JPH0339981B2 - - Google Patents

Info

Publication number
JPH0339981B2
JPH0339981B2 JP57198903A JP19890382A JPH0339981B2 JP H0339981 B2 JPH0339981 B2 JP H0339981B2 JP 57198903 A JP57198903 A JP 57198903A JP 19890382 A JP19890382 A JP 19890382A JP H0339981 B2 JPH0339981 B2 JP H0339981B2
Authority
JP
Japan
Prior art keywords
pulp
paper
inorganic
phosphorylated
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57198903A
Other languages
Japanese (ja)
Other versions
JPS5988359A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19890382A priority Critical patent/JPS5988359A/en
Publication of JPS5988359A publication Critical patent/JPS5988359A/en
Publication of JPH0339981B2 publication Critical patent/JPH0339981B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

燐酸エステル化木材パルプ(以下燐酸化パルプ
と称す)をバインダー、あるいは基材とする無機
系微粉物や無機系繊維状物、あるいは双方混合物
を主体とした紙状、厚紙状物は、耐火不燃性、弾
力性、多孔性、低密度、軽量、強靭性に優れ、壁
装材、床材、その他建築用材として幅広い用途が
期待されている。 尚、無機系微粉物とは、タルク、クレー、酸化
チタン、水酸化アルミ、酸化鉄、珪砂、陶土、金
属酸化物等を指す。 又、無機系繊維状物とは、ガラスウール、スラ
ツグウール、カーボンフアイバー、金属フアイバ
ー、各種ウエスカー等を指す。 燐酸化パルプをバインダー及び基材とする無機
系微粉物、若しくは無機系繊維状成型品の形状
は、シート状の紙又はボード状のもので、いずれ
の場合も製法は混合式抄紙によるものである。 耐熱性および不燃性を得るために、従来、木材
パルプを基材として、これに多量の無機系微粉物
を保有させることを試みて来たが、従来の方法で
は、特に坪量の100g/m2以下の紙では、無機系
微粉物を50%まで保有させることはできるが、そ
れ以上保有させることは困難であつた。 例えば無機質紙として従来から市販されている
代表的な製品でメラミン化粧板のパターン紙、又
はチタン紙と呼ばれるものがあるが、これを作る
ためには、まず木材パルプを、予め濾水性を低下
させて酸化チタンを良く保有させるように粘状叩
解したものに多量の酸化チタンを混合し、さらに
周知のアクリルアミド等の凝集剤を加え、一般紙
を抄紙する方法に準じて抄紙するが、その結果、
紙の中に保有される酸化チタンの量は50%以下に
止どまり、50%以上保有させることは困難であつ
た。 この原因は、一般の木材パルプが、水中でアニ
オンに荷電するように、酸化チタンも同様にアニ
オンに荷電するため、両者が水中で反発し合い、
酸化チタンがパルプの中に保有されず水と一緒に
流出されてしまうからである。 従つてこれ以上無機系微粉物を紙に保有させる
ためには、カチオン樹脂を木材パルプと無機質混
合液に添加する方法、およびカチオン化パルプを
作る方法が公表されている。パルプをアルカリ処
理しアルカリセルローズとし、これにジエチルア
ミノエチルクロライドを反応させて、ジエチルア
ミノエチルクロライドセルローズにする方法等の
カチオン性化合物をパルプに結合させる方法が、
文献、特許公報で公開されている(文献 樋口光
夫氏外 工化誌74.3、紙パ技協誌25.4、特開昭56
−63099号公開特許公報)。さらにパルプにカチオ
ン性のモノマーを混合してから、これ等モノマー
を重合してパルプにそのまま吸着させる方法(特
開昭49−104945号公開特許公報)も公表されてい
る。 いずれの結果を見ても無機系微粉物を多量保有
させるための媒体としてはカチオン性や保有能の
点で不充分なため、パルプを細かく叩解して濾水
性を低下させて、保有力を高めようとするため、
今度は抄紙適性を低下させる結果となつて、軽量
シートは出来ても重量シートとすることが困難と
なる。 また、せつかく無機粉末、無機繊維を主体とし
ても、バインダーとして通常の木材パルプを混入
したのでは可燃性となつてしまう。 これに対し、本発明において使用する燐酸化パ
ルプは、永年燐酸化セルローズの研究を続けてい
る過程で特に製紙用として種々興味ある特性が発
見され、これ等を活用したのが、従来得られなか
つた新しい無機系紙の開発である。 製紙用燐酸化パルプの製法は、予め作られた縮
合燐酸液に木材パルプを浸漬し、過剰に付着して
いる液を脱水し乾燥したのち140〜160℃で数分間
加熱反応すると、構造式の様な燐酸化パルプが得
られる。使用するときは、多量の水で解繊洗滌後
使用する。 縮合燐酸液 ↓ 木材パルプ→浸漬−脱水−乾燥−反応−解繊洗滌 −燐酸化パルプ この燐酸化パルプの構造式は
Paper-like and cardboard-like products that are mainly made of phosphoric acid esterified wood pulp (hereinafter referred to as phosphorylated pulp) as a binder or base material, inorganic fine powder, inorganic fibrous material, or a mixture of both are fire-resistant and non-combustible. It has excellent elasticity, porosity, low density, light weight, and toughness, and is expected to have a wide range of uses as wall covering materials, flooring materials, and other construction materials. Incidentally, the inorganic fine powder refers to talc, clay, titanium oxide, aluminum hydroxide, iron oxide, silica sand, china clay, metal oxides, and the like. Further, the inorganic fibrous material refers to glass wool, slag wool, carbon fiber, metal fiber, various types of weskers, and the like. The shape of inorganic fine powder or inorganic fibrous molded products using phosphorylated pulp as a binder and base material is sheet-like paper or board-like, and in either case, the manufacturing method is by mixed papermaking. . In order to obtain heat resistance and non-combustibility, attempts have been made to use wood pulp as a base material and add a large amount of inorganic fine powder to it, but with the conventional method, especially when the basis weight is 100 g/m 2 or less paper can retain up to 50% of inorganic fine powder, but it has been difficult to retain more than that. For example, typical inorganic paper products that have traditionally been commercially available include melamine decorative laminate pattern paper or titanium paper. A large amount of titanium oxide is mixed with the viscous beaten product to retain titanium oxide well, and a well-known flocculant such as acrylamide is added to make paper according to the method of making general paper.
The amount of titanium oxide retained in paper remains at less than 50%, and it has been difficult to retain more than 50%. The reason for this is that just as ordinary wood pulp is charged with anions in water, titanium oxide is similarly charged with anions, so the two repel each other in water.
This is because titanium oxide is not retained in the pulp and is washed out together with water. Therefore, in order to make paper retain more inorganic fine powder, a method of adding a cationic resin to a mixture of wood pulp and an inorganic substance, and a method of producing a cationized pulp have been published. A method of bonding a cationic compound to pulp, such as a method of treating pulp with alkali to obtain alkali cellulose and reacting it with diethylaminoethyl chloride to produce diethylaminoethyl chloride cellulose, is
Published in literature and patent gazettes (References: Mitsuo Higuchi et al., Koka-shi 74.3, Paper and Paper Technology Association Journal 25.4, JP-A-1983-1986)
-63099 published patent publication). Furthermore, a method (Japanese Unexamined Patent Publication No. 104945/1983) has been published in which cationic monomers are mixed with pulp, and then these monomers are polymerized and adsorbed onto the pulp as they are. Regardless of the results, the medium is insufficient in terms of cationic properties and retention capacity to retain a large amount of inorganic fine powder, so the pulp is finely beaten to reduce freeness and increase retention capacity. In order to try
In turn, this results in a decrease in papermaking suitability, and even if lightweight sheets can be produced, it becomes difficult to produce heavy sheets. Furthermore, even if the material is mainly made of inorganic powder or fiber, it will become flammable if ordinary wood pulp is mixed in as a binder. On the other hand, the phosphorylated pulp used in the present invention has various interesting properties, especially for paper manufacturing, that have been discovered during the long-term research of phosphorylated cellulose, and the use of these properties has made it possible to utilize the phosphorylated pulp that has not been previously available. This is the development of a new inorganic paper. The method for producing phosphorylated pulp for papermaking is to immerse wood pulp in a pre-made condensed phosphoric acid solution, dehydrate the excess solution, dry it, and then heat it at 140-160°C for several minutes to form a structural formula. A phosphorylated pulp of various types can be obtained. When using, defibrate and wash with plenty of water before use. Condensed phosphoric acid solution ↓ Wood pulp → Soaking - Dehydration - Drying - Reaction - Defibration and washing - Phosphorized pulp The structural formula of this phosphorylated pulp is

【式】Cell…セルロー ス分子 燐酸アンモン1分子がセルローズ分子のOH基
とエステル結合しており、このパルプの特性であ
るカチオン性は、アンモニア基によるものであ
る。 無機系物を多量に含む無機紙をバインダーとし
て使用する燐酸化パルプの重要なポイントは燃え
ないこと、耐火性があつてカチオン性が強く、し
かも繊維間結合強度が高いこと、反応によるパル
プ自身の劣化が小さいこと等である。 この様なパルプを作るには、エステル化反応に
おける温度と時間が重要である。 無機微粉紙、無機繊維紙用燐酸化パルプの物性
は 引張強度 引裂強度 原紙パルプ 4.9Kg 147g 燐酸化パルプ 8.3 51 いずれも手漉シート 80g/m2 原料パルプと比較すると引張強度は、約1.7倍、
引裂強度は1/3である。 この結果は、燐酸化パルプの繊維結合力が原料
パルプより高いことを示している。 次に原料パルプと燐酸化パルプに対し硝子フア
イバーを50%各々加えて混抄した紙の繊維間強度
(引張強度)とマツチテストの結果は次表の通り
である。
[Formula] Cell...Cellulose molecule One molecule of ammonium phosphate has an ester bond with the OH group of the cellulose molecule, and the cationic character of this pulp is due to the ammonia group. The important points of phosphorylated pulp, which uses inorganic paper containing a large amount of inorganic materials as a binder, are that it does not burn, is fire resistant, has strong cationic properties, and has high bonding strength between fibers, and that the pulp itself The deterioration is small. To make such pulp, temperature and time in the esterification reaction are important. The physical properties of phosphorylated pulp for inorganic fine powder paper and inorganic fiber paper are: Tensile strength Tear strength Base paper pulp 4.9Kg 147g Phosphorized pulp 8.3 51 Both are handmade sheets 80g/m 2 Compared to raw material pulp, tensile strength is approximately 1.7 times,
Tear strength is 1/3. This result shows that the fiber binding strength of the phosphorylated pulp is higher than that of the raw material pulp. Next, the interfiber strength (tensile strength) and match test results of paper made by adding 50% glass fiber to the raw material pulp and phosphorylated pulp are shown in the following table.

【表】 以上の様に燐酸化パルプは秀れた難燃性を有す
ることの外に、水と結合して原料パルプの2〜3
倍に膨潤して強い粘着性を有しているので、原料
パルプに比較すると強い引張強度と、前記テスト
のパルプ単体の時と逆に引裂強度も高くなる。 次に燐酸化パルプの特徴は耐火性があることが
重要な点である。上表のガラスフアイバーとの混
抄紙における様に、燐酸化パルプ混抄紙は炭化す
るが紙の形状はそのまま、しかもそれを引張つて
も元の強度の1/3位の強度があることは不燃建材
では極めて重要な特性となる。 燐酸化パルプを水の中で解繊してから、常法に
従つて抄紙すると、カチオン性と粘着性によつ
て、アニオン性の抄紙ワイヤーやドライヤー面に
付着して剥れにくい欠点がある。この欠点はまた
カチオン性燐酸化パルプが多量のアニオン性無機
系微粉物、若しくは無機系繊維状物と水の中でイ
オン結合するために、保有性がよいことの証明に
もなる。よつて燐酸化パルプは無機系微粉物の抄
紙用バインダーとして、無機系微粉物の歩留がよ
いことと、無機物との結合力が同時に良いために
強度の強い各種成型物が得られる効果を有するこ
とになる。本発明の無機系微粉物を多量保有させ
る目的では、強いカチオン性と粘着性は最も望ま
しい条件である。 この外の特徴として反応後の燐酸化パルプの濾
水度は原料パルプの濾水度と殆ど変らないしパル
プの繊維形態も変わらない。 原料パルプ 燐酸化パルプ 濾水度c.c. C.S.F. 610 580 このことは無機系微粉物を多く混入するに従つ
て、当然全体の濾水性が低下し、生産性の低下と
同時に抄紙するシートの坪量の高いものは生産出
来ないことになるが、燐酸化パルプの様に濾水性
のよいものは、たとえ無機系微粉物が多量存在し
ても濾水性はその分よいため生産性もよく又坪量
の高いものまで得られる。 市販や公表されているカチオン樹脂を含むパル
プに多量の無機系微粉物を含有したセラミツク紙
で、坪量の大きいものは、マツチテストの結果着
火しないので不燃物であるかの様な態様を呈する
が、セルローズの発火温度の雰囲気に接するとこ
れ等のパルプは瞬間的に燃焼するので実際に昭和
45年告示第1828号の基材試験に合格することは困
難である。 しかし燐酸化パルプの場合は200℃から炭化を
始め、さらに昇温を続けても灼熱するだけで炎を
上げて燃焼することはない。しかし900℃に達す
ると炭化したパルプは消滅し、後にP2O5の熔融
したものが残留する。しかし本発明のように無機
系微粉物と共存する場合は、これ等微粉物の結合
剤として強く作用する(鉱物工学 吉木軍平 技
報堂 p.387)。 このことは、無機系微粉物を含むものを高温で
焼成する様な場合は、他のバインダーにはない特
徴である。 燐酸化パルプの燐とアンモニアのモル比は1:
1で燐酸化パルプの難燃性を呈する結合燐の量
は、セルローズ(パルプ)に対し5.6%以上必要
である。 又さらに結合量が多くなるとパルプは粘状化す
るので、望ましくは6.5〜7.0%がよい。 本発明は以上の様な特徴をもつた燐酸化パルプ
の性質を活用したものである。無機の微粉物、繊
維状物に対する燐酸化パルプの配合量は、粉末の
形状(メツシユ)、繊維の形状(直径、長)と、
製品の単位坪量(g/m2)に応じて変化する。 基本的には、 製品坪量(g/m2) 燐酸化パルプ:無機質 500g以上 5〜15% 95〜85% 500〜300g 15〜20 80〜65 200〜100g 20〜35 80〜65 100g以下 35〜80 65〜20 即ち、坪量が大きくなるに従つて、無機物の歩
留りも強度も向上するので燐酸化パルプ配合率は
少なくてもよいが、坪量が少くなるに従つて無機
質の歩留り、製品強度も低下するので、燐酸化パ
ルプの配合率が大きくなる。 以上の様に配合したものを常法により抄紙前に
比重の重い無機物の沈降を防ぐため、カチオン澱
粉、ポリエチレンエミン、ポリエチレンアミン、
ポリアクリルアミド等周知の擬集剤を無機系微粉
物の1〜3重量%を加えると、効果的である。又
坪量の小さい紙の場合には湿紙を補強するため
PVA背にを1〜2%混入する。 尚、抄き上げる方法には、通常坪量の軽いもの
は製紙と同じ様に連続的にシート状に抄く場合
と、重い坪量のものはパルプモールドの様に断続
的に抄く場合がある。 以上無機粉末混入紙の場合の燐酸化パルプの効
果は異種イオン結合によるイオン結合による歩留
まり向上であり、一方無機繊維紙のバインダーと
しての燐酸化パルプの効果はすでに結合力の比較
で説明した通り実験結果が明確に証明している。 実施例 1 燐酸化パルプ(結合燐6.7%) 1Kg 酸化チタン 8 カチオン澱粉 0.07 燐酸化パルプを水1500で解繊した後、酸化チ
タンを加え均一に分散するまで撹拌を続け、その
後カチオン澱粉を加え常法によつて抄紙した。 通常のパルプだけでは、抄紙出来る濃度ではな
いが、酸化チタンの比重が重く分散も良かつたの
で0.6%の濃度でも抄紙出来た。抄かれたシート
の米坪量は820g/m2でシートに保有していた酸
化チタン量は83%であつた。 尚、無機分の定量法はJIS D 8204によつた。 実施例 2 燐酸化パルプ 1Kg 木篩粘土 6 ガラス繊維 2 カチオン澱粉 0.07 実験は実施例1と同様であるが、ガラス繊維は
予めガラスウールをランダムに粉砕したものであ
る。ガラス繊維を混入した理由は濾水性を改善す
るためである。 抄紙するときの濾水性が実施例1より良好だつ
たので1530g/m2と980g/m2の2種を試作した。 無機分の含有量は前者で86%、後者で84%であ
つた。 実施例 3 燐酸化パルプ 1Kg チタン酸カリー 8 ポリエスチレンエミン 0.08 実験は実施例1に準じる。 濾水性良好であつた600g/m2のシートを作つ
たが、無機分の含有量は85%、さらに舟形の金網
を作りパルプモールド式に成型したが、金網から
の剥離性は良好であつた。 実施例 4 燐酸化パルプと通常木材パルプの無機繊維に対
する結合力を比較する。 A 燐酸化パルプ 1Kg スラツグウール 2 (鉱滓粉) ガラスウール 2 (形8μ長さ6m/m) PAVフアイバー 0.02 B 木材パルプ 1Kg スラツグウール 2 ガラスウール 2 PAVフアイバー 0.02 スラツグウール、ガラスウールはAB共同一の
ものを使用した。実験方法は、燐酸化パルプ1Kg
を水100に入れ、離解機で充分に解繊した後、
水を加えて1000に稀薄した。 次にスラツグウール、ガラスウール、PVAフ
アイバーを次々加え、分散させた後、JIS P
8209法により、坪量150g/m2に抄紙した。 その結果、 引張強さ マツチテスト A 7.8 不燃 B 2.1 可燃 (注) マツチテストは、巾10〜15m/mに切断した
紙片を垂直に持ち、下方にライター、マツチ等
で着火して、燃焼するか否かテストする。 実施例 5 燐酸化パルプ 5Kg 水酸化アルミ 10 ガラスフアイバー 0.3 ポリエチレンアミン 少量 先ず燐酸化パルプを水200で解繊叩解した後
水酸化アルミ、ガラスフアイバーを混合し常法に
より抄紙した。 紙の坪量 100g/m2 紙の無機分 47% 難燃性 JIS.P1322一級合格・貫通なし 引張強度 6.3Kg
[Table] As mentioned above, phosphorylated pulp not only has excellent flame retardancy, but also binds with water and
Since it swells twice as much and has strong adhesive properties, it has a higher tensile strength than the raw material pulp, and a higher tear strength than the pulp alone in the above test. Another important feature of phosphorylated pulp is its fire resistance. As shown in the paper mixed with glass fibers in the table above, the phosphorylated pulp mixed paper carbonizes, but the shape of the paper remains the same, and even when stretched, the strength is about 1/3 of the original strength, making it a non-combustible building material. This is an extremely important characteristic. If phosphorylated pulp is defibrated in water and then made into paper according to a conventional method, it has the disadvantage that due to its cationic and adhesive properties, it adheres to anionic papermaking wires and dryer surfaces and is difficult to peel off. This drawback also proves that the cationic phosphorylated pulp has good retention properties because it forms an ionic bond with a large amount of anionic inorganic fine powder or inorganic fibrous material in water. Therefore, phosphorylated pulp can be used as a papermaking binder for inorganic fine powders, and has the effect of providing a good yield of inorganic fine powders and a good bonding force with inorganic substances, making it possible to obtain a variety of strong molded products. It turns out. For the purpose of retaining a large amount of the inorganic fine powder of the present invention, strong cationic properties and adhesiveness are the most desirable conditions. Other characteristics include that the freeness of the phosphorylated pulp after the reaction is almost the same as that of the raw material pulp, and the fiber morphology of the pulp is also the same. Raw material pulp Phosphorized pulp freeness cc CSF 610 580 This means that as more inorganic fine powder is mixed in, the overall freeness naturally decreases, and at the same time, productivity decreases and the sheet to be made has a high basis weight. However, products with good freeness such as phosphorylated pulp have good freeness even if a large amount of inorganic fine powder is present, so productivity is good and the basis weight is high. You can even get things. Commercially available or published ceramic paper containing a large amount of inorganic fine powder in pulp containing cationic resin, with a large basis weight, does not ignite in the match test, so it appears to be non-combustible. When exposed to an atmosphere with the ignition temperature of cellulose, these pulps combust instantaneously, so it was actually
It is difficult to pass the base material test of Notification No. 1828 of 1945. However, in the case of phosphorylated pulp, carbonization begins at 200°C, and even if the temperature continues to rise, it will only become scorching hot and will not catch fire and burn. However, when the temperature reaches 900°C, the carbonized pulp disappears, leaving behind molten P 2 O 5 . However, when it coexists with inorganic fine powders as in the present invention, it acts strongly as a binder for these fine powders (Mineral Engineering, Gunpei Yoshiki, Gihodo, p. 387). This is a feature that other binders do not have when baking materials containing inorganic fine powder at high temperatures. The molar ratio of phosphorus and ammonia in phosphorylated pulp is 1:
The amount of bound phosphorus that exhibits the flame retardancy of phosphorylated pulp in 1 is required to be 5.6% or more based on cellulose (pulp). Further, if the amount of binding increases, the pulp becomes viscous, so it is preferably 6.5 to 7.0%. The present invention utilizes the properties of phosphorylated pulp having the above-mentioned characteristics. The amount of phosphorylated pulp added to inorganic fine powders and fibrous materials depends on the shape of the powder (mesh), the shape of the fibers (diameter, length),
It changes depending on the unit basis weight (g/m 2 ) of the product. Basically, product basis weight (g/ m2 ) Phosphated pulp: Inorganic 500g or more 5-15% 95-85% 500-300g 15-20 80-65 200-100g 20-35 80-65 100g or less 35 〜80 65〜20 In other words, as the basis weight increases, the inorganic material yield and strength improve, so the phosphorylated pulp content ratio may be lower, but as the basis weight decreases, the inorganic material yield and product strength improve. Since the strength also decreases, the blending ratio of phosphorylated pulp increases. In order to prevent the sedimentation of inorganic substances with heavy specific gravity, the above-mentioned mixture was prepared using a conventional method to prevent the sedimentation of inorganic substances with heavy specific gravity.
It is effective to add a well-known aggregating agent such as polyacrylamide in an amount of 1 to 3% by weight of the inorganic fine powder. In addition, in the case of paper with a small basis weight, it is used to reinforce the wet paper.
Mix 1-2% of PVA back. In addition, there are two types of papermaking methods: paper with a light basis weight is usually made into sheets continuously like in papermaking, and paper with a heavy basis weight is made intermittently like pulp molding. be. As mentioned above, the effect of phosphorylated pulp in the case of paper mixed with inorganic powder is the improvement in yield due to ionic bonding due to different ionic bonds, and on the other hand, the effect of phosphorylated pulp as a binder for inorganic fiber paper was confirmed by experiments as already explained in the comparison of bonding strength. The results clearly prove it. Example 1 Phosphated pulp (6.7% bound phosphorus) 1Kg Titanium oxide 8 Cationic starch 0.07 After defibrating the phosphorylated pulp with water 1500, add titanium oxide and continue stirring until uniformly dispersed, then add cationic starch and stir constantly. The paper was made according to the law. Ordinary pulp alone does not have a sufficient concentration to make paper, but because titanium oxide has a heavy specific gravity and is well dispersed, it was possible to make paper even at a concentration of 0.6%. The paper weight of the sheet was 820 g/m 2 and the amount of titanium oxide contained in the sheet was 83%. The method for quantifying inorganic content was based on JIS D 8204. Example 2 Phosphated pulp 1Kg Wood sieve clay 6 Glass fibers 2 Cationic starch 0.07 The experiment was the same as in Example 1, except that the glass fibers were made by randomly crushing glass wool in advance. The reason for mixing glass fiber is to improve freeness. Since the freeness during paper making was better than that of Example 1, two types were produced as prototypes: 1530 g/m 2 and 980 g/m 2 . The inorganic content was 86% in the former and 84% in the latter. Example 3 Phosphated pulp 1Kg Curry titanate 8 Polyester emine 0.08 The experiment was conducted in accordance with Example 1. A sheet of 600 g/m 2 with good drainage properties was made, but the inorganic content was 85%.Furthermore, a boat-shaped wire mesh was made and molded using a pulp mold method, but the peelability from the wire mesh was good. . Example 4 The binding strength of phosphorylated pulp and normal wood pulp to inorganic fibers is compared. A Phosphorized pulp 1Kg Slug wool 2 (Mineral slag powder) Glass wool 2 (Shape 8μ Length 6m/m) PAV fiber 0.02 B Wood pulp 1Kg Slug wool 2 Glass wool 2 PAV fiber 0.02 Slug wool and glass wool are from AB joint company. did. The experimental method was to use 1 kg of phosphorylated pulp.
After putting it in 100% water and thoroughly defibrating it with a disintegrator,
It was diluted to 1000 by adding water. Next, slug wool, glass wool, and PVA fiber were added one after another, and after being dispersed, JIS P
Paper was made to have a basis weight of 150 g/m 2 using the 8209 method. The results were as follows: Tensile strength Matsushi test A 7.8 Nonflammable B 2.1 Flammability (Note) In the Matsushi test, a piece of paper cut to a width of 10 to 15 m/m is held vertically and ignited with a lighter, a pine, etc. below, and whether or not it burns is determined. Testing. Example 5 Phosphorized pulp 5 kg Aluminum hydroxide 10 Glass fiber 0.3 Polyethylene amine Small amount First, phosphorylated pulp was defibrated and beaten with 200% water, and then aluminum hydroxide and glass fiber were mixed and paper was made by a conventional method. Paper basis weight 100g/m 2 Inorganic content of paper 47% Flame retardant JIS.P1322 Grade 1 passed, no penetration Tensile strength 6.3Kg

Claims (1)

【特許請求の範囲】[Claims] 1 燐酸化パルプ5〜45重量%と無機系微粉物95
〜55重量%とを、水の存在下で、配合、混合せし
めて抄紙してなる成型品。
1. Phosphorized pulp 5-45% by weight and inorganic fine powder 95%
A molded product made by blending and mixing ~55% by weight in the presence of water to make paper.
JP19890382A 1982-11-15 1982-11-15 Inorganic powder molded product and manufacture Granted JPS5988359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19890382A JPS5988359A (en) 1982-11-15 1982-11-15 Inorganic powder molded product and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19890382A JPS5988359A (en) 1982-11-15 1982-11-15 Inorganic powder molded product and manufacture

Publications (2)

Publication Number Publication Date
JPS5988359A JPS5988359A (en) 1984-05-22
JPH0339981B2 true JPH0339981B2 (en) 1991-06-17

Family

ID=16398856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19890382A Granted JPS5988359A (en) 1982-11-15 1982-11-15 Inorganic powder molded product and manufacture

Country Status (1)

Country Link
JP (1) JPS5988359A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2980470B1 (en) 2011-09-23 2017-06-23 Ecole Nat Superieure De Ceram Ind NEW ARGILO-CELLULOSIC MATERIAL

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139437A (en) * 1979-04-18 1980-10-31 Otsuka Chem Co Ltd Flame-retardant composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139437A (en) * 1979-04-18 1980-10-31 Otsuka Chem Co Ltd Flame-retardant composition

Also Published As

Publication number Publication date
JPS5988359A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US4248664A (en) Fibrous sheet materials
US4249991A (en) Composition of a material based on mineral fibers
US3015626A (en) Insulating composition
US3779860A (en) Thermal and acoustical structural insulating composition
JPS6312200B2 (en)
US3952130A (en) Mineral wool paper
JPH0410513B2 (en)
HU183514B (en) Improved-quality compositions consist of fibrous materials and method for producing same
US2773763A (en) Mineral fiber product containing hydrated virgin kraft pulp and method of producing the same
EP0127960A1 (en) A process for the manufacture of autoclaved fibre-reinforced shaped articles
US3244632A (en) Insulating material
JPS6323318B2 (en)
FR2491111A1 (en) Reinforcement for roofing timbers - has horizontal reinforcing beams with vertical supports and temporary diagonal braces
US6855753B1 (en) Acoustical tile containing wet-strength resin
US3701672A (en) Bituminous fibrous building product and method of preparing same
CA1147911A (en) Method for producing combustion resistant fibrous products
GB2084624A (en) Insulation board
US2717830A (en) Method of producing noncombustible building boards
JP2652083B2 (en) Method for producing flame-retardant paper or board or flame-retardant molded article
US3001907A (en) Manufacture of fire-retardant board
JPH0339981B2 (en)
CA1160404A (en) Calcined serpentine as inorganic charge in sheet materials
US2076078A (en) Method of forming insulating material
JPS59223400A (en) Inorganic sheet
GB2031043A (en) Fibrous Sheet Material