JPH0339607B2 - - Google Patents
Info
- Publication number
- JPH0339607B2 JPH0339607B2 JP60040566A JP4056685A JPH0339607B2 JP H0339607 B2 JPH0339607 B2 JP H0339607B2 JP 60040566 A JP60040566 A JP 60040566A JP 4056685 A JP4056685 A JP 4056685A JP H0339607 B2 JPH0339607 B2 JP H0339607B2
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- measured
- movement
- point
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 37
- 239000000523 sample Substances 0.000 claims description 31
- 238000012545 processing Methods 0.000 claims description 20
- 238000006073 displacement reaction Methods 0.000 claims description 11
- 238000001514 detection method Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 241000668842 Lepidosaphes gloverii Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
Landscapes
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、測定子と被測定物との相対移動によ
る計測装置からの信号データにより被測定物の形
状、寸法等を測定する例えば三次元の測定機にか
かり、特に、2段計測方式を採用した測定機に関
し、測定精度の高度化に利用できるものである。Detailed Description of the Invention [Industrial Field of Application] The present invention is applicable to a three-dimensional device that measures the shape, dimensions, etc. of an object to be measured using signal data from a measuring device through relative movement between a probe and an object to be measured. The present invention can be used to improve measurement accuracy, especially for measuring machines that employ a two-stage measurement method.
[背景技術とその問題点]
測定子と被測定物とを相対移動せしめ、計測装
置からの出力信号データを所定処理することによ
り被測定物の形状、寸法等を測定する測定機が知
られており、従来のマイクロメータ、ノギス等に
比べて高精度化、高速測定さらには複雑形状測定
ができる等の特徴を有するため各種産業の測定分
野において広く普及しつつある。[Background Art and Problems Therein] Measuring machines are known that measure the shape, dimensions, etc. of a workpiece by moving a measuring head and a workpiece relative to each other and processing output signal data from a measuring device in a prescribed manner. Compared to conventional micrometers, calipers, etc., they have features such as higher accuracy, faster measurement speed, and the ability to measure complex shapes, so they are becoming widespread in the measurement fields of various industries.
第4図はかかる測定機である従来の三次元測定
機を示す。基台31には載置盤32が置かれ、被
測定物を載置するためのこの載置盤32には門型
の測定子支持体33が載せられている。測定子支
持体33の構成部材である横桁部材34にはスラ
イダ35が設けられ、スライダ35に垂直方向移
動自在に取付けられたスピンドル36の下端に測
定子37が設けられている。測定子37は測定子
支持体33が案内レール38に沿つて移動するこ
とによりY軸方向へ変位し、またスライダ35が
横桁部材34に沿つて移動することによりX軸方
向へ変位し、さらにスピンドル36がスライダ3
5に対し上下に移動することによりZ軸方向へ変
位する。以上の載置盤32、測定子支持体33、
スライダ35、スピンドル36等により測定子3
7が被測定物に対し移動せしめられる移動機構が
構成され、Y軸、X軸、Z軸の直交三軸方向への
移動量は計測装置39,40,41で夫々計測さ
れる。 FIG. 4 shows a conventional three-dimensional measuring machine that is such a measuring machine. A mounting board 32 is placed on the base 31, and a gate-shaped probe support 33 is mounted on this mounting board 32 for placing the object to be measured. A slider 35 is provided on the cross beam member 34 which is a component of the measuring element support 33, and a measuring element 37 is provided at the lower end of a spindle 36 which is attached to the slider 35 so as to be movable in the vertical direction. The probe 37 is displaced in the Y-axis direction as the probe support 33 moves along the guide rail 38, and is displaced in the X-axis direction as the slider 35 moves along the crossbeam member 34. Spindle 36 is slider 3
By moving up and down with respect to 5, it is displaced in the Z-axis direction. The above mounting plate 32, measuring element support 33,
The measuring head 3 is controlled by the slider 35, spindle 36, etc.
A moving mechanism is configured to move 7 relative to the object to be measured, and the amount of movement in three orthogonal axes directions of the Y-axis, X-axis, and Z-axis is measured by measuring devices 39, 40, and 41, respectively.
前記移動機構により測定子37を被測定物に対
し移動せしめ、タツチ信号式プローブとなつてい
る測定子37が被測定物の被測定箇所に接触して
信号を出力したときの被測定物の被測定箇所に対
する測定子37の移動変位量またはこの被測定箇
所の原点からの座標が前記計測装置39,40,
41で検出され、これらの計測装置39,40,
41からの出力信号データが演算処理装置で所定
処理、例えば原点からの複数の被測定箇所の平均
座標を求めるための演算処理がなされて被測定物
の形状、寸法等が測定される。 The moving mechanism moves the measuring stylus 37 relative to the object to be measured. The amount of movement displacement of the measuring stylus 37 with respect to the measuring point or the coordinates of this measuring point from the origin are determined by the measuring devices 39, 40,
41, and these measuring devices 39, 40,
The output signal data from 41 is subjected to predetermined processing in an arithmetic processing unit, for example, arithmetic processing for determining the average coordinates of a plurality of points to be measured from the origin, and the shape, dimensions, etc. of the object to be measured are measured.
なお前記移動機構の作動方式には、操作者が測
定子支持体33等を手押しする手動式と、測定子
支持体33等にモータ等による駆動手段を設けて
自動送りする自動式とがある。自動式による被測
定物の複数の被測定箇所をプログラムによるコン
ピユータ制御で自動測定することが可能になる。
さらに、第4図で示された三次元測定機は被測定
物を載置する載置盤32に対し測定子37が移動
するタイプであつたが、測定子を静止とし載置盤
を移動させるタイプもあり、また測定子、載置盤
の両方を移動させるタイプもある。 There are two types of operating methods for the moving mechanism: a manual type in which the operator manually pushes the measuring element support 33, etc., and an automatic type in which the measuring element support 33 and the like are provided with a drive means such as a motor and are automatically moved. It becomes possible to automatically measure a plurality of measurement points of an object under program-based computer control.
Furthermore, the three-dimensional measuring machine shown in FIG. 4 was of the type in which the probe 37 moved relative to the mounting plate 32 on which the object to be measured was placed, but the probe was stationary and the mounting plate was moved. There are several types, and there is also a type that moves both the probe and the mounting plate.
以上の測定機の測定精度は前記計測装置の精度
によつて決定される。この計測装置は例えば微細
な光透過部と光非透過部とを交互に格子縞状に形
成した長寸のスケールを測定方向に延設すること
によつて構成され、測定精度の高度化を達成する
ためにはこのスケールを全測定ストロークに亘つ
て細かく精密に形成することが必要となる。しか
し実際には長寸のスケールを累積等の誤差をなく
して作ることは技術的に難しく、またそのような
スケールができたとしても組立、調整作業等の外
部的要因により、使用段階において測定ストロー
ク全長に亘つて均一な精度とすることが困難であ
る。このような問題は測定機が大型化するほど、
すなわち測定ストロークが大きくなるほど顕著と
なり、高め得る測定精度には一定の限界があつ
た。 The measurement accuracy of the above measuring device is determined by the accuracy of the measuring device. This measuring device is constructed by extending in the measuring direction a long scale in which minute light-transmitting parts and non-light-transmitting parts are alternately formed in a checkered pattern, thereby achieving a high level of measurement accuracy. In order to achieve this, it is necessary to form this scale finely and accurately over the entire measurement stroke. However, in reality, it is technically difficult to make a long scale without errors such as accumulation, and even if such a scale is made, the measurement stroke may be affected during use due to external factors such as assembly and adjustment work. It is difficult to achieve uniform accuracy over the entire length. These problems become more common as the measuring device becomes larger.
That is, the problem becomes more noticeable as the measurement stroke becomes larger, and there is a certain limit to the measurement accuracy that can be improved.
また前述のようにコンピユータ制御で前記移動
機構を作動させ、この移動機構を計測装置からの
フイードバツク信号により制御するように構成し
た場合、スケールの誤差によつて移動機構が測定
子の許容変位ストロークを越えて作動してしまつ
たり、また測定子が所定位置に達する前に作動が
停止してしまう等の問題が発生する。 Furthermore, when the moving mechanism is operated by computer control as described above, and this moving mechanism is controlled by a feedback signal from a measuring device, the moving mechanism may adjust the permissible displacement stroke of the probe due to an error in the scale. Problems may arise, such as the probe operating beyond the limit or stopping the probe before it reaches a predetermined position.
更に、前述の通りスケールが全測定ストローク
に亘つて微細に形成されていると、スケールの読
取り誤差を生じさせないために前記移動機構によ
る測定子と被測定物との相対移動速度を一定値以
下に制限しなければならず、測定作業の向上を図
るとができない。 Furthermore, as mentioned above, if the scale is minutely formed over the entire measurement stroke, the relative movement speed between the measuring point and the object to be measured by the moving mechanism must be kept below a certain value in order to prevent scale reading errors. Therefore, it is not possible to improve the measurement work.
[発明の目的]
本発明は、以上の従来の問題点が一つの方向に
おける粗範囲も狭小範囲も同じ計測装置によつて
計測されるために発生していることに着目してな
されたものである。[Object of the Invention] The present invention has been made by focusing on the fact that the above-mentioned conventional problems occur because both the coarse range and the narrow range in one direction are measured by the same measuring device. be.
本発明の目的は、測定子と被測定物の被測定箇
所との相対移動変位量等を検出する計測装置のス
ケールを全測定ストロークに亘つて細かく精密に
形成することを不要にし、計測装置の制作が容易
で且つ測定ストロークが大きくても高度の測定精
度を得られる測定機を提供するところにある。 An object of the present invention is to eliminate the need for finely and precisely forming the scale of a measuring device that detects the amount of relative movement displacement between the measuring tip and the measured point of the object to be measured, and to improve the accuracy of the measuring device. To provide a measuring machine that is easy to manufacture and can obtain a high degree of measurement accuracy even if the measuring stroke is large.
[問題点を解決するための手段および作用]
このため本発明の構成は、測定子と被測定物と
を相対移動させる移動機構と、測定子と被測定物
の被測定箇所との相対移動変位量又は被測定箇所
の座標を検出する計測装置と、測定子と被測定物
とが接触したときのこの計測装置の出力信号デー
タを所定処理して被測定物の形状、寸法等を求め
る演算処理装置とを備えた測定機において、前記
計測装置を、前記移動機構の可動側、静止側のい
ずれか一方に取付けられ且つ測定方向に一定ピツ
チで並んだ接触面を有するスケールと、前記移動
機構による移動量がこれらの接触面のピツチのい
くつの整数倍になつているかを検出する第1検出
器と、前記移動機構の可動側、静止側の他方に取
付けられ、前記接触面に接触する接触子を有しこ
の接触面を規準点として前記ピツチの長さを細分
割の微少単位で測定する分解能を有するととも
に、前記移動機構による移動が開始したときおよ
び終了したときの前記ピツチ内での前記接触面か
らの移動開始点および移動終了点を検出する第2
検出器とを含んで構成し、前記演算処理装置をこ
の第1及び第2の検出器の出力信号データを加減
算して前記測定子と被測定物の被測定箇所との相
対移動変位量又は被測定箇所の座標を求めた後に
前記所定処理を行うように構成したことを特徴と
し、前記計測装置を粗範囲検出用の第1検出器と
狭小範囲検出用の第2検出器とによる2段計測方
式としている。[Means and effects for solving the problem] Therefore, the configuration of the present invention includes a moving mechanism for relatively moving the measuring point and the object to be measured, and a relative movement displacement between the measuring point and the measuring point of the object to be measured. A measuring device that detects the quantity or the coordinates of the measured point, and arithmetic processing that calculates the shape, dimensions, etc. of the measured object by predetermined processing of the output signal data of this measuring device when the measuring head and the measured object come into contact. A measuring device comprising: a scale that is attached to either the movable side or the stationary side of the moving mechanism and has contact surfaces arranged at a constant pitch in the measurement direction; a first detector that detects an integral multiple of the pitch of these contact surfaces; and a contact that is attached to the other of the movable side and the stationary side of the moving mechanism and contacts the contact surfaces. It has the resolution to measure the length of the pitch in minute units of subdivision using this contact surface as a reference point, and the contact within the pitch when movement by the moving mechanism starts and ends. The second step detects the movement start point and movement end point from the plane.
and a detector, and the arithmetic processing unit adds and subtracts the output signal data of the first and second detectors to calculate the amount of relative movement displacement or the amount of displacement between the measuring tip and the part to be measured of the object to be measured. The method is characterized in that the predetermined process is performed after determining the coordinates of the measurement point, and the measuring device is configured to perform two-stage measurement using a first detector for coarse range detection and a second detector for narrow range detection. method.
[実施例]
第1図は本実施例に係る測定機を示し、この測
定機は測定子が移動するタイプの三次元測定機で
ある。[Example] FIG. 1 shows a measuring machine according to this embodiment, and this measuring machine is a three-dimensional measuring machine of a type in which a measuring point moves.
上面1Aに被測定物が載置される載置盤1の左
右の側面1B,1Cにはレール部材2が取付部材
3で水平に取付けられ、これらのレール部材2は
載置盤1の長手方向であるY軸方向へ延びてい
る。測定子4を支持する測定子支持体5は左右の
支柱6,7と、これらの支柱6,7の上部に横断
架設された横桁部材8とからなる門型形状で、支
柱6,7の脚部6A,7Aの内部にはローラ等の
転動部材が配置され、この転動部材がレール部材
2に転動自在に係合することにより測定子支持体
5はレール部材2で重量が支持されながらY軸方
向へ移動できるようになつている。 Rail members 2 are horizontally attached to the left and right side surfaces 1B and 1C of the mounting board 1, on which the object to be measured is placed on the upper surface 1A, with mounting members 3, and these rail members 2 extend in the longitudinal direction of the mounting board 1. It extends in the Y-axis direction. The gauge head support 5 that supports the gauge head 4 is gate-shaped and consists of left and right columns 6, 7, and a crossbeam member 8 installed across the top of these columns 6, 7. A rolling member such as a roller is disposed inside the legs 6A, 7A, and this rolling member engages with the rail member 2 in a rolling manner, so that the weight of the probe support 5 is supported by the rail member 2. It is designed to be able to move in the Y-axis direction while being moved.
前記横桁部材8にはスライダ9が摺動自在に取
付けられ、このスライダ9と一体化されているス
ピンドルケース10にはスピンドル11が垂直方
向に移動自在に設けられ、スピンドル11の下端
に前記測定子4が設けられている。 A slider 9 is slidably attached to the cross beam member 8, and a spindle 11 is provided in a spindle case 10 that is integrated with the slider 9 so as to be movable in the vertical direction. Child 4 is provided.
測定子支持体5がレール部材2に沿つて移動す
ることにより測定子4のY軸方向の移動がなさ
れ、測定子4のX軸方向移動はスライダ9が横桁
部材8に沿つて摺動することにより、また測定子
4のZ軸方向移動はスピンドル11がスピンドル
ケース10に対し上下に移動することにより夫々
なされる。 The gauge head support 5 moves along the rail member 2 to move the gauge head 4 in the Y-axis direction, and the slider 9 slides along the crossbeam member 8 to move the gauge head 4 in the X-axis direction. Accordingly, movement of the measuring head 4 in the Z-axis direction is performed by moving the spindle 11 up and down with respect to the spindle case 10, respectively.
載置盤1の前記側面1Bにはレール部材2と平
行にボールねじによるねじ軸12が設けられ、こ
のねじ軸12の両端は軸受部材13,14で回転
自在に支持され、ねじ軸12の一端には載置盤1
の側面1Bにブラケツト15で取付けられたモー
タ16の駆動軸16Aが連結される。ねじ軸12
は前記支柱7の脚部7Aを挿通し、この脚部7A
にはねじ軸12に螺合するナツト部材が配置され
ているため、ねじ軸12がモーター16で回転せ
しめられると測定子支持体5はねじ軸12のねじ
送り作用によりY軸方向へ移動する。スライダ9
の横桁部材8に対するX軸方向移動及びスピンド
ル11のスピンドルケース10に対するZ軸方向
移動もY軸方向移動と同様にモータ等の駆動手段
により自動送りとしてもよい。 A screw shaft 12 formed by a ball screw is provided on the side surface 1B of the mounting board 1 in parallel with the rail member 2. Both ends of the screw shaft 12 are rotatably supported by bearing members 13 and 14, and one end of the screw shaft 12 is supported by bearing members 13 and 14. There is a mounting board 1
A drive shaft 16A of a motor 16 mounted on a bracket 15 is connected to the side surface 1B of the motor. Screw shaft 12
inserts the leg 7A of the support column 7, and
Since a nut member that is screwed onto the screw shaft 12 is disposed, when the screw shaft 12 is rotated by the motor 16, the probe support 5 moves in the Y-axis direction by the screw feeding action of the screw shaft 12. Slider 9
The movement in the X-axis direction with respect to the cross beam member 8 and the movement in the Z-axis direction of the spindle 11 with respect to the spindle case 10 may also be automatically fed by a driving means such as a motor, similarly to the movement in the Y-axis direction.
以上の載置盤1、測定子支持体5、スライダ
9、スピンドル11、ねじ軸12、モーター16
等で載置盤1の上面1Aに載置される被測定物に
対し測定子4をX軸、Y軸、Z軸の直交三軸方向
へ移動させる移動機構17が構成され、載置盤1
等は移動機構17の静止側を、測定子支持体5等
は可動側を夫々構成する。 The above mounting plate 1, probe support 5, slider 9, spindle 11, screw shaft 12, motor 16
A moving mechanism 17 is configured to move the measuring stylus 4 in three orthogonal directions of the X-axis, Y-axis, and Z-axis with respect to the object to be measured placed on the upper surface 1A of the mounting plate 1.
etc. constitute the stationary side of the moving mechanism 17, and the probe support 5 etc. constitute the movable side.
本実施例では測定子4はタツチ信号式のプロー
ブであり、被測定物の被装定箇所に接触すること
によりタツチ信号を出力する。 In this embodiment, the probe 4 is a touch signal type probe, and outputs a touch signal by coming into contact with a predetermined location of the object to be measured.
第2図に示す通りモーター16にはパルスジエ
ネレーター18が連結され、このパルスジエネレ
ーター18はモーター16の回転数に応じたパル
スを発生する。第3図の通りパルスジエネレータ
ー18は第1検出器19に接続され、第1検出器
19はパルスジエネレーター18で発生したパル
ス数をカウントして測定子支持体5の大ストロー
クの移動を粗分解能で検出する機能を有する。第
1図の通り前記載置盤1の側面1BにはY軸方向
の長さを有しかつ前記レール部材2、ねじ軸12
と平行なスケール20が設けられ、このスケール
20は両端で保持体21,22により保持されて
いる。このスケール20は例えば長短2種類のブ
ロツクゲージを厚さ方向に連結することにより構
成され、第2図の通り一定のピツチt(例えば20
mm)による垂直な接触面20AがY軸方向に並ん
で設けられる。 As shown in FIG. 2, a pulse generator 18 is connected to the motor 16, and this pulse generator 18 generates pulses corresponding to the number of rotations of the motor 16. As shown in FIG. 3, the pulse generator 18 is connected to a first detector 19, and the first detector 19 counts the number of pulses generated by the pulse generator 18 to move the probe support 5 over a large stroke. It has a function to detect with coarse resolution. As shown in FIG.
A scale 20 parallel to is provided, and this scale 20 is held by holders 21 and 22 at both ends. This scale 20 is constructed by, for example, connecting two types of block gauges, long and short, in the thickness direction, and as shown in FIG.
mm) vertical contact surfaces 20A are provided in parallel in the Y-axis direction.
第1図のように前記測定子支持体5の支柱7の
脚部7Aにはスケール20と挿通させるための連
通溝21が形成され、測定子支持体5のY軸方向
への移動が保障されているとともに、第2図の通
り脚部7Aの内部には第2検出器22が配置され
ている。この第2検出器22はスケール20の接
触面20Aと接触するてこ式の接触子22Aを有
する。第3図の通り第2検出器22は前記第1検
出器19とともに演算処理装置23に接続され、
これらの第1検出器19、第2検出器22、更に
はスケール20等を含んで計測装置24が構成さ
れる。 As shown in FIG. 1, a communication groove 21 for inserting the scale 20 is formed in the leg portion 7A of the column 7 of the gauge head support 5, and movement of the gauge head support 5 in the Y-axis direction is ensured. In addition, as shown in FIG. 2, a second detector 22 is disposed inside the leg portion 7A. This second detector 22 has a lever-type contactor 22A that contacts the contact surface 20A of the scale 20. As shown in FIG. 3, the second detector 22 is connected to the arithmetic processing unit 23 together with the first detector 19,
A measuring device 24 includes the first detector 19, the second detector 22, the scale 20, and the like.
第1検出器19は前記パルスジエネレータ18
で発生するパルス数をカウントすることにより前
記移動機構17の作動量、即ち前記測定子支持体
5の移動量がスケール20における接触面20A
の前記ピツチtのいくつの整数倍になつているか
を検出する。これに対し第2検出器22は接触面
20Aのピツチtと同じかこれよりも大き目の測
定範囲を有し、かつ、接触面20Aを規準点とし
てピツチtの長さを細分割の微小単位により測定
する分解能を有するとともに、測定子支持体5の
移動が開始したときおよび終了したときの前記ピ
ツチt内での接触面20Aからの移動開始点およ
び移動終了点を検出するものとなつている。この
ため、第1検出器19は移動量がピツチtのいく
つの整数倍に相当するか大目盛的に測定する粗範
囲検出用であつて、第2検出器22は夫々のピツ
チt内において移動量を小目盛的に測定する狭小
範囲検出用であり、前記計測装置24は第1及び
第2の検出器19,22による2段計測方式の構
成となつている。 The first detector 19 is the pulse generator 18
By counting the number of pulses generated at
It is detected how many integral multiples of the pitch t is. On the other hand, the second detector 22 has a measurement range that is the same as or larger than the pitch t of the contact surface 20A, and uses the contact surface 20A as a reference point to measure the length of the pitch t in minute units of subdivision. It has a resolution for measurement and detects the movement start point and movement end point from the contact surface 20A within the pitch t when the movement of the probe support 5 starts and ends. For this reason, the first detector 19 is used for coarse range detection to measure on a large scale how many integer multiples of the pitch t the amount of movement corresponds to, and the second detector 22 is used for coarse range detection to measure how many integral multiples of the pitch t the amount of movement corresponds to. The measurement device 24 is used for narrow range detection to measure quantities in small scales, and the measurement device 24 has a two-stage measurement configuration using first and second detectors 19 and 22.
以上により、スケール20は接触面20Aを一
定のピツチtで精密加工により形成すれば足り、
ピツチt以下の微小単位の目盛等を細かく正確に
形成することは不要で全測定ストロークに亘る細
かい精密性は要求されず、ピツチt以下の移動量
は高分解能を有する第2検出器22で正確に測定
できる。このため、測定ストロークが大きくなつ
てもこのスケール20に一定ピツチの区分を設け
る作業だけを行なえばよいため製作が容易にな
り、また累積等の誤差の発生も防止され、測定精
度の向上を図ることができる。 From the above, it is sufficient for the scale 20 to form the contact surface 20A with a certain pitch t through precision machining.
It is not necessary to finely and accurately form scales in minute units below the pitch t, and fine precision over the entire measurement stroke is not required, and the amount of movement below the pitch t can be accurately measured by the second detector 22 with high resolution. can be measured. Therefore, even if the measurement stroke becomes large, it is only necessary to divide the scale 20 into sections at a constant pitch, which simplifies production, prevents errors such as accumulation, and improves measurement accuracy. be able to.
なお、スケール20の接触面20Aの夫々の間
隔が正確なピツチtに対して比較的小さな量では
あるが誤差を有する場合があるため、このような
場合を考慮して基準点からの夫々の接触面20A
の距離を予め精密測定し、この測定結果による誤
差を第3図で示した記憶装置25に記憶させてお
く。 Note that the distance between the contact surfaces 20A of the scale 20 may have a relatively small error with respect to the accurate pitch t, so in consideration of such cases, the distance between each contact surface 20A from the reference point is adjusted. Surface 20A
The distance is precisely measured in advance, and the error due to this measurement result is stored in the storage device 25 shown in FIG.
本実施例ではY軸方向測定用の計測測置が第1
及び第2の検出器による2段計測方式になつてい
るが、これをX軸方向測定用、Z軸方向測定用の
計測装置について行つてもよい。即ち、X軸、Y
軸、Z軸と対応して設けられる3個の計測装置の
全てを第1検出器、第2検出器を含んで構成され
る2段計測方式の計測装置としてもよい。 In this example, the measurement station for Y-axis direction measurement is the first one.
Although a two-stage measurement method using a second detector and a second detector is adopted, this may be performed for measuring devices for measuring in the X-axis direction and for measuring in the Z-axis direction. i.e. X axis, Y axis
All of the three measuring devices provided corresponding to the axis and the Z-axis may be a two-stage measuring device including a first detector and a second detector.
第3図で示した駆動回路26によりモーター1
6が駆動せしめられるとねじ軸12のねじ送り作
用で前記測定子支持体5は移動し、この移動は測
定子4が被測定物の被測定箇所に接触してタツチ
信号を出力するまで行われ、この信号は駆動回路
26に入力してモータ16を停止させる。なお、
この移動のときにスケール20を下降させて第2
検出器22の接触子22Aがスケール20にぶつ
かるのを回避するようにしてもよい。つまりスケ
ール20を保持する前記保持体21,22にスケ
ール20を昇降動させる機能を持たせ、測定作業
時のみにスケール20を上昇させて第2検出器2
2の接触子22Aを接触面20Aに接触させるよ
うにしてもよい。 The motor 1 is driven by the drive circuit 26 shown in FIG.
6 is driven, the probe support 5 moves due to the screw feeding action of the screw shaft 12, and this movement continues until the probe 4 comes into contact with the measuring point of the object to be measured and outputs a touch signal. , this signal is input to the drive circuit 26 to stop the motor 16. In addition,
During this movement, the scale 20 is lowered and the second
The contacts 22A of the detector 22 may be prevented from hitting the scale 20. In other words, the holders 21 and 22 that hold the scale 20 are provided with the function of raising and lowering the scale 20, and the scale 20 is raised only during measurement work, and the second detector 2
The second contactor 22A may be brought into contact with the contact surface 20A.
モーター16の駆動によりパルスジエネレータ
ー18で発生したパルスの数が第1検出器19で
検出され、この結果、測定子支持体5の移動量が
どのくらいの大きさになつているかが1ピツチt
を最小単位として検出される。この検出量をn×
tとする。また、移動前の第2検出器22の指示
値をm0とし、移動後の指示値をm1とする。m1−
m0は測定子支持体5の移動量のピツチt以下の
端数、即ち測定子支持体5のピツチt以下の正確
な移動量を示す。ここで移動の前後において第2
検出器22の接触子22Aが接触するスケール2
0の2個の接触面20Aの間隔の正碓なn×tに
対する誤差を△lnとする。 The number of pulses generated by the pulse generator 18 due to the drive of the motor 16 is detected by the first detector 19, and as a result, the amount of movement of the probe support 5 can be determined by one pitch t.
is detected as the smallest unit. This detected amount is n×
Let it be t. Also, let the indicated value of the second detector 22 before movement be m 0 and the indicated value after movement be m 1 . m 1 −
m 0 represents a fraction of the amount of movement of the measuring element support 5 less than or equal to the pitch t, that is, an accurate amount of movement of the measuring element support 5 less than or equal to the pitch t. Here, the second
Scale 2 that contacts 22A of the detector 22
Let Δln be the error with respect to the exact distance n×t between the two contact surfaces 20A.
なお、例えば第2検出器22を1ピツチtの半
分ずらして2個設け、スケール20を凸部20
B、凹部20Cが1ピツチの半分づつずれた2本
とすることにより、測定子支持体5の任意の停止
位置において第2検出器22による測定が可能と
なる。また、測定子支持体5を手動操作で移動で
きるように構成した場合には、タツチ信号式プロ
ーブである測定子4のオバーストロークを利用し
て第2検出器22の接触子22Aがスケール20
の凹部20Cと一致した位置で測定子支持体5の
移動を停止させるようにしてもよい。 Note that, for example, two second detectors 22 are provided, shifted by half of one pitch t, and the scale 20 is placed on the convex portion 20.
B. By forming two recessed portions 20C shifted by half of one pitch, measurement by the second detector 22 is possible at any stop position of the probe support 5. In addition, when the probe support 5 is configured to be manually movable, the contact 22A of the second detector 22 is moved to the scale 20 using the overstroke of the probe 4, which is a touch signal type probe.
The movement of the probe support 5 may be stopped at a position that coincides with the recess 20C.
前述の通り被測定箇所への接触により測定子4
からタツチ信号が出力されると、この出力信号は
第3図の通り前記演算処理装置23にも入力され
る。この入力信号は前記第1検出器19、第2検
出器22の測定データを演算処理装置に23に入
力させる指令信号となり、これらのデータの入力
とともに前記記憶装置25に記憶されているデー
タに基づく前記△lnのデータも入力される。これ
により演算処理装置23において第1検出器1
9、第2検出器22、及び記憶装置25からの出
力信号データが加減算される。この加減算の結果
は測定子支持体5の移動量、即ち測定子4の変位
量Lを示し、
L=(n×1)+(m1−m0)+△ln
以上のようにしてこの三次元測定機においては
被測定物の被測定箇所に対する測定子4の移動変
位量または被測定箇所の原点からの座標位置が求
められ、次いで演算処理装置23において例えば
複数の被測定箇所の平均座標位置や穴の中心位置
を求めるための測定値の所定処理が行なわれ、こ
の処理結果が表示器27に表示され被測定物の形
状、寸法等が測定される。 As mentioned above, the contact point 4
When a touch signal is output from the touch signal, this output signal is also input to the arithmetic processing unit 23 as shown in FIG. This input signal becomes a command signal for inputting the measurement data of the first detector 19 and the second detector 22 to the arithmetic processing unit 23, and based on the input of these data and the data stored in the storage device 25. The data of Δln is also input. As a result, in the arithmetic processing unit 23, the first detector 1
9, the output signal data from the second detector 22 and the storage device 25 are added and subtracted. The result of this addition and subtraction indicates the amount of movement of the probe support 5, that is, the displacement L of the probe 4, and L=(n×1)+(m 1 −m 0 )+△ln. In the original measuring machine, the amount of movement displacement of the measuring stylus 4 or the coordinate position of the measuring point from the origin to the measuring point of the measuring object is determined, and then the arithmetic processing unit 23 calculates, for example, the average coordinate position of the plurality of measuring points. Predetermined processing is performed on the measured values to determine the center position of the hole, and the results of this processing are displayed on the display 27 to measure the shape, dimensions, etc. of the object to be measured.
以上において前記モーター16を駆動させる駆
動回路26は操作者のスイツチ操作で作動するよ
うに構成することもできるが、プログラムによる
コンピユータ制御で作動させるように構成するこ
ともできる。このようにコンピユータ制御を採用
した場合には被測定物に多数の被測定箇所が存在
するとき、この被測定箇所をプログラムに従つた
順序で迅速に測定できる等の利点を有するように
なり、また第1検出器19等の出力信号データを
フイードバツクさせて移動機構17の制御等を行
なえるようになる。 In the above, the drive circuit 26 for driving the motor 16 can be configured to be activated by a switch operation by an operator, but it can also be configured to be activated by computer control based on a program. When computer control is adopted in this way, when there are many points to be measured on the object to be measured, there are advantages such as being able to quickly measure the points to be measured in the order according to the program. The moving mechanism 17 can be controlled by feeding back the output signal data of the first detector 19 and the like.
なお、スケール20の任意の接触面20Aの前
記基準点からの誤差が無視できる微小量のときは
記憶装置25のデータが零になる場合がある。 Note that when the error of any contact surface 20A of the scale 20 from the reference point is a negligible amount, the data in the storage device 25 may become zero.
本実施例ではスケール20は移動機構17の静
止側部材を構成する載置盤1に取付けられ、第2
検出器22は可動側部材を構成する測定子支持体
5に取付けられていたが、これらを逆にしてもよ
い。また第1検出器は本実施例のようにパルスカ
ウンタとせず、例えば一定ピツチの目盛等を光学
的、或は磁気的に読取るものとしてもよく、これ
によつてもスケールを全測定ストロークに亘つて
細かく精密に製作することを不要にでき、またこ
のスケールは目盛等を微細に形成したものではな
いため読取誤差の問題を解決する必要はなく、測
定子と被測定物との相対移動速度を高めることが
できる。 In this embodiment, the scale 20 is attached to the mounting plate 1 constituting the stationary side member of the moving mechanism 17, and
Although the detector 22 was attached to the measuring element support 5 constituting the movable side member, these may be reversed. Further, the first detector may not be a pulse counter as in this embodiment, but may be one that optically or magnetically reads a scale with a constant pitch, and this also allows the scale to be read over the entire measurement stroke. This eliminates the need for detailed and precise manufacturing, and since this scale does not have minute graduations, there is no need to solve the problem of reading errors, and the relative movement speed between the probe and the object to be measured can be adjusted. can be increased.
本発明は本実施例のように測定子が移動し被測
定物が静止の三次元測定機のみならず、測定子が
静止で被測定物が移動するタイプの測定機、ある
いは測定子及び被測定物の双方が移動するタイプ
の測定機にも適用でき、要すれば測定子と被測定
物とが相対移動する測定機に適用でき、移動機構
は測定子と被測定物とに相対移動を生じさせるも
のであれば任意な構成としてよい。さらに本発明
は、三次元測定機だけではなく二次元測定機ある
いは測定子と測定物とが一軸方向のみに相対移動
する測定機にも適用できる。 The present invention is applicable not only to a three-dimensional measuring machine in which the measuring point moves and the object to be measured is stationary as in this embodiment, but also to a type of measuring device in which the measuring point is stationary and the object to be measured moves, or to a type of measuring device in which the measuring point is stationary and the object to be measured is moving. It can also be applied to measuring machines in which both objects move, and if necessary, it can be applied to measuring machines in which the measuring head and the object to be measured move relative to each other, and the moving mechanism causes relative movement between the measuring head and the object to be measured. Any configuration may be used as long as it allows for this. Furthermore, the present invention can be applied not only to a three-dimensional measuring machine but also to a two-dimensional measuring machine or a measuring machine in which the probe and the object to be measured move relative to each other only in one axis direction.
[発明の効果]
本発明によれば測定子と被測定物の被測定箇所
との相対移動変位量等を検出する計測装置のスケ
ールを全測定ストロークに亘つて細かく精密に形
成することが不要となり、従つて計測測置の製作
が容易でかつ測定ストロークが大きくなつても測
定精度を高度にすることができる。[Effects of the Invention] According to the present invention, it is no longer necessary to finely and precisely form the scale of the measuring device that detects the amount of relative displacement between the contact point and the measured point of the object to be measured over the entire measurement stroke. Therefore, the measurement station is easy to manufacture and the measurement accuracy can be improved even if the measurement stroke becomes large.
第1図は本実施例にかかわる三次元測定機の斜
視図、第2図は計測装置の構成と移動機構による
移動を示す図、第3図は計測装置や演算処理装置
等の接続状態を示すブロツク図、第4図は従来例
を示す斜視図である。
1……載置盤、4……測定子、5……測定子支
持体、17……移動機構、19……第1検出器、
20……スケール、20A……接触面、22……
第2検出器、23……演算処理装置、24……計
測装置。
Fig. 1 is a perspective view of the coordinate measuring machine according to this embodiment, Fig. 2 is a diagram showing the configuration of the measuring device and movement by the moving mechanism, and Fig. 3 is a diagram showing the connection state of the measuring device, arithmetic processing device, etc. The block diagram and FIG. 4 are perspective views showing a conventional example. DESCRIPTION OF SYMBOLS 1... Mounting board, 4... Measuring element, 5... Measuring element support, 17... Moving mechanism, 19... First detector,
20...Scale, 20A...Contact surface, 22...
Second detector, 23... arithmetic processing device, 24... measurement device.
Claims (1)
構と、測定子と被測定物の被測定箇所との相対移
動変位量又は被測定箇所の座標を検出する計測装
置と、測定子と被測定物とが接触したときのこの
計測装置の出力信号データを所定処理して被測定
物の形状、寸法等を求める演算処理装置とを備え
た測定機において、前記計測装置を、前記移動機
構の可動側、静止側のいずれか一方に取付けられ
且つ測定方向に一定ピツチで並んだ接触面を有す
るスケールと、前記移動機構による移動量がこれ
らの接触面のピツチのいくつの整数倍になつてい
るかを検出する第1検出器と、前記移動機構の可
動側、静止側の他方に取付けられ、前記接触面に
接触する接触子を有しこの接触面を規準点として
前記ピツチの長さを細分割の微少単位で測定する
分解能を有するとともに、前記移動機構による移
動が開始したときおよび終了したときの前記ピツ
チ内での前記接触面からの移動開始点および移動
終了点を検出する第2検出器とを含んで構成し、
前記演算処理装置をこの第1及び第2の検出器の
出力信号データを加減算して前記測定子と被測定
物の被測定箇所との相対移動変位量又は被測定箇
所の座標を求めた後に前記所定処理を行うように
構成したことを特徴とする測定機。 2 特許請求の範囲第1項において、前記移動機
構はX軸、Y軸、Z軸の直交三軸方向への移動機
能を有するとともに、前記計測装置はこのX軸、
Y軸、Z軸と対応して3個あり、これらの全ての
計測装置が前記第1及び第2の検出器を含んで構
成されていることを特徴とする測定機。[Scope of Claims] 1. A moving mechanism for relatively moving a measuring point and an object to be measured, and a measuring device for detecting the amount of relative movement displacement between the measuring point and a point to be measured of the object to be measured or the coordinates of the point to be measured. , a measuring device equipped with an arithmetic processing device for calculating the shape, dimensions, etc. of the object to be measured by processing the output signal data of the measuring device in a predetermined manner when the measuring head and the object to be measured come into contact; , a scale that is attached to either the movable side or the stationary side of the moving mechanism and has contact surfaces arranged at a constant pitch in the measurement direction, and the amount of movement by the moving mechanism is an integer of the pitch of these contact surfaces. a first detector for detecting whether the pitch is doubled, and a contact element attached to the other of the movable side and the stationary side of the moving mechanism and in contact with the contact surface, and the pitch is adjusted using the contact surface as a reference point. It has the resolution to measure the length in minute units of subdivision, and detects the start point and end point of movement from the contact surface within the pitch when movement by the movement mechanism starts and ends. a second detector;
After the arithmetic processing unit adds and subtracts the output signal data of the first and second detectors to obtain the amount of relative movement displacement between the probe and the measuring point of the object to be measured or the coordinates of the measuring point, A measuring device characterized in that it is configured to perform predetermined processing. 2. In claim 1, the movement mechanism has a movement function in three orthogonal axes directions: the X-axis, the Y-axis, and the Z-axis, and the measuring device
A measuring device characterized in that there are three measuring devices corresponding to the Y-axis and the Z-axis, and all of these measuring devices include the first and second detectors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4056685A JPS61200421A (en) | 1985-03-01 | 1985-03-01 | Measuring machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4056685A JPS61200421A (en) | 1985-03-01 | 1985-03-01 | Measuring machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61200421A JPS61200421A (en) | 1986-09-05 |
JPH0339607B2 true JPH0339607B2 (en) | 1991-06-14 |
Family
ID=12584018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4056685A Granted JPS61200421A (en) | 1985-03-01 | 1985-03-01 | Measuring machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61200421A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5322853A (en) * | 1976-08-16 | 1978-03-02 | Sumitomo Metal Ind | Non treatment h shade steel sections manufacturing for low temperature |
-
1985
- 1985-03-01 JP JP4056685A patent/JPS61200421A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5322853A (en) * | 1976-08-16 | 1978-03-02 | Sumitomo Metal Ind | Non treatment h shade steel sections manufacturing for low temperature |
Also Published As
Publication number | Publication date |
---|---|
JPS61200421A (en) | 1986-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7114265B2 (en) | Apparatus for detecting the position of a probe element in a multi-coordinate measuring device | |
US4587622A (en) | Method and apparatus for determining and correcting guidance errors | |
US4276699A (en) | Method and test apparatus for testing the tooth flank profile of large diameter gears | |
JPH0557522B2 (en) | ||
US4879817A (en) | Checking the setting of a tool | |
JPH0439011B2 (en) | ||
US7127824B2 (en) | Apparatus for detecting the position in space of a carriage moveable along a coordinate axis | |
CA1336532C (en) | Probe motion guiding device, position sensing apparatus and position sensing method | |
JP2831610B2 (en) | measuring device | |
JP5297749B2 (en) | Automatic dimension measuring device | |
JP2987607B2 (en) | 3D coordinate measuring machine | |
JPH0123041B2 (en) | ||
JPH0339607B2 (en) | ||
JPS61200419A (en) | Measuring machine | |
JPS61200420A (en) | Measuring machine | |
JP3366052B2 (en) | Comparative length measuring device | |
JPH0660817B2 (en) | Straightness measuring method and device | |
KR102682652B1 (en) | 3D measuring instruments using two or more probes | |
JPS6318684B2 (en) | ||
JP2549802Y2 (en) | Automatic dimension measuring device | |
US20030218288A1 (en) | Machining operations automatic positioning system | |
JPH09113254A (en) | Method and device for detecting center position | |
JP2982663B2 (en) | Three-dimensional measuring method and device | |
JPH0244002B2 (en) | ||
JP2606581Y2 (en) | Automatic dimension measuring device |