JPH0339592B2 - - Google Patents

Info

Publication number
JPH0339592B2
JPH0339592B2 JP58053271A JP5327183A JPH0339592B2 JP H0339592 B2 JPH0339592 B2 JP H0339592B2 JP 58053271 A JP58053271 A JP 58053271A JP 5327183 A JP5327183 A JP 5327183A JP H0339592 B2 JPH0339592 B2 JP H0339592B2
Authority
JP
Japan
Prior art keywords
packing material
peak
column packing
liquid chromatography
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053271A
Other languages
Japanese (ja)
Other versions
JPS59178359A (en
Inventor
Takeo Awano
Osamu Hirai
Yoshuki Mukoyama
Toshihiko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP58053271A priority Critical patent/JPS59178359A/en
Publication of JPS59178359A publication Critical patent/JPS59178359A/en
Publication of JPH0339592B2 publication Critical patent/JPH0339592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は液䜓クロマトグラフ法に関する。 埓来、液䜓クロマトグラフ法によ぀お糖類を分
析する方法ずしおは、(1)アミノ基等を化孊結合し
た充おん剀䟋えばゞ゚チルアミノ゚チルセルロ
ヌス等を甚いた分配型の分離、(2)架橋デキスト
ランゲル等を甚いた分子ふるいによる分離、(3)陰
むオン亀換暹脂を甚いたホり酞錯むオンずしおの
分離、(4)塩型陜むオン亀換暹脂をカラム充おん剀
ずしお甚いた分子ふるいず分配の折衷モヌドによ
る分離などが知られおいる。これらのうち(2)およ
び(4)の方法は溶離液ずしお氎を䜿甚するため操䜜
が容易である。 しかし、䞊蚘(2)の方法では、同䞀分子量の異な
る糖の分離は䞍可胜である。これに察し、䞊蚘(4)
の方法では可胜である。 しかし、本発明者らが䞊蚘(4)の方法に぀いおさ
らに怜蚎をした結果、氎を溶離液ずしお䜿甚した
堎合、長時間の䜿甚により、分離胜が䜎䞋するこ
ずがわか぀た。すなわち、䞊蚘(4)の方法におい
お、氎を溶離液ずした堎合、カラム充おん剀の寿
呜が短いずいう欠点があ぀た。 本発明は、このような問題点を解決するもので
ある。 すなわち、本発明は、SO- 3基およびその察むオ
ンずしお二䟡の金属陜むオンを有する倚孔性スチ
レン−ゞビニルベンれン系共重合䜓粒子をカラム
充おん剀ずしお䜿甚し糖を分析する液䜓クロマト
グラフ法においお、溶離液ずしお、アルカリ性物
質濃床が×10-5〜10-2Mの氎溶液を䜿甚す
るこずを特城ずする糖を分析する液䜓クロマトグ
ラフ法に関する。 本発明のカラム充おん剀は、SO- 3基の察むオン
ずしお、Ca++、Sr++、Pb++、Ba++、Mg++等の
二䟡の金属陜むオンを有する。 特に、察むオンずしお (a) Ca++およびSr++からなる矀から遞ばれた少
なくずも䞀皮のむオン 䞊びに (b) Pb++およびBa++からなる矀から遞ばれた少
なくずも䞀皮のむオン を(a)のむオンず(b)のむオンの圓量比が(a)(b)で
〜の割合で有するこずが奜たしい。
この堎合、分子量が同䞀であるグルコヌス、ガラ
クトヌス、マンノヌスおよびフルクトヌスを分離
するこずができる。 たた、Ca++たたはSr++を察むオンずした堎合、
グルコヌス、マンノヌスおよびフルクトヌスを分
離するこずができ、Pd++たたはBa++を察むオン
ずしたずきは、グルコヌス、ガラクトヌスおよび
マンノヌスを分離するこずができる。 本発明におけるカラム充おん剀はSO- 3基をカラ
ム充おん剀圓りミリ圓量meq以䞊
有するのが奜たしく、特に〜5meq有する
のが奜たしい。2meq未満になるず芪氎性が
䞍充分ずなる傟向がある。 たた、本発明のカラム充おん剀の粒子埄は、液
䜓クロマトグラフむヌ分析甚ずしおは〜20Ό
および液䜓クロマトグラフむヌによる分取甚ずし
おは20〜300Όであるものが奜たしい。 たた、本発明のカラム充おん剀の现孔の皋床に
特に制限はないが、排陀限界が400〜×107の範
囲になるようにするのが奜たしい。 䞊蚘したSO- 3基は、スチレン−ゞビニルベンれ
ン系共重合䜓に結合しおいるが、該共重合䜓は、
ゞビニルベンれンずスチレン系単量䜓の共重合䜓
であり、ゞビニルベンれンを〜60重量含むの
が奜たしい。該スチレン系単量䜓ずしおはスチレ
ン、゚チルモノビニルベンれン、ビニルトル゚
ン、α−Me−スチレン等があり、酢酞ビニル、
メタアクリル酞、アクリル酞等の他のモノマヌを
重量以䞋の範囲で䜿甚しおもよい。 本発明のカラム充おん剀は、スルホン化倚孔性
スチレン−ゞビニルベンれン系共重合䜓粒子ず䞀
般匏 OH2  ただし、匏䞭、は二䟡の陜むオンに成り埗る
金属であるで衚わされる氎酞化物を反応させお
埗るこずができる。䞊蚘ずしおはCa、St、Pd、
Ba、Mg等がある。 さらに詳しくは、䞊蚘氎酞化物を溶解した氎溶
液ずスルホン化倚孔性スチレン−ゞビニルベンれ
ン系共重合䜓粒子たたはその塩を混合し、ロ過
し、さらに同様の操䜜を繰り返えしお埗るこずが
できる。たた、スルホン化倚孔性スチレン−ゞビ
ニルベンれン系共重合䜓粒子たたはその塩をカラ
ムに充おんするかロヌト䞊においお、これに䞊蚘
ず同様の氎溶液を通液する方法により埗るこずが
できる。この堎合、スルホン化倚孔性スチレン−
ゞビニルベンれン系共重合䜓粒子䞭のSO- 3基に察
し、䞊蚘氎酞化物の金属の陜むオンが等圓量以䞊
になるように䜿甚するのが奜たしい。 スルホン化倚孔性スチレン−ゞビニルベンれン
系共重合䜓粒子は、埓来公知の方法で補造され
る。䟋えば、ゞビニルベンれンおよびスチレン系
単量䜓、さらに堎合により他のモノマヌをアミル
アルコヌル、トル゚ン等の非氎溶性有基溶剀の存
圚䞋に懞濁重合させ、埗られる粒子を単離しおゞ
クロル゚タン、トリクロル゚タン等の膚最剀で膚
最させ、濃硫酞たたはクロル硫酞等を添加し、宀
枩〜120℃でスルホン化反応させるこずにより埗
るこずができる。䞊蚘したむオン亀換容量は、濃
硫酞たたはクロル硫酞ずの反応時に、その反応条
件を適宜調敎するこずにより調敎するこずがで
き、本発明におけるカラム充おん剀の现孔の皋床
は、䞊蚘懞濁重合時に、その条件、䞻に排氎溶性
有機溶剀の皮類および量を調敎するこずにより調
敎するこずができ、粒埄は懞濁重合条件を適宜遞
択しお調敎できる。 たた、䞊蚘スルホン化倚孔性スチレン−ゞビニ
ルベンれン系共重合䜓は、むオン亀換容量が
2meq以䞊のものが奜たしく、特に〜
5meqのものが奜たしい。 たた、本発明のカラム充おん剀は、SO- 3基を有
する倚孔性スチレン−ゞビニルベンれン系共重合
䜓粒子の各々が、SO- 3基の察むオンずしお䞊蚘(a)
のむオンおよび(b)のむオンを有しおいるのが分離
性胜の点で奜たしいが、次のようなものでもよ
い。すなわち、 SO- 3基およびその察むオンずしおCa++たたは
Sr++(a)のむオンを有しおなる倚孔性スチレン
−ゞビニルベンれン系共重合䜓粒子(A) 䞊びに SO- 3基およびその察むオンずしおPb++たたは
Ba++(b)のむオンを有しおなる倚孔性スチレン
−ゞビニルベンれン系共重合䜓粒子(B) を(a)のむオンず(b)のむオンが(a)(b)圓量比で
〜になるように配合したものを本発
明のカラム充おん剀ずしお䜿甚できる。 共重合䜓粒子(A)および(B)はできるだけ均䞀に混
合されるのが奜たしく、各共重合䜓粒子の粒子
埄、现孔の皋床、膚最床およびSO- 3基の含有量が
同等のものを䜿甚するのが奜たしい。このため
に、共重合䜓粒子(A)および(B)は、同䞀ロツトのス
ルホン化倚孔性スチレン−ゞビニルベンれン系共
重合䜓粒子を䜿甚し、䞊蚘したのず同様な方法で
䞭和するのが奜たしい。このような共重合䜓粒子
(A)および(B)を䜿甚する堎合、それらは䜓積比で
(A)(B)が〜になるように配合すれば
よく、混合操䜜が容易になる。 本発明のカラム充おん剀においお、(a)のむオン
ず(b)のむオンを察むオンずしお有する堎合、SO- 3
基を有する倚孔性スチレン−ゞビニルベンれン系
共重合䜓粒子の各々の粒子に(a)および(b)のむオン
が均䞀に分垃しお存圚するのが最も奜たしい。こ
のためには、カラム充おん剀はスルホン化倚孔性
スチレン−ゞビニルベンれン系共重合䜓粒子を (c) CaOH2およびSrOH2からなる矀から遞
ばれた少なくずも䞀皮の化合物 䞊びに (d) PbOH2およびSrOH2からなる矀から遞
ばれた少なくずも䞀皮の化合物 を(c)(d)がモル比で〜の割合で溶解
されおなる氎溶液で䞭和される。 本発明に䜿甚される溶離液は、アルカリ性物質
の氎溶液である。アルカリ性物質ずは、アルカリ
金属、アルカリ土類金属等の氎酞化物、炭酞氎玠
塩、炭酞塩等の氎溶液ずしたずきにアルカリ性を
瀺すものであり、具䜓的には、LiOH、NaOH、
KOH、SrOH2、BaOH2、NaHCO3、
KHCO3、NA2CO3、K2CO3等がある。これらの
アルカリ性物質は、×10-5〜10-2Mの濃床
で䜿甚される。濃床が×10-5未満では、カラム
充おん剀の寿呜が短くなり、10-2Mを越える
ずカラム充おん剀の察むオンずのむオン亀換が無
芖できなくなり、分離胜が倉化する。 本発明のカラム充おん剀ずしお、スルホン化倚
孔性スチレン−ゞビニルベンれン系共重合䜓粒子
たたはその塩ず䞊蚘䞀般匏で衚わされる氎
酞化物を反応させお埗られるものを䜿甚したずき
に、寿呜の問題が特に顕著である。 本発明のカラム充おん剀は、スルホン化倚孔性
スチレン−ゞビニルベンれン系共重合䜓粒子ず
MCl2、MBr2ここで、は䞀般匏の堎合
ず同様である等のハロゲン化金属を反応させお
埗るこずができるが、この堎合は、䞊蚘の氎酞化
物を䜿甚したずき皋、寿呜の問題は顕著でない
が、本発明の溶離液を䜿甚するのが奜たしい。 本発明に係る液䜓クロマトグラフ法は、サンプ
ル泚入口より詊料を泚入し、䞊蚘カラム充おん剀
を充おんしたカラム内を䞊蚘溶離液を通液し぀぀
通過させ、通過物を怜知噚により怜知させお、ク
ロマトグラムを曞かせる高速液䜓クロマトグラフ
むヌ分析、カラム充おん剀を充おんしたカラム内
に詊料を通過させ、分画毎に採取する分取等に適
甚される。 次に、本発明の実斜䟋を瀺す。 実斜䟋  粒埄〜15Ό、むオン亀換容量4.3meqお
よび架橋床共重合䜓䞭のゞビニルベンれン成分
の重合割合、以䞋同様10であるスルホン化倚
孔性スチレン−゚チルモノビニルベンれン−ゞビ
ニルベンれン共重合䜓粒子24.0を玄150の氎
に膚最させおスラリヌ状ずし、これにSr
OH2・8H2O13.7を氎に溶解させお500mlずし
た氎溶液を混合し、時間撹拌した。なお、スル
ホン基ずSr++が圓量比になるように配合
した。この埌、ロ過氎掗し、排陀限界1000のカラ
ム充おん剀を埗た。埗られたカラム充おん剀を氎
で膚最させスラリヌ状にしお10.7mmφ×30cmのス
テンレス補カラムに充おんし、これを高速液䜓ク
ロマトグラフむヌ甚分析装眮にセツトし、ラフむ
ノヌス、マルトヌス、グルコヌス、ガラクトヌ
ス、マンノヌスおよびフルクトヌスを含有する詊
料詊料を分析に䟛した。分析条件は、流量
1.0ml分、溶離液は10-4MNaOH氎溶液お
よびカラム枩床60℃ずし、怜知噚は瀺差屈折蚈を
甚いお、クロマトグラムを埗た。なお、溶離液は
連続しお通液した。 溶離液の通液開始盎埌にサンプリングしお埗ら
れたクロマトグラムを第図に、時間埌にサン
プリングしお埗られたクロマトグラムを第図
に、理論段数の経時倉化を衚に瀺す。第図お
よび第図においお、ピヌクはラフむノヌス、
ピヌクはマルトヌス、ピヌクはグルコヌス、
ピヌスはガラクトヌス、ピヌクはマンノヌス
およびピヌクはフルクトヌスである。ピヌクの
圢状、分離性に倉化はみられず、衚においお、
理論段数の䜎䞋はみられないこずがわかる。 実斜䟋  実斜䟋においお、SrOH2・8H2O13.7の
代わりにBaOH2・8H2O16.2を䜿甚した以倖
は実斜䟋ず同様にしお、排陀限界1000のカラム
充おん剀を埗た。なお、ここで、スルホン基ず
Ba++が圓量比でになるように配合された。
この埌、実斜䟋ず同様にしお、カラムに充おん
し、高速液䜓クロマトグラフむヌによる分析を行
な぀た。 溶離液の通液開始盎埌にサンプリングしお埗ら
れたクロマトグラムを第図に、時間埌にサン
プリングしお埗られたクロマトグラムを第図
に、理論段数の経時倉化を衚に瀺す。第図お
よび第図においお各ピヌク名は実斜䟋ず同じ
である。ピヌクの圢状、分離性に倉化はみられ
ず、衚においお理論段数の䜎䞋はみられないこ
ずがわかる。 実斜䟋  実斜䟋においお、SrOH2・8H2O13.7の
代わりに、SrOH2・8H2O6.9およびBa
OH28.1を䜿甚したこず以倖実斜䟋ず同様
にしお、カラム充おん剀を補造した。なお、ここ
で、Sr++およびBa++の総量ずスルホン基が圓量
比でになるようにおよびSr++ずBa++の圓
量比もになるように䜿甚した。この埌、実
斜䟋ず同様にしお、カラムに充おんし、高速液
䜓クロマトグラフむヌによる分析を行な぀た。分
析甚詊料は詊料ずマンノヌス、アラビノヌスお
よびフルクトヌスを含有する詊料詊料を分
析に䟛した。 詊料に぀いおの溶離液の通液開始盎埌にサン
プリングしお埗られたクロマトグラムを第図
に、時間埌にサンプリングしお埗られたクロマ
トグラムを第図に、たた、詊料に぀いお同様
に第図および第図にクロマトグラムを瀺す。
たた、理論段数の経時倉化を衚に瀺す。 第図および第図においお、各ピヌクは実斜
䟋ず同じである。第図および第図におい
お、ピヌクはマンノヌス、ピヌクはアラビノ
ヌスおよびピヌクはフルクトヌスである。経過
時間によりピヌクの圢状、分離性に倉化はみられ
ず、衚においお、理論段数の䜎䞋はみられない
こずがわかる。 比范䟋  実斜䟋ず同様にしおカラム充おん剀を補造し
た。この埌、実斜䟋ず同様にしお、カラムに充
おんし、実斜䟋ず同様にしお高速液䜓クロマト
グラフむヌによる分析を行な぀た。分析条件は、
流量1.0ml分、溶離液は氎およびカラム枩床60
℃ずし、怜知噚は瀺差屈折蚈を甚いおクロマトグ
ラムを埗た。溶離液の通液開始埌時間目にサン
プリングしお埗られたクロマトグラムを第図
に、理論段数の経時倉化を衚に瀺す。 第図においお、各ピヌクは実斜䟋ず同じで
ある。ピヌクのガラクトヌスずピヌクのマン
ノヌスの分離性が悪くな぀おいるこず、衚にお
いお、理論段数が時間埌で玄25䜎䞋しおいる
こずがわかる。 比范䟋  実斜䟋ず同様にしおカラム充おん剀を補造し
た。この埌、実斜䟋ず同様にしお、カラムに充
おんし、比范䟋ず同様の分析条件により液䜓ク
ロマトグラフむヌの分析を行な぀た。 溶離液の通液開始埌、時間目にサンプリング
しお埗られたクロマトグラムを第図に、理論
段数の経時倉化を衚に瀺す。第図におい
お、各ピヌクは実斜䟋ず同じである。ピヌク圢
状がブロヌドずなり、ピヌクのマンノヌスずピ
ヌクのフルクトヌスの分離性が著しく悪くな぀
おいるこず、衚においお、理論段数が時間埌
で玄45䜎䞋しおいるこずがわかる。 比范䟋  実斜䟋ず同様にしおカラム充おん剀を補造し
た。この埌、実斜䟋ず同様にしお、カラムに充
おんし、比范䟋ず同様の分析条件により液䜓ク
ロマトグラフむヌの分析を行な぀た。 分析甚詊料は詊料ず詊料を分析に䟛した。
詊料に぀いお溶離液の通液開始埌時間目にサ
ンプリングしお埗られたクロマトグラムを第
図に、詊料に぀いお同様に第図に瀺す。た
た、理論段数の経時倉化を衚に瀺す。第図
においお、各ピヌクは実斜䟋ず同じであり、第
図においお各ピヌクは実斜䟋ず同じであ
る。経過時間により、ピヌク圢状がブロヌドずな
り、分離性が悪くなるこず、特に詊料に぀いお
は、分離性が著しく悪くなるこずがわかる。衚
においお、理論段数が時間埌で玄50䜎䞋しお
いるこずがわかる。
The present invention relates to liquid chromatography. Conventionally, methods for analyzing sugars by liquid chromatography include (1) partition-type separation using a packing material with chemically bonded amino groups (e.g., diethylaminoethyl cellulose), (2) cross-linked dextran gel, etc. (3) Separation as a borate complex ion using an anion exchange resin, (4) A compromise mode of molecular sieve and distribution using a salt-type cation exchange resin as a column packing material. Separation is known. Among these methods, methods (2) and (4) are easy to operate because they use water as an eluent. However, with method (2) above, it is impossible to separate sugars with different molecular weights. In contrast, (4) above
This method is possible. However, as a result of further study by the present inventors on the method (4) above, it was found that when water is used as an eluent, the separation ability decreases with prolonged use. That is, in the method (4) above, when water is used as an eluent, there is a drawback that the life of the column packing material is short. The present invention solves these problems. That is, the present invention relates to a liquid chromatography method for analyzing sugars using porous styrene-divinylbenzene copolymer particles having SO - 3 groups and divalent metal cations as counter ions as a column packing material. , relates to a liquid chromatography method for analyzing sugar, characterized in that an aqueous solution having an alkaline substance concentration of 5 x 10 -5 to 10 -2 M/ is used as an eluent. The column packing material of the present invention has a divalent metal cation such as Ca ++ , Sr ++ , Pb ++ , Ba ++ , Mg ++ or the like as a counter ion to the SO − 3 group. In particular, as counterions (a) at least one ion selected from the group consisting of Ca ++ and Sr ++ and (b) at least one ion selected from the group consisting of Pb ++ and Ba ++ ( It is preferable that the equivalent ratio of the ions of a) to the ions of (b) is (a)/(b) in the range of 1/2 to 2/1.
In this case, glucose, galactose, mannose and fructose, which have the same molecular weight, can be separated. Also, when Ca ++ or Sr ++ is used as a counterion,
Glucose, mannose and fructose can be separated, and when Pd ++ or Ba ++ is used as a counterion, glucose, galactose and mannose can be separated. The column packing material in the present invention preferably has SO - 3 groups in an amount of 2 milliequivalents (meq/g) or more per gram of the column packing material, particularly preferably 3 to 5 meq/g. When it is less than 2meq/g, hydrophilicity tends to be insufficient. In addition, the particle size of the column packing material of the present invention is 1 to 20 ÎŒm for liquid chromatography analysis.
For fractional separation by liquid chromatography, those having a diameter of 20 to 300 ÎŒm are preferable. Further, although there is no particular restriction on the degree of pores in the column packing material of the present invention, it is preferable that the exclusion limit is in the range of 400 to 1×10 7 . The SO - 3 group described above is bonded to a styrene-divinylbenzene copolymer, but the copolymer is
It is a copolymer of divinylbenzene and a styrene monomer, and preferably contains 5 to 60% by weight of divinylbenzene. The styrenic monomers include styrene, ethyl monovinylbenzene, vinyltoluene, α-Me-styrene, vinyl acetate,
Other monomers such as methacrylic acid and acrylic acid may be used in amounts up to 5% by weight. The column packing material of the present invention comprises sulfonated porous styrene-divinylbenzene copolymer particles and the general formula () M(OH) 2 () (where M is a metal that can be a divalent cation). It can be obtained by reacting a hydroxide represented by The above M is Ca, St, Pd,
There are Ba, Mg, etc. More specifically, it can be obtained by mixing an aqueous solution in which the above hydroxide is dissolved with sulfonated porous styrene-divinylbenzene copolymer particles or a salt thereof, filtering the mixture, and repeating the same operation. can. Alternatively, it can be obtained by filling a column with sulfonated porous styrene-divinylbenzene copolymer particles or a salt thereof or by passing an aqueous solution through the funnel in the same manner as above. In this case, sulfonated porous styrene
It is preferable to use the hydroxide in such a manner that the amount of metal cations in the hydroxide is equivalent or more to the SO - 3 groups in the divinylbenzene copolymer particles. Sulfonated porous styrene-divinylbenzene copolymer particles are produced by a conventionally known method. For example, divinylbenzene and styrenic monomers, and optionally other monomers, are polymerized in suspension in the presence of a water-insoluble basic solvent such as amyl alcohol or toluene, and the resulting particles are isolated to produce dichloroethane, trichloroethane, etc. It can be obtained by swelling with a swelling agent such as, adding concentrated sulfuric acid or chlorosulfuric acid, and carrying out a sulfonation reaction at room temperature to 120°C. The ion exchange capacity described above can be adjusted by appropriately adjusting the reaction conditions during the reaction with concentrated sulfuric acid or chlorosulfuric acid, and the degree of pores of the column packing material in the present invention can be adjusted during the suspension polymerization. The conditions can be adjusted mainly by adjusting the type and amount of the wastewater-soluble organic solvent, and the particle size can be adjusted by appropriately selecting the suspension polymerization conditions. In addition, the sulfonated porous styrene-divinylbenzene copolymer has an ion exchange capacity.
2 meq/g or more is preferable, especially 3 to
5meq/g is preferable. Further, in the column packing material of the present invention, each of the porous styrene-divinylbenzene copolymer particles having SO - 3 groups has the above-mentioned (a) as a counter ion for the SO - 3 groups.
In terms of separation performance, it is preferable to have the ion of (a) and the ion of (b), but the following may also be used. i.e. SO - 3 group and its counterion as Ca ++ or
Porous styrene-divinylbenzene copolymer particles (A) containing Sr ++ (ion (a)), SO - 3 group and Pb ++ or as its counter ion
Porous styrene-divinylbenzene copolymer particles (B) having Ba ++ (ions of (b)) are formed by ions of (a) and ions of (b) (a)/(b) ( The column packing material of the present invention can be used as a column packing agent in the present invention if it is blended at an equivalent ratio of 1/2 to 2/1. It is preferable that the copolymer particles (A) and (B) are mixed as uniformly as possible, and each copolymer particle has the same particle size, degree of pores, degree of swelling, and content of SO - 3 groups. It is preferable to use For this purpose, copolymer particles (A) and (B) are neutralized using the same lot of sulfonated porous styrene-divinylbenzene copolymer particles in the same manner as described above. preferable. Such copolymer particles
When using (A) and (B), they are in volume ratio
They may be blended so that the ratio of (A)/(B) is 1/2 to 2/1, which facilitates the mixing operation. When the column packing material of the present invention has ions (a) and ions (b) as counterions, SO - 3
It is most preferable that the ions (a) and (b) are present in each particle of the porous styrene-divinylbenzene copolymer particles having a group, in a uniform distribution. For this purpose, the column packing is composed of sulfonated porous styrene-divinylbenzene copolymer particles, (c) at least one compound selected from the group consisting of Ca(OH) 2 and Sr(OH) 2 , and ( d) At least one compound selected from the group consisting of Pb(OH) 2 and Sr(OH) 2 is dissolved in a molar ratio of (c)/(d) from 1/2 to 2/1. Neutralized with aqueous solution. The eluent used in the present invention is an aqueous solution of an alkaline substance. Alkaline substances are substances that exhibit alkalinity when made into aqueous solutions such as hydroxides, hydrogen carbonates, and carbonates of alkali metals and alkaline earth metals, and specifically include LiOH, NaOH,
KOH, Sr(OH) 2 , Ba(OH) 2 , NaHCO3 ,
Examples include KHCO 3 , NA 2 CO 3 and K 2 CO 3 . These alkaline substances are used at a concentration of 5×10 −5 to 10 −2 M/. If the concentration is less than 5 x 10 -5 , the life of the column packing material will be shortened, and if it exceeds 10 -2 M/, ion exchange with the counter ion of the column packing material cannot be ignored, and the separation performance will change. When a column packing material obtained by reacting sulfonated porous styrene-divinylbenzene copolymer particles or a salt thereof with a hydroxide represented by the above general formula () is used as a column packing material of the present invention, This problem is particularly noticeable. The column packing material of the present invention comprises sulfonated porous styrene-divinylbenzene copolymer particles.
It can be obtained by reacting metal halides such as MCl 2 , MBr 2 (where M is the same as in the general formula ()), but in this case, when the above hydroxide is used, However, it is preferable to use the eluent of the present invention, although the problem of longevity is less pronounced. In the liquid chromatography method according to the present invention, a sample is injected from a sample injection port, the eluent is passed through a column filled with the column packing material, and the passed material is detected by a detector. It is applied to high-performance liquid chromatography analysis that draws a chromatogram, and preparative separation that collects each fraction by passing a sample through a column filled with column packing material. Next, examples of the present invention will be shown. Example 1 Sulfonated porous styrene-ethyl monovinylbenzene-divinyl having a particle size of 8 to 15 ÎŒm, an ion exchange capacity of 4.3 meq/g, and a degree of crosslinking (polymerization ratio of the divinylbenzene component in the copolymer, the same shall apply hereinafter) of 10%. Swell 24.0 g of benzene copolymer particles in about 150 g of water to form a slurry, and add Sr to this slurry.
An aqueous solution of 13.7 g of (OH) 2.8H 2 O dissolved in water to make 500 ml was mixed and stirred for 1 hour. Note that the sulfone group and Sr ++ were blended at an equivalent ratio of 1/1. After that, it was filtered and washed with water to obtain a column packing material with an exclusion limit of 1000. The obtained column packing material was swollen with water to form a slurry and packed into a 10.7 mmφ x 30 cm stainless steel column, which was then set in a high-performance liquid chromatography analyzer to collect raffinose, maltose, glucose, galactose, and mannose. and a sample containing fructose was subjected to analysis. The analysis conditions are flow rate
A chromatogram was obtained using a differential refractometer as a detector at a rate of 1.0 ml/min, an eluent of 10 -4 M/NaOH aqueous solution, and a column temperature of 60°C. Note that the eluent was passed continuously. FIG. 1 shows the chromatogram obtained by sampling immediately after the start of the eluent flow, FIG. 2 shows the chromatogram obtained by sampling 3 hours later, and Table 1 shows the change in the number of theoretical plates over time. In Figures 1 and 2, peak 1 is roughinose,
Peak 2 is maltose, peak 3 is glucose,
Piece 4 is galactose, peak 5 is mannose and peak 6 is fructose. No change was observed in peak shape or separation, and in Table 1,
It can be seen that there is no decrease in the number of theoretical plates. Example 2 The same procedure was used as in Example 1 except that 16.2 g of Ba(OH) 2.8H 2 O was used instead of 13.7 g of Sr(OH) 2.8H 2 O in Example 1, but the exclusion limit of 1000 was achieved. A column packing material was obtained. Note that here, the sulfone group and
Ba ++ was blended at an equivalent ratio of 1/1.
Thereafter, in the same manner as in Example 1, a column was filled and analysis by high performance liquid chromatography was performed. FIG. 3 shows the chromatogram obtained by sampling immediately after the start of the eluent flow, FIG. 4 shows the chromatogram obtained by sampling 3 hours later, and Table 1 shows the change in the number of theoretical plates over time. In FIGS. 3 and 4, each peak name is the same as in Example 1. No change in peak shape or separation was observed, and Table 1 shows that no decrease in the number of theoretical plates was observed. Example 3 In Example 1, instead of 13.7 g of Sr(OH) 2.8H 2 O, 6.9 g of Sr(OH) 2.8H 2 O and Ba
A column packing material was produced in the same manner as in Example 1 except that 8.1 g of (OH) 2 was used. Here, the equivalent ratio of the total amount of Sr ++ and Ba ++ to the sulfone group was 1/1, and the equivalent ratio of Sr ++ and Ba ++ was also 1/1. Thereafter, in the same manner as in Example 1, a column was filled and analysis by high performance liquid chromatography was performed. Samples for analysis were samples containing mannose, arabinose, and fructose. Figure 5 shows the chromatogram obtained by sampling the sample immediately after the start of eluent flow, Figure 6 shows the chromatogram obtained by sampling 3 hours later, and Figure 7 shows the chromatogram obtained by sampling the sample 3 hours later. Chromatograms are shown in the figure and FIG.
Table 1 also shows the change in the number of theoretical plates over time. In FIGS. 5 and 6, each peak is the same as in Example 1. In FIGS. 7 and 8, peak 7 is mannose, peak 8 is arabinose, and peak 9 is fructose. No change in peak shape or separation was observed with elapsed time, and Table 1 shows that no decrease in the number of theoretical plates was observed. Comparative Example 1 A column packing material was produced in the same manner as in Example 1. Thereafter, a column was filled in the same manner as in Example 1, and analysis by high performance liquid chromatography was performed in the same manner as in Example 1. The analysis conditions are
Flow rate 1.0 ml/min, eluent water and column temperature 60
℃, and a chromatogram was obtained using a differential refractometer as a detector. A chromatogram obtained by sampling 3 hours after the start of passing the eluent is shown in FIG. 9, and a change in the number of theoretical plates over time is shown in Table 1. In FIG. 9, each peak is the same as in Example 1. It can be seen in Table 1 that the separation between galactose in peak 4 and mannose in peak 5 has deteriorated, and that the number of theoretical plates has decreased by about 25% after 3 hours. Comparative Example 2 A column packing material was produced in the same manner as in Example 2. Thereafter, a column was filled in the same manner as in Example 1, and liquid chromatography analysis was performed under the same analysis conditions as in Comparative Example 1. FIG. 10 shows a chromatogram obtained by sampling 3 hours after the start of eluent flow, and Table 1 shows the change in the number of theoretical plates over time. In FIG. 10, each peak is the same as in Example 1. It can be seen in Table 1 that the peak shape became broader and the separation of mannose in peak 5 and fructose in peak 6 became significantly worse, and that the number of theoretical plates decreased by about 45% after 3 hours. Comparative Example 3 A column packing material was produced in the same manner as in Example 3. Thereafter, a column was filled in the same manner as in Example 1, and liquid chromatography analysis was performed under the same analysis conditions as in Comparative Example 1. Samples for analysis were used for analysis.
The chromatogram obtained by sampling the sample 3 hours after the start of the eluent flow is shown in the 11th column.
Similarly, the sample is shown in FIG. 12. Table 1 also shows the change in the number of theoretical plates over time. In FIG. 11, each peak is the same as in Example 1, and in FIG. 12, each peak is the same as in Example 3. It can be seen that as time elapses, the peak shape becomes broader and the separation becomes worse, especially for the sample, the separation becomes significantly worse. Table 1
It can be seen that the number of theoretical plates decreased by about 50% after 3 hours.

【衚】  察むオンの原料
泚理論段数は通液開始埌䞀定時間埌にフルクト
ヌスをサンプリングし、埗られたクロマトグラ
ムのフルクトヌスのピヌクを甚いお次匏により
算出した。 5.54×tR2 䜆し、tRは詊料泚入点からピヌク頂点たでの
長さmm はピヌクの半倀幅mm なお、以䞊の分析に甚いた装眮の暡匏図を第
図に瀺す。溶離液が容噚に蓄えられ、溶離
液はポンプによりパむプを通しお、カラ
ムおよび怜知噚を通しお容噚に廃液
される。詊料は、泚入口䟋えば䞉方コツ
クより導入され、怜知噚にはクロマトグラ
ムの蚘録蚈が連結される。 以䞊より明らかなように、SO- 3基およびその察
むオンずしお二䟡の金属陜むオンを有する倚孔性
スチレン−ゞビニルベンれン系共重合䜓粒子をカ
ラム充おん剀ずしお䜿甚するずき、本発明に係る
液䜓クロマトグラフ法によれば、該カラム充おん
剀の寿呜を長くするこずができる。
[Table] * Counter ion raw material Note) The theoretical plate number was calculated by sampling fructose after a certain period of time after starting the flow and using the peak of fructose in the obtained chromatogram using the following formula. N=5.54×(t R /W) 2 (where, t R is the length from the sample injection point to the peak apex (mm), and W is the half-width of the peak (mm)). Schematic diagram first
Shown in Figure 3. The eluent is stored in a container 10 and is drained by a pump 11 through a pipe 12, through a column 13 and a detector 14 into a container 15. A sample is introduced through an injection port 16 (for example, a three-way inlet), and a chromatogram recorder 17 is connected to the detector 14 . As is clear from the above, when porous styrene-divinylbenzene copolymer particles having SO - 3 groups and a divalent metal cation as a counter ion are used as a column packing material, the liquid chromatograph according to the present invention According to the graph method, the lifetime of the column packing material can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第図および第図は、各々実斜䟋におい
お、溶離液の通液開始盎埌および時間埌にサン
プリングしお埗られたクロマトグラム、第図お
よび第図は、各々実斜䟋における実斜䟋ず
同様の結果を瀺すクロマトグラム、第図および
第図は、各々実斜䟋においお、詊料を
䜿甚したずきの実斜䟋ず同様の結果を瀺すクロ
マトグラム、第図および第図は、各々実斜䟋
においお、詊料を䜿甚したずきの実斜䟋
ず同様の結果を瀺すクロマトグラム、第図は
比范䟋の結果を瀺すクロマトグラム、第図
は比范䟋の結果を瀺すクロマトグラム、第
図および第図は比范䟋においお、実斜䟋
ず同様の結果を瀺すクロマトグラム䞊びに第
図は、実斜䟋および比范䟋で甚いた分析装眮の暡
匏図を瀺す。 笊号の説明、  ラフむノヌスのピヌク、
  マルトヌスのピヌク、  グルコヌスのピ
ヌク、  ガラクトヌスのピヌク、  マン
ノヌスのピヌク、  フルクトヌスのピヌク、
  マンノヌスのピヌク、  アラビノヌス
のピヌク、  フルクトヌスのピヌク。
Figures 1 and 2 are chromatograms obtained by sampling immediately after and 3 hours after the start of eluent passage in Example 1, respectively, and Figures 3 and 4 are chromatograms obtained by sampling in Example 2. Chromatograms, FIGS. 5 and 6, which show the same results as in Example 1, are chromatograms, FIGS. 7 and 6, respectively, which show the same results as in Example 1 when sample ( Figure 8 is a chromatogram showing the same results as in Example 1 when sample () was used in Example 3, Figure 9 is a chromatogram showing the results of Comparative Example 1, and Figure 10 is a comparison. Chromatogram showing the results of Example 2, No. 11
The figures and FIG. 12 are for Comparative Example 3 and Example 1.
Chromatogram showing similar results as well as the 13th
The figure shows a schematic diagram of an analyzer used in Examples and Comparative Examples. Explanation of symbols, 1...Roughinose peak, 2
... Maltose peak, 3 ... Glucose peak, 4 ... Galactose peak, 5 ... Mannose peak, 6 ... Fructose peak,
7... Mannose peak, 8... Arabinose peak, 9... Fructose peak.

Claims (1)

【特蚱請求の範囲】  SO- 3基およびその察むオンずしお二䟡の金属
陜むオンを有する倚孔性スチレン−ゞビニルベン
れン系共重合䜓粒子をカラム充おん剀ずしお䜿甚
し糖を分析する液䜓クロマトグラフ法においお、
溶離液ずしお、アルカリ性物質濃床が×10-5〜
10-2Mの氎溶液を䜿甚するこずを特城ずする
糖を分析する液䜓クロマトグラフ法。  カラム充おん剀が、スルホン化倚孔性スチレ
ン−ゞビニルベンれン系共重合䜓粒子たたはその
塩ず䞀般匏 OH2  ただし、匏䞭、は二䟡の陜むオンに成り埗る
金属であるで衚わされる氎酞化物を反応させお
埗られるものである特蚱請求の範囲第項蚘茉の
糖を分析する液䜓クロマトグラフ法。
[Claims] 1. A liquid chromatography method for analyzing sugars using porous styrene-divinylbenzene copolymer particles having SO - 3 groups and a divalent metal cation as a counter ion as a column packing material. In,
As an eluent, the alkaline substance concentration is 5 × 10 -5 ~
A liquid chromatography method for analyzing sugar, characterized by using a 10 -2 M/aqueous solution. 2 The column packing material is composed of sulfonated porous styrene-divinylbenzene copolymer particles or a salt thereof and the general formula () M(OH) 2 () (However, in the formula, M can be a divalent cation. A liquid chromatography method for analyzing sugar according to claim 1, which is obtained by reacting a hydroxide represented by a metal.
JP58053271A 1983-03-29 1983-03-29 Liquid chromatograph Granted JPS59178359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053271A JPS59178359A (en) 1983-03-29 1983-03-29 Liquid chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053271A JPS59178359A (en) 1983-03-29 1983-03-29 Liquid chromatograph

Publications (2)

Publication Number Publication Date
JPS59178359A JPS59178359A (en) 1984-10-09
JPH0339592B2 true JPH0339592B2 (en) 1991-06-14

Family

ID=12938074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053271A Granted JPS59178359A (en) 1983-03-29 1983-03-29 Liquid chromatograph

Country Status (1)

Country Link
JP (1) JPS59178359A (en)

Also Published As

Publication number Publication date
JPS59178359A (en) 1984-10-09

Similar Documents

Publication Publication Date Title
Wheaton et al. Ion exclusion-A unit operation utilizing ion exchange materials
US6884345B1 (en) Chromatography method and a column material useful in said method
Hutchinson et al. Towards high capacity latex-coated porous polymer monoliths as ion-exchange stationary phases
US4351909A (en) High performance ion-exchange composition
EP0530258B1 (en) Adsorbent medium
CN107522809B (en) Charge-reversible ion exchange resins, chromatography columns, methods, and systems thereof
EP1194479A1 (en) Process for making fluorinated polymer adsorbent particles
US3134814A (en) Method of separating non-ionized organic solutes from one another in aqueous solution
US4486308A (en) Column packing material and production thereof
EP3268102B1 (en) Chromatographic separation of saccharides using strong acid exchange resin incorporating precipitated barium sulfate
JPH0339592B2 (en)
JPH0222904B2 (en)
Elliger et al. p-Vinylbenzeneboronic acid polymers for separation of vicinal diols
JPS6361618B2 (en)
RU2729075C1 (en) Resin grains and use thereof in processing aqueous solutions
CN113019349A (en) Preparation method of anion chromatographic stationary phase
JP2790300B2 (en) Chromatographic separation using ion exchange resin
Jyo et al. Properties of chelating resins prepared by addition of 1, 4, 8, 11‐tetraazacyclotetradecane‐5, 7‐dione to epoxy groups of poly (glycidyl methacrylate) s crosslinked with oligoethylene glycol dimethacrylates
Masters et al. Ligand-exchange chromatography of amino sugars and amino acids on copper-loaded silylated controlled-pore glass
KR102589387B1 (en) Use in processing resin beads and aqueous solutions
Kruempelman et al. Liquid chromatographic characterization of picolyl Kel-F as a reverse-phase, weak anion-exchange column packing
JPS6186654A (en) Column filling agent for liquid chromatography
Borák Chromatographic behaviour of inorganic salts on hydroxyethyl methacrylate gels
JPS6171354A (en) Separating method of saccharide
JPH052383B2 (en)