valve 27 is set to the third position during high load and high rotation, and to the second position during high load and low rotation.
This position ensures high output torque during high loads, and at the same time, it assumes the first position during partial loads to ensure lean burn or mass EGR. In the first position, air from the second intake vent 2b is introduced into the combustion chamber from the first intake valve 3a via the confluence section 5, but its direction is bent when passing through the confluence section 5. Therefore, the injected fuel 12 from the fuel injection valve 4 is bent as shown in FIG.
A strong swirl is applied to the air-fuel mixture sucked into the combustion chamber 15 from the first intake valve 3a as shown by the arrow. Apart from this, it is also possible to make the first intake passage 2a a helical port in order to generate intake swirl more actively. In this way, the generation of intake swirl, which is a prerequisite for lean burn due to stratification of the air-fuel mixture, is ensured. Furthermore, in order to cause stratification of the air-fuel mixture, the fuel injection start timing may be controlled in accordance with the engine speed and load so that all of the injected fuel is drawn into the combustion chamber in the latter half of the intake stroke. It is known that by controlling in this way, the area around the spark plug 11 becomes rich and the area around the piston (not shown) becomes lean, thereby stratifying the air-fuel mixture. Due to this stratification, as shown in FIG. 8, the lean limit air-fuel ratio A/F for combustion is higher than that in the conventional case (indicated by a broken line) when fuel is injected at the same time as ignition (indicated by a broken line). It is possible to achieve a lean value of 3 to 5 and obtain good fuel efficiency and exhaust emissions.

吸気制御弁27が上述の3つa位置をとり得る
ための種々の配置構成が第1図〜第6図に示され
る。いずれの図においてもaが第1位置、bが第
2位置、cが第3位置を夫々示す。またいずれの
図においても部分参照番号はa図のみに示し、
b,c図においては図を明瞭にするために省略し
ある。各図において共通する部品は同一番号で示
し説明を省略する。
Various arrangements for allowing the intake control valve 27 to assume the above-mentioned three positions are shown in FIGS. 1 to 6. In each figure, a indicates the first position, b the second position, and c the third position, respectively. Also, in any of the figures, part reference numbers are shown only in figure a,
Figures b and c are omitted for clarity. Common parts in each figure are indicated by the same numbers and explanations will be omitted.

第1図において制御弁27を回転自在に軸支す
る支軸26は合流部5のほぼ中央でかつ第2吸気
通路2bの中央に設けられている。制御弁27は
第1位置においてはその上端縁が合流部下流の隔
壁6に接しかつ下端壁が第2吸気通路側a吸気管
内壁に接する。また第2位置においては制御弁2
7の上端縁が第2吸気通路側の吸気管内壁に、そ
して下端縁が合流部上流の隔壁6に夫々接する。
In FIG. 1, a support shaft 26 that rotatably supports the control valve 27 is provided approximately at the center of the merging portion 5 and at the center of the second intake passage 2b. In the first position, the control valve 27 has its upper end edge in contact with the partition wall 6 downstream of the merging portion, and its lower end wall in contact with the inner wall of the intake pipe on the second intake passage side a. Also, in the second position, the control valve 2
The upper edge of 7 contacts the inner wall of the intake pipe on the second intake passage side, and the lower edge of 7 contacts the partition wall 6 upstream of the merging portion.

第2図においては支軸26は合流部5のほぼ中
央部に相当する位置で吸気管14の第2吸気通路
側内壁に設けられ制御弁27は片開き式の弁板と
なつている。
In FIG. 2, the support shaft 26 is provided on the inner wall of the intake pipe 14 on the second intake passage side at a position corresponding to approximately the center of the merging portion 5, and the control valve 27 is a single-open valve plate.

第3図においては制御弁装置は2つの第1、第
2制御弁27a,27bから構成され、その一方
27aは合流部5の下流において第2吸気通路2
b内に設けられ、他方の制御弁27bは合流部5
の上流において第2吸気通路2b内に設けられて
いる。第2吸気制御弁27bはその第1位置(第
3図a)においては想像線で示す如く閉弁位置に
あつてもほとんど同様の効果が得られる。何とな
れば吸気スワール自体は第1吸気通路2aからの
吸気のみでも燃焼室の形状自体により発生するか
らである。
In FIG. 3, the control valve device is composed of two first and second control valves 27a and 27b, one of which 27a is connected to the second intake passage 2 downstream of the confluence section 5.
b, and the other control valve 27b is provided in the confluence part 5.
It is provided in the second intake passage 2b upstream of the intake passage 2b. When the second intake control valve 27b is in its first position (FIG. 3a), almost the same effect can be obtained even when it is in the closed position as shown by the imaginary line. This is because the intake swirl itself is generated due to the shape of the combustion chamber itself even if only the intake air is from the first intake passage 2a.

第4図においても2つの吸気制御弁27a,2
7bが設けられており、第1制御弁27aの支軸
26aは合流部5の上流側の隔壁6の端部に取り
付けられ、第2制御弁27bの支軸26bは合流
部5の上流の第2吸気通路2b内に設けられる。
また第4図においては燃料噴射弁4は合流部5の
近傍において第1吸気通路2a内に設けられてい
る。勿論本発明を実施する上では燃料噴射弁4を
このように配置することも可能であるが、特に第
3位置における混合気の均一ミキシングという点
からは第1〜3図に示すものより劣ることになろ
う。
Also in FIG. 4, two intake control valves 27a, 2
7b is provided, the support shaft 26a of the first control valve 27a is attached to the end of the partition wall 6 on the upstream side of the confluence section 5, and the support shaft 26b of the second control valve 27b is attached to the end of the partition wall 6 on the upstream side of the confluence section 5. 2 is provided in the intake passage 2b.
Further, in FIG. 4, the fuel injection valve 4 is provided in the first intake passage 2a near the merging portion 5. Of course, in carrying out the present invention, it is possible to arrange the fuel injection valve 4 in this way, but it is inferior to the arrangement shown in Figs. 1 to 3, especially in terms of uniform mixing of the air-fuel mixture in the third position. Would.

第5図は第4図の実施例とほぼ同様であるが、
第2制御弁27bが合流部5の下流において第2
吸気通路内に配置されている点のみが第4図と相
異する。
FIG. 5 is almost the same as the embodiment shown in FIG. 4, but
The second control valve 27b is connected to a second control valve downstream of the merging section 5.
The only difference from FIG. 4 is that it is disposed within the intake passage.

第6図は第1,第2制御弁27a,27bを合
流部上流側の隔壁6の端部に設けられる共通の支
軸26に取付けた実施例を示すもので第1制御弁
27aは合流部5の開閉制御を、そして第2制御
弁27bは第2吸気通路2bの開閉制御を受け持
つ。
FIG. 6 shows an embodiment in which the first and second control valves 27a and 27b are attached to a common support shaft 26 provided at the end of the partition wall 6 on the upstream side of the confluence section. The second control valve 27b is in charge of opening and closing control of the second intake passage 2b.

以上に示す各実施例において各制御弁装置はい
ずれも上述の3つの位置を選択的にとり得るとい
うことは容易に理解されよう。
It will be easily understood that in each of the embodiments described above, each control valve device can selectively assume any of the three positions described above.

また制御弁装置を図示の各実施例とは反対に第
1吸気通路側に設けても全く同様の効果が得られ
るということも理解されよう。
It will also be understood that the same effect can be obtained even if the control valve device is provided on the first intake passage side, contrary to the illustrated embodiments.

第9図は第1図の実施例の場合を例にとり制御
弁27のアクチユエータの一例を示す断面図解図
である。
FIG. 9 is a cross-sectional illustrative view showing an example of the actuator of the control valve 27, taking the embodiment of FIG. 1 as an example.

吸気制御弁27は支軸26を介してバルブレバ
ー34に固定される。バルブレバー34はロツド
35に長孔36を介して連結され、ロツド35の
長手方向運動に伴つて支軸26を中心として支軸
26と共に回転し、制御弁27を支軸26と共に
時計方向及び反時計方向に回転せしめ、斯くして
第1図a,b,cの3つの状態に制御する。ロツ
ド35はダイヤフラム装置40の第1ダイヤフラ
ム41に固着される。第2ダイヤフラム42によ
つて仕切られるダイヤフラム室47,48は夫々
の負圧切替弁(VSV)44,45を介して大気
または負圧領域に選択的に連結せしめられる。
VSV44,45は夫々電気的制御装置ECU50
からの制御信号により、ECU50に入力される
機関回転数信号SN及び負荷信号Lに応じてオン、
オフ制御される。SN及びSLは夫々公知のセンサ
により検出し得る(SLは実際は例えば吸気負圧信
号が利用される)。
The intake control valve 27 is fixed to the valve lever 34 via the support shaft 26. The valve lever 34 is connected to the rod 35 through an elongated hole 36, and rotates together with the support shaft 26 around the support shaft 26 as the rod 35 moves in the longitudinal direction. It is rotated in a clockwise direction, thus controlling the three states a, b, and c in FIG. 1. The rod 35 is secured to a first diaphragm 41 of a diaphragm device 40. Diaphragm chambers 47, 48 partitioned by second diaphragm 42 are selectively connected to the atmosphere or a negative pressure region via respective negative pressure switching valves (VSV) 44, 45.
VSV44, 45 are each electrical control unit ECU50
Turns on and off according to the engine speed signal S N and load signal L input to the ECU 50 by a control signal from
Controlled off. S N and S L can each be detected by a known sensor (actually, for example, an intake negative pressure signal is used for S L ).

まず、部分負荷時に第1位置を占める場合には
第1VSV44は大気側に、そして第2VSV45は
負圧側に夫々切替られる。その結果第1ダイヤフ
ラム室(副ダイヤフラム室)47には大気が、第
2ダイヤフラム室(主ダイヤフラム室)48には
負圧が夫々作用しロツド35は第2ダイヤフラム
42によつて第9図において右方にフルストロー
ク引つ張られ制御弁27は第1図aの第1位置に
くる。なおこの場合第1ダイヤフラム室47には
負圧を作用させるようにしてもよい。
First, when occupying the first position during partial load, the first VSV 44 is switched to the atmosphere side, and the second VSV 45 is switched to the negative pressure side. As a result, atmospheric air acts on the first diaphragm chamber (auxiliary diaphragm chamber) 47, negative pressure acts on the second diaphragm chamber (main diaphragm chamber) 48, and the rod 35 is moved by the second diaphragm 42 to the right side in FIG. The control valve 27 is pulled a full stroke in the direction shown in FIG. In this case, negative pressure may be applied to the first diaphragm chamber 47.

次いで全負荷中、低回転時には第1VSV44、
第2VSV45は共に大気側に連通せしめられ、そ
の結果ロツド35は第1ばね43により第9図に
おいて左方に押し返され制御弁27を第1図bの
第2位置にもたらす。
Then, during full load and low rotation, the first VSV44,
The second VSV 45 are both brought into communication with the atmosphere, so that the rod 35 is pushed back to the left in FIG. 9 by the first spring 43, bringing the control valve 27 into the second position of FIG. 1b.

全負荷高回転時には第1VSV44は負圧側に、
そして第2VSV45は大気側に夫々連通せしめら
れる。その結果第1ダイヤフラム室47には負圧
が、そして第2ダイヤフラム室48には大気が夫
夫作用し、ロツド35は副ダイヤフラム室47内
の有効ストロークG分だけ右方に引かれ制御弁2
7を第1図cの第3位置にもたらす。
At full load and high rotation, the 1st VSV44 is on the negative pressure side,
The second VSVs 45 are respectively communicated with the atmosphere. As a result, negative pressure acts on the first diaphragm chamber 47 and the atmosphere acts on the second diaphragm chamber 48, and the rod 35 is pulled to the right by the effective stroke G in the sub-diaphragm chamber 47, and the control valve 2
7 to the third position in FIG. 1c.

以上の如く本発明によれば全負荷時の高回転域
及び中、低回転域全域に亘つて出力トルクの向上
を計りつつ部分負荷時の吸入スワールを改善する
ことにより燃焼の改善を計りかつ燃焼室内での吸
気の成層化により安定した希薄燃焼を達成するこ
とができる。
As described above, according to the present invention, it is possible to improve combustion by improving the intake swirl at partial load while improving the output torque throughout the high rotation range, middle and low rotation range at full load. Stable lean combustion can be achieved by stratifying the intake air indoors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明に係る吸気装置の吸
気制御弁を異なる3つの位置で示す断面図解図、
第2図a,b,c〜第6図a,b,cは第1図
a,b,cとは別の5個の実施例を示す第1図
a,b,cと同様の図、第7図は一般的な2吸気
弁式内燃機関におけるトルク特性線図、第8図は
従来技術との比較において本発明の希薄燃焼効果
を示す空燃比線図、第9図は第1図a,b,cを
示す吸気制御弁のアクチユエータの一例を示す要
部断面図解図。 2a,2b……吸気通路、3a,3b……吸気
弁、4……燃料噴射弁、5……合流部、27……
吸気制御弁。
Figures 1a, b, and c are cross-sectional illustrative views showing the intake control valve of the intake device according to the present invention in three different positions;
Figures 2 a, b, c to 6 a, b, c are views similar to Figure 1 a, b, c showing five different embodiments from Figure 1 a, b, c; Fig. 7 is a torque characteristic diagram for a general two-intake valve type internal combustion engine, Fig. 8 is an air-fuel ratio diagram showing the lean burn effect of the present invention in comparison with the conventional technology, and Fig. 9 is a diagram of Fig. 1a. , b, and c are main part sectional illustrations showing an example of the actuator of the intake control valve. 2a, 2b...Intake passage, 3a, 3b...Intake valve, 4...Fuel injection valve, 5...Merge portion, 27...
Intake control valve.

Claims (1)

【特許請求の範囲】 1 各気筒に対し2個の吸気弁(第1、第2吸気
弁)とこれら吸気弁に連通する2個の独立吸気通
路(第1、第2吸気通路)とを有し、これら第
1、第2吸気通路は吸気弁の近傍に形成される合
流部により相互に連通せしめられ、かつ該合流部
ないしはその近傍に燃料噴射弁が設けられる型の
2吸気弁式内燃機関において、第2吸気通路に機
関の回転数及び負荷に応じて、第2吸気通路を閉
鎖しかつ合流部から第2吸気弁に至る吸気通路を
遮断して第1吸気弁のみから混合気を導入する第
1位置と、第2吸気通路を閉鎖しかつ合流部から
第2吸気弁に至る吸気通路を開放して第1、第2
吸気弁の双方から混合気を導入する第2位置と、
第2吸気通路を開放して第1、第2吸気通路の双
方から第1、第2吸気弁の双方を介して混合気を
導入する第3位置とを選択的に占める吸気制御弁
装置を設けたことを特徴とする2吸気弁式内燃機
関の吸気装置。 2 上記吸気制御弁装置は合流部中央付近におい
て第2吸気通路の中央に配置される支軸を中心と
して回転可能な単一の制御弁により構成されるこ
とを特徴とする特許請求の範囲第1項記載の吸気
装置。 3 上記吸気制御弁装置は合流部中央付近におい
て第2吸気通路の内周壁に取付けられる支軸を中
心として回転可能な単一の制御弁により構成され
ることを特徴とする特許請求の範囲第1項記載の
吸気装置。 4 上記吸気弁制御装置は合流部の下流において
第2吸気通路の中央に配置される支軸を中心とし
て回転可能な第1の制御弁と合流部上流において
第2吸気通路の中央に配置される支軸を中心とし
て回転可能な第2の制御弁とから構成されること
を特徴とする特許請求の範囲第1項記載の吸気装
置。 5 上記吸気弁制御装置は合流部の上流側端部に
おいて合流部内に配置される支軸を中心として回
転可能な第1の制御弁と合流部上流において第2
吸気通路の中央に配置される支軸を中心として回
転可能な第2の制御弁とから構成されることを特
徴とする特許請求の範囲第1項記載の吸気装置。 6 上記吸気弁制御装置は合流部の上流側端部に
おいて合流部内に配置される支軸を中心として回
転可能な第1の制御弁と合流部下流において第2
吸気通路の中央に配置される支軸を中心として回
転可能な第2の制御弁とから構成されることを特
徴とする特許請求の範囲第1項記載の吸気装置。 7 上記吸気制御弁装置は合流部の上流側端部に
おいて合流部内に配置される共通の支軸を中心と
して回転可能な第1、第2制御弁により構成され
ることを特徴とする特許請求の範囲第1項記載の
吸気装置。
[Claims] 1. Each cylinder has two intake valves (first and second intake valves) and two independent intake passages (first and second intake passages) communicating with these intake valves. However, in a two-intake valve type internal combustion engine, these first and second intake passages are communicated with each other by a confluence section formed near the intake valve, and a fuel injection valve is provided at or near the confluence section. In the second intake passage, the air-fuel mixture is introduced only from the first intake valve by closing the second intake passage and blocking the intake passage from the merging part to the second intake valve, depending on the engine speed and load. the first position where the second intake passage is closed and the intake passage from the merging portion to the second intake valve is opened and the first and second intake passages are closed.
a second position for introducing the air-fuel mixture from both sides of the intake valve;
An intake control valve device is provided that selectively occupies a third position in which the second intake passage is opened and air-fuel mixture is introduced from both the first and second intake passages through both the first and second intake valves. An intake system for a two-intake valve internal combustion engine, characterized in that: 2. Claim 1, wherein the intake control valve device is constituted by a single control valve that is rotatable around a support shaft located at the center of the second intake passage near the center of the merging portion. Intake device as described in section. 3. Claim 1, wherein the intake control valve device is constituted by a single control valve that is rotatable around a support shaft attached to the inner circumferential wall of the second intake passage near the center of the merging portion. Intake device as described in section. 4. The intake valve control device includes a first control valve that is rotatable about a support shaft located downstream of the merging portion and located at the center of the second intake passage, and a first control valve that is rotatable about a support shaft that is located at the center of the second intake passage upstream of the merging portion. 2. The intake device according to claim 1, further comprising a second control valve rotatable about a support shaft. 5 The above-mentioned intake valve control device includes a first control valve that is rotatable about a support shaft disposed within the confluence section at the upstream end of the confluence section, and a second control valve that is rotatable about a support shaft disposed in the confluence section at the upstream end of the confluence section.
2. The intake device according to claim 1, further comprising a second control valve rotatable about a support shaft disposed at the center of the intake passage. 6 The above-mentioned intake valve control device includes a first control valve that is rotatable about a support shaft disposed within the confluence section at the upstream end of the confluence section, and a second control valve that is rotatable about a support shaft disposed in the confluence section at the upstream end of the confluence section.
2. The intake device according to claim 1, further comprising a second control valve rotatable about a support shaft disposed at the center of the intake passage. 7. The above-mentioned intake control valve device is constituted by first and second control valves that are rotatable about a common support shaft disposed within the merging portion at an upstream end of the merging portion. The intake device according to scope 1.
JP57153382A 1982-09-04 1982-09-04 Suction device of 2-suction valve type internal- combustion engine Granted JPS5943922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153382A JPS5943922A (en) 1982-09-04 1982-09-04 Suction device of 2-suction valve type internal- combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153382A JPS5943922A (en) 1982-09-04 1982-09-04 Suction device of 2-suction valve type internal- combustion engine

Publications (2)

Publication Number Publication Date
JPS5943922A JPS5943922A (en) 1984-03-12
JPH0340238B2 true JPH0340238B2 (en) 1991-06-18

Family

ID=15561244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153382A Granted JPS5943922A (en) 1982-09-04 1982-09-04 Suction device of 2-suction valve type internal- combustion engine

Country Status (1)

Country Link
JP (1) JPS5943922A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021556U (en) * 1983-07-20 1985-02-14 マツダ株式会社 engine intake system
US4548175A (en) * 1983-12-05 1985-10-22 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with two intake valves
JPS60152062U (en) * 1984-03-21 1985-10-09 マツダ株式会社 fuel injected engine
JPS6125916A (en) * 1984-07-16 1986-02-05 Mazda Motor Corp Intake-air device in engine
DE3507767A1 (en) * 1985-03-05 1986-09-11 Knorr-Bremse AG, 8000 München Charge swirl and / or turbulence device for internal combustion engines
DE3510226A1 (en) * 1985-03-21 1986-10-02 Daimler-Benz Ag, 7000 Stuttgart INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE
JPS61286528A (en) * 1985-06-13 1986-12-17 Toyota Motor Corp Siamese type intake port device of internal-combustion engine
JPH0821342A (en) * 1994-07-07 1996-01-23 Yamaha Motor Co Ltd Fuel injection type engine
FR2888285B1 (en) * 2005-07-08 2007-09-14 Renault Sas INTAKE SYSTEM FOR DIRECT INJECTION ENGINES WITH CONTINUOUSLY VARIABLE TOURBILLON GENERATION DEVICE
FR2909416B1 (en) * 2006-11-30 2009-01-16 Inst Francais Du Petrole INTERNAL COMBUSTION ENGINE WITH SUPERALITY AND SCAN OF GASES BURNED WITH AT LEAST TWO MEANS OF ADMISSION

Also Published As

Publication number Publication date
JPS5943922A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JPS623128A (en) Internal combustion engine
JPH0340238B2 (en)
JP3671755B2 (en) Intake control device for direct injection internal combustion engine
JPH05340258A (en) Intake device of engine
JP3404408B2 (en) Diesel engine intake system
JPH0324835Y2 (en)
JPS5833222Y2 (en) internal combustion engine
JPS6350427Y2 (en)
JPS61190115A (en) Intake air device for internal-combustion engine
JPH089969B2 (en) Variable intake system for V8 engine
JPS5825514A (en) Internal combustion engine having combustion chamber with plural intake ports
JPH0634581Y2 (en) Double intake valve engine
JPH0636276Y2 (en) Double intake valve engine
JP3518044B2 (en) Engine intake system
JPS6131145Y2 (en)
JP2576124B2 (en) Engine intake system with multiple intake valves
JPS6125915A (en) Intake-air device in internal-combustion engine
JPH0634578Y2 (en) Double intake valve engine
JPH0634579Y2 (en) Double intake valve engine
JPS61268845A (en) Control method for air-fuel ratio in internal-combustion engine
JPS6337476Y2 (en)
JP2001073855A (en) Cylinder injection internal combustion engine
JPH051551A (en) Engine intake system
JPH03194125A (en) Dilution gas reducing device for rotary piston engine
JPS60125723A (en) Intake apparatus for internal combustion engine