JPH033956A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device

Info

Publication number
JPH033956A
JPH033956A JP13843289A JP13843289A JPH033956A JP H033956 A JPH033956 A JP H033956A JP 13843289 A JP13843289 A JP 13843289A JP 13843289 A JP13843289 A JP 13843289A JP H033956 A JPH033956 A JP H033956A
Authority
JP
Japan
Prior art keywords
bypass air
air
amount
fuel ratio
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13843289A
Other languages
Japanese (ja)
Inventor
Norio Suzuki
則夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP13843289A priority Critical patent/JPH033956A/en
Publication of JPH033956A publication Critical patent/JPH033956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of the hunting phenomenon and improve the operation performance and exhaust purification performance by providing a bypass air quantity correcting means correcting the bypass air quantity operated according to a load so as to keep the control width of the air-fuel ration constant. CONSTITUTION:When the intake air quantity is small and the negative pressure of the venturi section 12 of a carburetor 14 is weak, the correcting valve body 50 of a bypass air quantity correcting valve 36 is pushed by the displacement of a diaphragm 40, and a correcting valve hole 52 is closed to decrease the bypass air quantity for correction. The bypass air quantity is decreased at the low-load side of an internal combustion engine 4 for correction. When the intake air quantity is large and the negative pressure of the venturi section 12 of the carburetor 14 is strong, it is retreated by the displacement of the diaphragm 40, and the correcting valve hole 52 is opened to increase the bypass air quantity for correction. The bypass air quantity is increased at the high-load side of the internal combustion engine 4 for correction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空燃比制御装置に係り、特にバイパス空気量
調整手段の動作により制御される空燃比の制御幅を内燃
機関の負荷変動にかかわらず一定に維持させることによ
り吸気通路により導入される吸入空気量にバイパス空気
通路により導入されるバイパス空気量を比例させ得て、
運転性能や排気清浄化性能を向上し得る空燃比制御装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio control device, and particularly to an air-fuel ratio control device that controls the control width of the air-fuel ratio controlled by the operation of a bypass air amount adjusting means, regardless of load fluctuations of an internal combustion engine. By keeping it constant, the amount of bypass air introduced by the bypass air passage can be made proportional to the amount of intake air introduced by the intake passage,
The present invention relates to an air-fuel ratio control device that can improve driving performance and exhaust purification performance.

〔従来の技術〕[Conventional technology]

内燃機関には、燃焼状態を改善して燃料消費率の減少や
排気有害成分の低減等を図るものとして、空燃比制御装
置を設けたものがある。第7図に示す如く、空燃比制御
装置102は、内燃機関104に連通ずる吸気管106
の吸気通路108に上流側から順次にエアクリーナ11
0と気化器112と吸気絞り弁114とを設け、前記吸
気通路108の途中に設けた気化器112の上流側吸気
通路108Aと下流側吸気通路108Bとを連通ずるバ
イパス空気通路116を設け、このバイパス空気通路1
16の途中にバイパス空気量調整手段たるバイパス空気
量調整弁118を設け、制御手段たる制御部120に接
続して設けている。また、前記内燃機関104に連通ず
る排気管122の排気通路124には、排気成分値を検
出する排気センサたるOtセンサ126を設け、この0
、センサ126を前記制御部120に接続して設けてい
る。
2. Description of the Related Art Some internal combustion engines are equipped with an air-fuel ratio control device in order to improve combustion conditions and reduce fuel consumption and harmful exhaust gas components. As shown in FIG.
The air cleaner 11 is sequentially installed in the intake passage 108 from the upstream side.
0, a carburetor 112, and an intake throttle valve 114, and a bypass air passage 116 is provided that communicates the upstream intake passage 108A and the downstream intake passage 108B of the carburetor 112, which are provided in the middle of the intake passage 108. Bypass air passage 1
A bypass air amount adjusting valve 118, which is a bypass air amount adjusting means, is provided in the middle of the air pump 16, and connected to a control section 120, which is a control means. Further, an Ot sensor 126 is provided in the exhaust passage 124 of the exhaust pipe 122 communicating with the internal combustion engine 104 as an exhaust sensor for detecting exhaust component values.
, a sensor 126 is connected to the control section 120.

これにより、空燃比制御装置102は、o2センサ12
6のヰ★出信号を制御部120に人力し、この制御部1
20によってバイパス空気量調整弁118を動作させて
バイパス空気通路116により導入されるバイパス空気
を調整し、空燃比を目標値に収束させるべく制御する。
As a result, the air-fuel ratio control device 102 controls the o2 sensor 12.
The output signal of 6 is manually inputted to the control unit 120, and this control unit 1
20 operates the bypass air amount adjusting valve 118 to adjust the bypass air introduced through the bypass air passage 116 and control the air-fuel ratio to converge to the target value.

また、内燃機関を制御するものとしては、特開昭59−
192846号公報に開示のものがある。
In addition, as a device for controlling an internal combustion engine,
There is one disclosed in Japanese Patent No. 192846.

この公報に開示のものは、内燃機関のアイドリング時に
機関回転数の制御速度を吸気管圧力に応じて補正するこ
とにより、実回転数を迅速かつ安定して目標回転数に収
束させ、制御の応答性を向上させたものである。
The technology disclosed in this publication corrects the engine speed control speed according to the intake pipe pressure when the internal combustion engine is idling, thereby quickly and stably converging the actual engine speed to the target engine speed, and improving control response. It has improved characteristics.

〔発明が解決しようとする問題点〕 ところで、前記空燃比制御装置において、バイパス空気
量を調整するバイパス空気量調整手段として比例式電磁
弁等を単一で用い、この比例式電磁弁を固定された駆動
周期で動作させて空燃比を目標値に収束すべく制御する
と、第5図に示す如く、空燃比の制御幅は低負荷側では
大きくなり、一方、高負荷側では小さくなる。この比例
式電磁弁の開口面積は、高負荷側の制御幅で決定される
ため、第6図に示す如く、バイパス空気量が負荷に比例
せず、つまり、吸気通路により導入される吸入空気量に
バイパス空気通路により導入されるバイパス空気量が比
例せず、吸入空気量の少ない低負荷側においては、吸入
空気量に対してバイパス空気量が過大となり、ハンチン
グ現象を生じ易く、運転性能や排気清浄化性能を低下さ
せる不都合がある。
[Problems to be Solved by the Invention] By the way, in the air-fuel ratio control device, a proportional solenoid valve or the like is used as a bypass air amount adjusting means for adjusting the amount of bypass air, and this proportional solenoid valve is not fixed. When the air-fuel ratio is controlled so as to converge to the target value by operating at a drive period of a certain value, as shown in FIG. 5, the control range of the air-fuel ratio becomes large on the low load side, while it becomes small on the high load side. Since the opening area of this proportional solenoid valve is determined by the control width on the high load side, the amount of bypass air is not proportional to the load, as shown in Figure 6. In other words, the amount of intake air introduced by the intake passage The amount of bypass air introduced by the bypass air passage is not proportional to the amount of intake air, and on the low load side where the amount of intake air is small, the amount of bypass air becomes excessive relative to the amount of intake air, which tends to cause a hunting phenomenon, which impairs operational performance and exhaust gas. This has the disadvantage of reducing cleaning performance.

この場合に、吸入空気量センサや吸入空気圧力センサを
設けて制御手段により空燃比の制御幅を負荷の変動にか
かわらず一定に維持し得るように制御することにより、
低負荷側で吸入空気量に対するバイパス空気量が過大と
なる問題を処理することも可能であるが、部品数の増加
や制御プログラムの変更等を要することにより、コスト
の上昇を招(不都合がある。
In this case, by providing an intake air amount sensor and an intake air pressure sensor and controlling the air-fuel ratio control width using a control means so as to be able to maintain it constant regardless of load fluctuations,
Although it is possible to solve the problem of the amount of bypass air being too large relative to the amount of intake air on the low load side, this increases the cost by increasing the number of parts and changing the control program. .

このため、低負荷側から高負荷側まで空燃比の制御幅が
変化しないように負荷の変動にかかわらず空燃比の制御
幅を一定に維持させることにより、吸入空気量にバイパ
ス空気量を比例させ得て、前記不都合を解消し得る空燃
比制御装置の実現が望まれている。
Therefore, by maintaining the air-fuel ratio control width constant regardless of load fluctuations so that the air-fuel ratio control width does not change from the low load side to the high load side, the bypass air amount can be made proportional to the intake air amount. Therefore, it is desired to realize an air-fuel ratio control device that can eliminate the above-mentioned disadvantages.

〔発明の目的〕[Purpose of the invention]

そこで、この発明の目的は、バイパス空気量調整手段の
動作により制御される空燃比の制御幅を内燃機関の負荷
変動にかかわらず一定に維持させることにより吸気通路
により導入される吸入空気量にバイパス空気通路により
導入されるバイパス空気量を比例させ得て、運転性能や
排気清浄化性能を向上し得る空燃比制御装置を実現する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to maintain the control range of the air-fuel ratio, which is controlled by the operation of the bypass air amount adjusting means, constant regardless of load fluctuations of the internal combustion engine, so that the amount of intake air introduced through the intake passage can be bypassed. The object of the present invention is to realize an air-fuel ratio control device that can proportionate the amount of bypass air introduced by an air passage and improve driving performance and exhaust purification performance.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するためにこの発明は、内燃機関の排気
通路に設けた排気センサの検出信号を入力する制御手段
により前記内燃機関の気化器下流側の吸気通路にバイパ
ス空気を導入するバイパス空気通路に設けたバイパス空
気量調整手段を動作させ空燃比を目標値に収束させるべ
く制御する空燃比制御装置において、前記バイパス空気
量調整手段の動作により制御される空燃比の制御幅を前
記内燃機関の負荷変動にかかわらず一定に維持させるべ
く前記内燃機関の負荷に応じて動作され前記バイパス空
気通路のバイパス空気量を補正するバイパス空気量補正
手段を設けたことを特徴とする。
To achieve this object, the present invention provides a bypass air passageway for introducing bypass air into an intake passageway downstream of a carburetor of an internal combustion engine by means of a control means that inputs a detection signal from an exhaust sensor provided in an exhaust passageway of the internal combustion engine. In an air-fuel ratio control device that controls the air-fuel ratio to converge to a target value by operating a bypass air amount adjusting means provided in the internal combustion engine, the control range of the air-fuel ratio controlled by the operation of the bypass air amount adjusting means is The present invention is characterized in that a bypass air amount correcting means is provided which is operated according to the load of the internal combustion engine and corrects the amount of bypass air in the bypass air passage so as to maintain the amount constant regardless of load fluctuations.

〔作用〕[Effect]

この発明の構成によれば、バイパス空気量調整手段の動
作により制御される空燃比の制御幅を内燃機関の負荷変
動にかかわらず一定に維持させるべく内燃機関の負荷に
応じて動作されバイパス空気通路のバイパス空気量を補
正するバイパス空気量補正手段を設けたことによって、
空燃比の制御幅が内燃機関の低負荷側で大きくなること
がなく、また、高負荷側で小さくなることがなく、空燃
比の制御幅を内燃機関の負荷変動にかかわらず一定に維
持させることができる。
According to the configuration of the present invention, the bypass air passage is operated according to the load of the internal combustion engine in order to maintain the control width of the air-fuel ratio controlled by the operation of the bypass air amount adjusting means constant regardless of load fluctuations of the internal combustion engine. By providing a bypass air amount correction means for correcting the bypass air amount of
To maintain the control width of an air-fuel ratio constant regardless of load fluctuations of an internal combustion engine without increasing the control width of the air-fuel ratio on the low-load side of an internal combustion engine and without decreasing it on the high-load side. I can do it.

〔実施例〕〔Example〕

次にこの発明の実施例を図に基づいて詳細に説明する。 Next, embodiments of the present invention will be described in detail based on the drawings.

第1〜3図は、この発明の実施例を示すものである。図
において、2は空燃比制御装置である。
1 to 3 show embodiments of this invention. In the figure, 2 is an air-fuel ratio control device.

空燃比制御装置2は、内燃機関4に連通ずる吸気管6の
吸気通路8に上流側から順次にエアクリーナ10と固定
式のベンチュリ部12を備えた気化器14と吸気絞り弁
16とを設け、前記吸気通路8の途中に設けた気化器1
4の上流側吸気通路8Aと下流側吸気通路8Bとを連通
ずるバイパス空気通路18を設けている。このバイパス
空気通路18は、この実施例においてはエアクリーナ1
0に始端を開口して設けるとともに、吸気絞り弁16の
下流側吸気通路8Bに終端側を開口して設けている。
The air-fuel ratio control device 2 includes an air cleaner 10, a carburetor 14 equipped with a fixed venturi portion 12, and an intake throttle valve 16, which are sequentially provided from the upstream side in an intake passage 8 of an intake pipe 6 that communicates with the internal combustion engine 4. A carburetor 1 provided in the middle of the intake passage 8
A bypass air passage 18 is provided which communicates the upstream intake passage 8A and the downstream intake passage 8B of No. 4. This bypass air passage 18 is connected to the air cleaner 1 in this embodiment.
The starting end is opened at 0, and the terminal end is opened at the intake passage 8B on the downstream side of the intake throttle valve 16.

前記バイパス空気通路18の途中には、バイパス空気量
調整手段たるバイパス空気量調整弁20を設け、制御手
段たる制御部22に接続して設ける。前記バイパス空気
量調整弁20としては、例えば、通電により励磁される
コイル24とこのコイル24により動作されてバイパス
空気通路18に設けた調整用弁孔26を開閉する円錐体
形状の調整用弁体28とを有し、固定された駆動周期で
動作される比例式を磁弁等を用いる。
A bypass air amount adjusting valve 20 serving as bypass air amount adjusting means is provided in the middle of the bypass air passage 18, and connected to a control section 22 serving as a control means. The bypass air amount adjustment valve 20 may include, for example, a coil 24 that is excited by electricity and a conical adjustment valve body that is operated by the coil 24 to open and close an adjustment valve hole 26 provided in the bypass air passage 18. 28, and uses a proportional type operated at a fixed drive cycle using a magnetic valve or the like.

また、前記内燃機関4に連通ずる排気管30の排気通路
32には、排気成分値を検出する排気センサたるOxセ
ンサ34を設け、この0□センサ32を前記制御部22
に接続して設ける。
Further, the exhaust passage 32 of the exhaust pipe 30 communicating with the internal combustion engine 4 is provided with an Ox sensor 34 which is an exhaust sensor for detecting exhaust component values.
It is connected to and installed.

これにより、空燃比制御装置2は、o2センサ34の検
出信号を制御部22に入力し、この制御部22によって
バイパス空気量調整弁20を動作させてバイパス空気通
路18により導入されるバイパス空気を調整し、空燃比
を目標値に収束させるべく制御する。
Thereby, the air-fuel ratio control device 2 inputs the detection signal of the O2 sensor 34 to the control unit 22, and the control unit 22 operates the bypass air amount adjustment valve 20 to control the bypass air introduced by the bypass air passage 18. and control the air-fuel ratio to converge to the target value.

このような空燃比制御装置2において、バイパス空気量
調整弁20の動作により制御される空燃比の制御幅を内
燃機関4の負荷変動にかかわらず一定に維持させるべく
、内燃機関4の負荷に応じて動作されバイパス空気通路
18のバイパス空気量を補正するバイパス空気量補正手
段たるバイパス空気量補正弁36を設ける。
In such an air-fuel ratio control device 2, in order to maintain the control width of the air-fuel ratio controlled by the operation of the bypass air amount adjustment valve 20 constant regardless of load fluctuations of the internal combustion engine 4, the air-fuel ratio is adjusted according to the load of the internal combustion engine 4. A bypass air amount correction valve 36 is provided as a bypass air amount correction means that is operated to correct the amount of bypass air in the bypass air passage 18.

この実施例において、バイパス空気量補正弁36は、バ
イパス空気量調整弁20よりも上流側の上流側バイパス
空気通路18Aの途中に設けられており、固定式のベン
チエリ部12を備えた気化器14の前記ベンチュリ部1
2の負圧により動作され、バイパス空気通路1日のバイ
パス空気量を補正する。
In this embodiment, the bypass air amount correction valve 36 is provided in the middle of the upstream side bypass air passage 18A on the upstream side of the bypass air amount adjustment valve 20. The venturi section 1 of
It is operated by a negative pressure of 2 and corrects the amount of bypass air in one day in the bypass air passage.

即ち、バイパス空気量補正弁36は、本体38内にダイ
ヤフラム40を設け、このダイヤフラム40により本体
38内のダイヤフラム40の一側に負圧室42を区画し
て設け、この負圧室42を導圧通路44により前記気化
器14のベンチエリ部12に設けた負圧ボート46に連
通して設けている。前記ダイヤフラム40の一側には、
負圧室42を拡張する方向に押圧ばね48が弾設されて
いる。
That is, the bypass air amount correction valve 36 is provided with a diaphragm 40 inside the main body 38, and a negative pressure chamber 42 is partitioned by the diaphragm 40 on one side of the diaphragm 40 inside the main body 38, and this negative pressure chamber 42 is guided. A pressure passage 44 communicates with a negative pressure boat 46 provided in the bench area 12 of the carburetor 14 . On one side of the diaphragm 40,
A pressing spring 48 is elastically installed in a direction to expand the negative pressure chamber 42.

また、ダイヤフラム40の他側には、円錐体形状に形成
された補正用弁体50の底部側が固設されている。この
補正用弁体50は、尖端側を上流側バイパス空気通路1
8Aの途中に設けた補正用弁孔52に指向させて設けら
れ、この補正用弁孔52を開閉してバイパス空気量を補
正する。なお、符号18Bは、バイパス空気量調整弁2
0よりも下流側の下流側バイパス空気通路である。
Further, on the other side of the diaphragm 40, the bottom side of a correction valve body 50 formed in a conical shape is fixedly provided. This correction valve body 50 has its tip end connected to the upstream side bypass air passage 1.
The bypass air amount is corrected by opening and closing the correction valve hole 52, which is provided in the middle of the valve 8A. In addition, the code|symbol 18B is bypass air amount adjustment valve 2
This is a downstream side bypass air passage downstream of 0.

次に作用を説明する。Next, the effect will be explained.

内燃機関4を駆動すると、空燃比制御装置2は、Oxセ
ンサ34の検出信号を制御部22に入力し、この制御部
22によってバイパス空気量調整弁20を動作させてバ
イパス空気通路18により導入されるバイパス空気を調
整し、空燃比を目標値に収束させるべく制御する。
When the internal combustion engine 4 is driven, the air-fuel ratio control device 2 inputs the detection signal of the Ox sensor 34 to the control unit 22, and the control unit 22 operates the bypass air amount adjustment valve 20 to introduce air into the bypass air passage 18. The bypass air is adjusted to control the air-fuel ratio to converge to the target value.

このとき、内燃機関4の駆動によって気化器14のベン
チュリ部12に負圧が発生し、この負圧が負圧ボート4
6から導圧通路44によりバイパス空気量補正弁36の
負圧室42に導入される。
At this time, negative pressure is generated in the venturi section 12 of the carburetor 14 due to the drive of the internal combustion engine 4, and this negative pressure is applied to the negative pressure boat 4.
6 is introduced into the negative pressure chamber 42 of the bypass air amount correction valve 36 through the pressure guiding passage 44 .

この負圧は、吸気通路8により導入される吸入空気量に
比例するものである。
This negative pressure is proportional to the amount of intake air introduced through the intake passage 8.

これにより、バイパス空気量補正弁36は、負圧室42
に導入される負圧と押圧ばね48の押圧力とによりダイ
ヤフラム40が変位し、このダイヤフラム40の変位に
より補正用弁体50が進退動作されて上流側バイパス空
気通路18Aに設けた補正用弁孔52を開閉することに
より、吸気通路8により導入される吸入空気量に比例し
て、したがって、内燃機関4の負荷に応じてバイパス空
気通路18のバイパス空気量を補正することになる。
As a result, the bypass air amount correction valve 36
The diaphragm 40 is displaced by the negative pressure introduced into the diaphragm 40 and the pressing force of the pressing spring 48, and the correction valve body 50 is moved forward and backward by the displacement of the diaphragm 40 to open the correction valve hole provided in the upstream bypass air passage 18A. By opening and closing 52, the amount of bypass air in the bypass air passage 18 is corrected in proportion to the amount of intake air introduced by the intake passage 8, and therefore in accordance with the load of the internal combustion engine 4.

即ち、バイパス空気量補正弁36の補正用弁体50は、
吸入空気量が小で気化器14のベンチュリ部12の負圧
が弱いと、ダイヤフラム40の変位により押進動作され
、補正用弁孔52が閉鎖されることにより、バイパス空
気量を減少させるように補正する。これにより、バイパ
ス空気量補正弁36は、内燃機関4の低負荷側ではバイ
パス空気量を減少させるように補正する。
That is, the correction valve body 50 of the bypass air amount correction valve 36 is
When the amount of intake air is small and the negative pressure in the venturi section 12 of the carburetor 14 is weak, the displacement of the diaphragm 40 causes the diaphragm 40 to be pushed forward, and the correction valve hole 52 is closed, thereby reducing the amount of bypass air. to correct. Thereby, the bypass air amount correction valve 36 corrects the amount of bypass air to decrease on the low load side of the internal combustion engine 4.

一方、バイパス空気量補正弁36の補正用弁体50は、
吸入空気量が大で気化器14のベンチュリ部12の負圧
が強いと、ダイヤフラム40の変位により引退動作され
、補正用弁孔52が開放されることにより、バイパス空
気量を増加させるように補正する。これにより、バイパ
ス空気量補正弁36は、内燃機関4の高負荷側ではバイ
パス空気量を増加させるように補正する。
On the other hand, the correction valve body 50 of the bypass air amount correction valve 36 is
When the amount of intake air is large and the negative pressure in the venturi section 12 of the carburetor 14 is strong, the diaphragm 40 is displaced to perform a retiring operation, and the correction valve hole 52 is opened, thereby making corrections to increase the amount of bypass air. do. Thereby, the bypass air amount correction valve 36 corrects the bypass air amount to increase on the high load side of the internal combustion engine 4.

このように、内燃機関4の低負荷側では、バイパス空気
量補正弁36によりバイパス空気量を減少させるように
補正するするので、バイパス空気量調整弁20による空
燃比の制御幅が低負荷側で大きくなることがない。また
、内燃機関4の高負荷側では、バイパス空気量補正弁3
6によりバイパス空気量を増加させるように補正するす
るので、バイパス空気量調整弁20による空燃比の制御
幅が高負荷側で小さくなることがない。したがって、バ
イパス空気量調整弁20による空燃比の制御幅は、第2
図に示す如く、内燃機関4の負荷変動にかかわらず一定
に維持させることができる。
In this way, on the low load side of the internal combustion engine 4, the bypass air amount correction valve 36 corrects the bypass air amount to decrease, so that the control width of the air-fuel ratio by the bypass air amount adjustment valve 20 is reduced on the low load side. It never gets bigger. Also, on the high load side of the internal combustion engine 4, the bypass air amount correction valve 3
Since the bypass air amount is corrected by 6 to increase the bypass air amount, the control width of the air-fuel ratio by the bypass air amount adjustment valve 20 does not become small on the high load side. Therefore, the control width of the air-fuel ratio by the bypass air amount adjustment valve 20 is
As shown in the figure, the load can be maintained constant regardless of load fluctuations of the internal combustion engine 4.

このため、第3図に示す如く、バイパス空気量を負荷に
比例させることができ、つまり、吸気通路8により導入
される吸入空気量にバイパス空気通路18により導入さ
れるバイパス空気量を比例させることができるので、吸
入空気量の少ない低負荷側において吸入空気量に対しバ
イパス空気量が過大となることがない。この結果、ハン
チング現象を発生を防止し得て、運転性能や排気清浄化
性能を向上させることができる。
Therefore, as shown in FIG. 3, the amount of bypass air can be made proportional to the load, that is, the amount of bypass air introduced by the bypass air passage 18 can be made proportional to the amount of intake air introduced by the intake passage 8. Therefore, the amount of bypass air does not become excessive with respect to the amount of intake air on the low load side where the amount of intake air is small. As a result, the hunting phenomenon can be prevented from occurring, and the driving performance and exhaust purification performance can be improved.

なお、この実施例においては、固定式のベンチュリ部1
2を備えた気化器14の前記ベンチュリ部12の負圧に
よりバイパス空気量補正弁36を動作させたが、これに
限定されるものではない。
In addition, in this embodiment, the fixed venturi part 1
Although the bypass air amount correction valve 36 was operated by the negative pressure of the venturi section 12 of the carburetor 14 equipped with the carburetor 14, the present invention is not limited to this.

例えば、第4図は、この発明の別の実施例を示すもので
ある0図において、54は可変式のベンチュリ部、56
は気化器である。可変式のベンチュリ部54を備えた気
化器56は、吸気管負圧と押進ばね58の押進力とによ
り可変式のベンチュリ部54のピストン60を吸気通路
8内に出没させることにより、可変式としたものである
For example, FIG. 4 shows another embodiment of the present invention. In FIG. 0, 54 is a variable venturi section;
is a vaporizer. The carburetor 56 equipped with the variable venturi section 54 is configured to move the piston 60 of the variable venturi section 54 into and out of the intake passage 8 using the intake pipe negative pressure and the pushing force of the pushing spring 58. It is a formula.

このような可変式のベンチュリ部54を備えた気化器5
6にあって、前記ピストン60の吸気通路8内への出没
動作を利用して動作されバイパス空気量を補正するバイ
パス空気量補正手段たるバイパス空気量補正弁62を設
けている。
A carburetor 5 equipped with such a variable venturi section 54
6, a bypass air amount correction valve 62 is provided as a bypass air amount correction means that is operated by utilizing the movement of the piston 60 into and out of the intake passage 8 and corrects the amount of bypass air.

即ち、バイパス空気量補正弁62は、バイパス空気量調
整弁20よりも上流側の上流側バイパス空気通路18A
の途中に設けられている。このバイパス空気量補正弁6
2は、前記気化器56の器体64に本体66を固設し、
この本体66内に上流側バイパス空気通路18Aの貫流
する弁室68を設けている。また、気化器56のベンチ
ュリ部54を構成するピストン60の吸気通路8と反対
側の基端部70には、ロフト72の一端側を固設してい
る。このロッド72は、ピストン60の出没動作方向に
延設され、他端側を前記弁室68内に位置させて設けて
いる。ロッド72の弁室68内の他端側先端には、円錐
体形状に形成された補正用弁体74が固設されている。
That is, the bypass air amount correction valve 62 is connected to the upstream side bypass air passage 18A on the upstream side of the bypass air amount adjustment valve 20.
It is located in the middle of the. This bypass air amount correction valve 6
2, the main body 66 is fixed to the container body 64 of the vaporizer 56;
A valve chamber 68 through which the upstream bypass air passage 18A flows is provided within the main body 66. Further, one end side of a loft 72 is fixed to a base end portion 70 of the piston 60 that constitutes the venturi portion 54 of the carburetor 56 on the side opposite to the intake passage 8. The rod 72 extends in the direction in which the piston 60 moves in and out, and has its other end located within the valve chamber 68 . A correction valve body 74 formed in a conical shape is fixed to the other end of the rod 72 inside the valve chamber 68 .

補正用弁体74は、尖端側を前記ロフト72の他端側先
端に固設されている。この補正用弁体74は、前記ピス
トン60の出没動作方向に底部側を指向させるとともに
、前記上流側バイパス空気通路18Aの貫流する弁室6
8内に設けられた補正用弁孔76内に挿通して設けてい
る。
The correction valve body 74 has its pointed end fixed to the tip of the other end of the loft 72 . This correction valve body 74 has its bottom side oriented in the direction of protrusion and retraction movement of the piston 60, and the valve chamber 6 through which the upstream bypass air passage 18A flows.
It is inserted into a correction valve hole 76 provided in 8.

この別の実施例によれば、バイパス空気量補正弁62は
、吸気管負圧と押進ばね58の押進力とにより可変式の
ベンチュリ部54のピストン60が吸気通路8内に出没
され、このピストン60の出没動作により補正用弁体7
4が進退動作されて補正用弁孔76を開閉することによ
り、吸気通路8により導入される吸入空気量に比例して
、したがって、内燃機関4の負荷に応じてバイパス空気
通路18のバイパス空気量を補正することになる。
According to this other embodiment, the bypass air amount correction valve 62 has the piston 60 of the variable venturi portion 54 moved in and out of the intake passage 8 by the intake pipe negative pressure and the pushing force of the pushing spring 58. Due to this movement of the piston 60, the correction valve body 7
4 is moved forward and backward to open and close the correction valve hole 76, the amount of bypass air in the bypass air passage 18 is adjusted in proportion to the amount of intake air introduced by the intake passage 8, and therefore in accordance with the load of the internal combustion engine 4. will be corrected.

即ち、バイパス空気量補正弁62の補正用弁体74は、
吸入空気量が小で気化器56のベンチュリ部54の負圧
が弱いと、ピストン60の突出動作により引退動作され
、補正用弁孔76が閉鎖されることにより、バイパス空
気量を減少させるように補正する。これにより、バイパ
ス空気量補正弁62は、内燃機関4の低負荷側ではバイ
パス空気量を減少させるように補正する。
That is, the correction valve body 74 of the bypass air amount correction valve 62 is
When the amount of intake air is small and the negative pressure of the venturi portion 54 of the carburetor 56 is weak, the piston 60 is retracted by the protruding operation and the correction valve hole 76 is closed, thereby reducing the amount of bypass air. to correct. As a result, the bypass air amount correction valve 62 corrects the amount of bypass air to decrease on the low load side of the internal combustion engine 4.

一方、バイパス空気量補正弁62の補正用弁体74は、
吸入空気量が大で気化器14のベンチュリ部12の負圧
が強いと、ピストン60の没入動作により押進動作され
、補正用弁孔76が開放されることにより、バイパス空
気量を増加させるように補正する。これにより、バイパ
ス空気量補正弁62は、内燃機関4の高負荷側ではバイ
パス空気量を増加させるように補正する。
On the other hand, the correction valve body 74 of the bypass air amount correction valve 62 is
When the amount of intake air is large and the negative pressure in the venturi section 12 of the carburetor 14 is strong, the piston 60 is pushed forward by the retracting operation, and the correction valve hole 76 is opened, thereby increasing the amount of bypass air. Correct to. Thereby, the bypass air amount correction valve 62 corrects the bypass air amount to increase on the high load side of the internal combustion engine 4.

このように、内燃機関4の低負荷側では、バイパス空気
量補正弁62によりバイパス空気量を減少させるように
補正するするので、バイパス空気量調整弁20による空
燃比の制御幅が低負荷側で大きくなることがない。また
、内燃機関4の高負荷側では、バイパス空気量補正弁6
2によりバイパス空気量を増加させるように補正するす
るので、バイパス空気量調整弁20による空燃比の制御
幅が高負荷側で小さくなることがない。したがって、バ
イパス空気量調整弁20による空燃比の制御幅は、第2
図に示す如く、内燃機関4の負荷変動にかかわらず一定
に維持させることができる。
In this way, on the low load side of the internal combustion engine 4, the bypass air amount correction valve 62 corrects the bypass air amount to decrease, so that the air-fuel ratio control range by the bypass air amount adjustment valve 20 is adjusted to the low load side. It never gets bigger. Also, on the high load side of the internal combustion engine 4, the bypass air amount correction valve 6
2, the bypass air amount is corrected to increase, so the control width of the air-fuel ratio by the bypass air amount adjusting valve 20 does not become small on the high load side. Therefore, the control width of the air-fuel ratio by the bypass air amount adjustment valve 20 is
As shown in the figure, the load can be maintained constant regardless of load fluctuations of the internal combustion engine 4.

このため、第3図に示す如く、バイパス空気量を負荷に
比例させることができ、つまり、吸気通路8により導入
される吸入空気量にバイパス空気通路18により導入さ
れるバイパス空気量を比例させることができるので、吸
入空気量の少ない低負荷側において吸入空気量に対しバ
イパス空気量が過大となることがない。この結・果、ハ
ンチング現象を発生を防止し得て、運転性能や排気清浄
化性能を向上させることができる。
Therefore, as shown in FIG. 3, the amount of bypass air can be made proportional to the load, that is, the amount of bypass air introduced by the bypass air passage 18 can be made proportional to the amount of intake air introduced by the intake passage 8. Therefore, the amount of bypass air does not become excessive with respect to the amount of intake air on the low load side where the amount of intake air is small. As a result, the hunting phenomenon can be prevented from occurring, and the driving performance and exhaust purification performance can be improved.

なお、この別の実施例においては、可変式のベンチュリ
部54を備えた気化器56にあって、ピストン60の吸
気通路8内への出没動作を利用して動作されバイパス空
気量を補正するバイパス空気量補正手段たるバイパス空
気量補正弁62を設けたが、可変式のベンチュリ部54
を備えた気化器56の前記可変式のベンチュリ部54の
負圧を直接的に導入してバイパス空気量を補正するバイ
パス空気量補正手段たるバイパス空気量補正弁を設ける
こともできる。
In addition, in this other embodiment, in the carburetor 56 equipped with the variable venturi portion 54, a bypass is operated using the movement of the piston 60 into and out of the intake passage 8 to correct the amount of bypass air. Although a bypass air amount correction valve 62 as an air amount correction means is provided, a variable venturi portion 54 is provided.
A bypass air amount correction valve may be provided as a bypass air amount correction means that directly introduces the negative pressure of the variable venturi portion 54 of the carburetor 56 to correct the bypass air amount.

〔発明の効果〕〔Effect of the invention〕

このように、この発明によれば、バイパス空気量調整手
段の動作により制御される空燃比の制御幅を内燃機関の
負荷変動にかかわらず一定に維持させるべく内燃機関の
負荷に応じて動作されバイパス空気通路のバイパス空気
量を補正するバイパス空気量補正手段を設けたことによ
って、空燃比の制御幅が内燃機関の低負荷側で大きくな
ることがなく、また、高負荷側で小さくなることがなく
、空燃比の制御幅を内燃機関の負荷変動にかかわらず一
定に維持させることができる。
As described above, according to the present invention, the bypass is operated according to the load of the internal combustion engine in order to maintain the control width of the air-fuel ratio controlled by the operation of the bypass air amount adjusting means constant regardless of the load fluctuation of the internal combustion engine. By providing the bypass air amount correction means for correcting the amount of bypass air in the air passage, the control width of the air-fuel ratio does not become large on the low load side of the internal combustion engine, and does not become small on the high load side of the internal combustion engine. , the control width of the air-fuel ratio can be maintained constant regardless of load fluctuations of the internal combustion engine.

このため、バイパス空気量を負荷に比例させることがで
き、つまり、吸気通路により導入される吸入空気量にバ
イパス空気通路により導入されるバイパス空気量を比例
させることができるので、吸入空気量の少ない低負荷側
において吸入空気量に対しバイパス空気量が過大となる
こともなく、ハンチング現象を発生を防止し得て、運転
性能や排気清浄化性能を向上させることができる。
Therefore, the amount of bypass air can be made proportional to the load, that is, the amount of intake air introduced by the intake passage can be made proportional to the amount of bypass air introduced by the bypass air passage, so the amount of intake air can be reduced. On the low load side, the amount of bypass air does not become excessive with respect to the amount of intake air, and the hunting phenomenon can be prevented from occurring, and the driving performance and exhaust gas purification performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はこの発明の実施例を示し、第5図は負荷と
制御幅との関係を示す図、第6図は負荷とバイパス空気
量との関係を示す図、第7図は空燃比制御装置の概略説
明図である。 第4図は、この発明の別の実施例を示す空燃比制御装置
の概略説明図である。 第5〜7図は従来例を示し、第5図は負荷と制御幅との
関係を示す図、第6図は負荷とバイパス空気量との関係
を示す図、第7図は空燃比制?Ill装置の概略説明図
である。 図において、2は空燃比制御装置、4は内燃機関、8は
吸気通路、10は固定式のベンチュリ部、14は気化器
、18はバイパス空気通路、20はバイパス空気量調整
弁、22は制御部、32は排気通路、34は0□センサ
、36・62はバイパス空気量補正弁である。
Figures 1 to 3 show examples of the present invention, Figure 5 is a diagram showing the relationship between load and control width, Figure 6 is a diagram showing the relationship between load and bypass air amount, and Figure 7 is a diagram showing the relationship between load and control width. FIG. 2 is a schematic explanatory diagram of a fuel ratio control device. FIG. 4 is a schematic explanatory diagram of an air-fuel ratio control device showing another embodiment of the present invention. 5 to 7 show conventional examples, FIG. 5 is a diagram showing the relationship between load and control width, FIG. 6 is a diagram showing the relationship between load and bypass air amount, and FIG. 7 is air-fuel ratio control? FIG. 1 is a schematic explanatory diagram of an Ill device. In the figure, 2 is an air-fuel ratio control device, 4 is an internal combustion engine, 8 is an intake passage, 10 is a fixed venturi part, 14 is a carburetor, 18 is a bypass air passage, 20 is a bypass air amount adjustment valve, and 22 is a control 32 is an exhaust passage, 34 is a 0□ sensor, and 36 and 62 are bypass air amount correction valves.

Claims (1)

【特許請求の範囲】[Claims] 1、内燃機関の排気通路に設けた排気センサの検出信号
を入力する制御手段により前記内燃機関の気化器下流側
の吸気通路にバイパス空気を導入するバイパス空気通路
に設けたバイパス空気量調整手段を動作させ空燃比を目
標値に収束させるべく制御する空燃比制御装置において
、前記バイパス空気量調整手段の動作により制御される
空燃比の制御幅を前記内燃機関の負荷変動にかかわらず
一定に維持させるべく前記内燃機関の負荷に応じて動作
され前記バイパス空気通路のバイパス空気量を補正する
バイパス空気量補正手段を設けたことを特徴とする空燃
比制御装置。
1. Bypass air amount adjusting means provided in the bypass air passage for introducing bypass air into the intake passage downstream of the carburetor of the internal combustion engine by means of a control means inputting a detection signal of an exhaust sensor provided in the exhaust passage of the internal combustion engine. In the air-fuel ratio control device that operates to control the air-fuel ratio to converge to a target value, the control width of the air-fuel ratio controlled by the operation of the bypass air amount adjusting means is maintained constant regardless of load fluctuations of the internal combustion engine. An air-fuel ratio control device comprising a bypass air amount correction means that is operated according to the load of the internal combustion engine and corrects the amount of bypass air in the bypass air passage.
JP13843289A 1989-05-31 1989-05-31 Air-fuel ratio control device Pending JPH033956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13843289A JPH033956A (en) 1989-05-31 1989-05-31 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13843289A JPH033956A (en) 1989-05-31 1989-05-31 Air-fuel ratio control device

Publications (1)

Publication Number Publication Date
JPH033956A true JPH033956A (en) 1991-01-10

Family

ID=15221838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13843289A Pending JPH033956A (en) 1989-05-31 1989-05-31 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JPH033956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11723498B2 (en) 2018-07-02 2023-08-15 Sharkninja Operating Llc Vacuum pod configured to couple to one or more accessories
US11864719B2 (en) 2018-09-07 2024-01-09 Sharkninja Operating Llc Battery and suction motor assembly for a surface treatment apparatus and a surface treatment apparatus having the same
US12053140B2 (en) 2018-09-19 2024-08-06 Sharkninja Operating Llc Cleaning head for a surface treatment apparatus having one or more stabilizers and surface treatment apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11723498B2 (en) 2018-07-02 2023-08-15 Sharkninja Operating Llc Vacuum pod configured to couple to one or more accessories
US11864719B2 (en) 2018-09-07 2024-01-09 Sharkninja Operating Llc Battery and suction motor assembly for a surface treatment apparatus and a surface treatment apparatus having the same
US12053140B2 (en) 2018-09-19 2024-08-06 Sharkninja Operating Llc Cleaning head for a surface treatment apparatus having one or more stabilizers and surface treatment apparatus having the same

Similar Documents

Publication Publication Date Title
US4416239A (en) Electronic control system for an internal combustion engine with correction means for correcting value determined by the control system with reference to atmospheric air pressure
JPH04318264A (en) Fuel control method in hydrogen engine
US4387694A (en) EGR Control system for diesel engine
KR20060061921A (en) Egr controll device of an internal-combustion engine
EP0640758A2 (en) Charge forming device
US4480606A (en) Intake system of an internal combustion engine
US4407248A (en) Electronically controlled carburetor
US4233946A (en) Exhaust gas recirculation system
JPS6124542B2 (en)
US8335629B2 (en) Method for controlling a fuel valve and/or an air valve for an internal combustion engine
US4483308A (en) Air intake side secondary air supply system for an internal combustion engine equipped with exhaust gas recirculation control system
JPH033956A (en) Air-fuel ratio control device
US4364357A (en) Air-fuel ratio control system
US4572134A (en) Double carburetor
US4462367A (en) Fuel controller for internal combustion engine
US4475518A (en) Fuel injection apparatus for internal combustion engines
JPS6224623B2 (en)
JPH0436036A (en) Air-fuel ratio controller of engine
JPH03100361A (en) Exhaust gas circular controller of diesel engine
JP2513588B2 (en) Fuel supply control device for internal combustion engine
WO1995027846A1 (en) Air-fuel ratio control method
US7040287B2 (en) Fuel dosage device
JPS5938416B2 (en) engine intake system
JPH0323734B2 (en)
JP2621033B2 (en) Idle speed control method for internal combustion engine