JPH0339307B2 - - Google Patents

Info

Publication number
JPH0339307B2
JPH0339307B2 JP57163604A JP16360482A JPH0339307B2 JP H0339307 B2 JPH0339307 B2 JP H0339307B2 JP 57163604 A JP57163604 A JP 57163604A JP 16360482 A JP16360482 A JP 16360482A JP H0339307 B2 JPH0339307 B2 JP H0339307B2
Authority
JP
Japan
Prior art keywords
toner
titanium oxide
fluidity
fine powder
hydrophobicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57163604A
Other languages
Japanese (ja)
Other versions
JPS5952255A (en
Inventor
Toshiki Minamitani
Toshasu Kawabata
Hachiro Tosaka
Hisao Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP57163604A priority Critical patent/JPS5952255A/en
Publication of JPS5952255A publication Critical patent/JPS5952255A/en
Publication of JPH0339307B2 publication Critical patent/JPH0339307B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09733Organic compounds
    • G03G9/09775Organic compounds containing atoms other than carbon, hydrogen or oxygen

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電子写真法において用いられる乾式
現像剤用トナーに関し、特には、該トナーの流動
性を改善することに関する。 乾式現像剤トナーにおいては、特に高温高湿下
での長時間使用並びに保存に際し時間とともに流
動性が低下して、トナーの凝集(ブロツキング)、
感光体またはスリーブ上のトナーフイルミングな
どを生じ現像剤特性を損ねるという問題があつ
た。このような問題を改良し、長期間に亘つて安
定した現像特性を得る為に従来よりカーボンブラ
ツク、酸化亜鉛、酸化チタン、酸化ケイ素、酸化
アルミニウム、酸化クロム、酸化鉄、ステアリン
酸亜鉛、ステアリン酸カルシウム、アスベスト、
カオリン、白土、塩基性炭酸マグネシウム、沈降
性炭酸カルシウム等の微粉末をトナー中に含有せ
しめているが、これら従来の微粉末のうち、酸化
チタン、シリカ、アルミナのみがその効果がある
程度は認められているが、これら以外の微粉末は
流動性向上の効果が殆んどないだけではなく、使
用法によつては流動性以外の諸特性に悪影響を及
ぼすという欠点を有し、実用性に乏しい。又、酸
化チタン、シリカ、アルミナについても従来の使
用法では、以下に定義する空隙率がせいぜい65%
が限界で十分な流動性が得られないだけではな
く、経時と共に前述のトナーブロツキング、トナ
ーフイルミングを起し、摩擦帯電性、補給性(搬
送性)、保存性などの特性を徐々に損ね使用寿命
が短い。このような経時的な劣化は、主に微粉末
表面の疎水性と関係するものである。即ち、トナ
ー中に前記微粉末を含有せしめるということは、 (1) トナー粒子同士の接触面積を小さくし、 (2) トナー粒子間距離を大きくすることであり、
これによつてトナー粒子間の静電力、フアンデ
ルワールス力を小さくしてトナー粒子間の付着
力を低下せしめ、流動性を向上しようとするも
のである。しかしながら、添加微粉末表面に吸
着されている水分が多いとその吸着水を原因と
した水素結合により微粉末間の付着力が増大
し、徐々に流動性が低下してくる。そこでこの
ような欠点を解決する目的で例えば特開昭52−
135739号公報に記載の如く微粉末表面をアミノ
シランで処理したり、または、特公昭54−
16219号公報に記載の如くシリカに疎水化処理
を施し経時による流動性低下を防止する方法が
提案されているが、いまだ満足する効果は得ら
れていない。 本発明の目的は前記従来の欠点に解決すること
にあり、詳細には、トナー中に添加される酸化チ
タンの疎水化処理を充分することによりトナーの
流動性を向上し、長期の使用または保存の際のト
ナーブロツキング、感光体表面並びにスリーブの
トナーフイルミングを防止し、現像性、保存性の
優れた使用寿命の長い乾式現像剤用トナーを提供
することにある。 即ち本発明は、着色剤及び定着成分を主成分と
してなるトナー母体粒子に、アルキル基の炭素数
6〜8のアルキルトリアルコキシシランで疎水化
処理の施された酸化チタン微粉末を混合もしくは
付着せしめて成ることを特徴とする乾式現像剤用
トナーを要旨とするものである。 以下本発明を詳細に説明すると、本発明の酸化
チタンは、その表面に存在する[≡Ti−OH]基
をアルキル基の炭素数6〜8のアルキルトリアル
コキシシランと反応させ、疎水化することにより
疎水化度が60%以上の従来に比較して一層疎水化
度の高い疎水性コロイド状酸化チタンとしたもの
である。具体的な酸化チタン微粉末の疎水化処理
方法としては、例えば高温加水分解法によつて生
成した酸化チタン微粉末と、アルキルトリアルコ
キシシランと、水蒸気とを約400℃に加熱された
流動層反応器中に不活性ガス、例えば窒素ガスに
よつて並流的に気送しアルキルトリアルコキシシ
ランで酸化チタン表面を疎水化処理する。 以上の様にして疎水化された酸化チタンを用い
ることによつて、例えば酸化チタンの添加量が該
成分を除くトナー母体に対して1重量部の時空隙
率が60%以下の本発明トナーを容易に得ることが
でき、流動性を大いに改善することができる。本
発明に言う空隙率とは、以下の式によつて示され
るものである。 空隙率(%)=(1−ρ/ρo)×100 (ρ:ゆるみ見掛け比重 ρo:真比重) 本発明に使用されるアルキル基の炭素数6〜8
のアルキルトリルアルコキシシランとしては、ヘ
キシルトリメトキシシラン、オクチルトリメトキ
シシラン等が例示され、このうちオクチルトリメ
トキシシランが最も好ましい。 又、本発明において、微粉末の疎水性測定方法
は例えば図の如き装置によつて行なわれた。該装
置を用いて具体的な測定法を説明すると、0.2g
の微粉末を50mlの水に加え、ビユレツト1からメ
タノールを少しずつ滴下して水面に浮いている微
粉末2が完全に濡れて水3の中に沈むまでメタノ
ールを滴下する。そしてこの時までに要したメタ
ノール滴下量が例えば36mlとすると疎水化度は、 36/50+36×100=42(%) で42%となる。この測定法で注意することは、微
粉末2がメタノールに直接触れると、直ぐに濡れ
て沈むので必ずビユレツト1の先端は、水3の中
に入れ、メタノールと微分末2が直接接触しない
ようにすると共にメタノール滴下中は、マグネツ
トスタラー5等でビーカー4中の水3を常時撹拌
しなければならない。図中6は撹拌子である。
尚、本発明の以下に述べる実施例並びに比較例の
疎水化度の測定は上述の方法によつて得られた値
である。 本発明の前記疎水化処理の施された酸化チタン
を混合もしくは付着するトナーとしては従来より
公知のもの何れも使用可能であり何れの場合も現
像剤の流動性を向上し、使用寿命、現像性、画像
品質等を優れたものとすることができる。酸化チ
タンの添加量としては、トナー母体に対して0.01
〜15重量%となるようにするのが好ましい。 以下本発明を実施例を挙げて説明する。 実施例 1 スチレン・アクリル酸ブチル共重合体88重量
部、カーボン10重量部、荷電制御剤2重量部から
なる混合物を溶融混練し、冷却後ジエツト粉砕
し、平均10μmの乾式トナーを得た。このトナー
に疎水化度60%になるようにオクチルトリメトキ
シシランで処理した疎水性コロイド状態化チタン
を1重量部加え、ヘンシエルミキサーにて混合
し、所定のトナー混合物を得た。 このトナー混合物の空隙率を測定したところ
59.5%と従来に比較して十分な流動性が得られ
た。また、この混合物10gと、キヤリアとして鉄
粉(日本鉄粉(株) 商品名「TEFV150−250」)190
gを混合して現像剤として、200c.c.のビーカーに
100c.c.の現像剤を入れ、温度60℃の恒温槽に12時
間放置後常温にてとり出した結果、ブロツキング
現像は認められず、良好な保存安定性を示した。
さらにこの現像剤を用い、2成分系複写機FT−
6600(リコー社製)にて10万枚コピーをとつたと
ころ、感光体等へのフイルミングが殆どみられ
ず、安定した忠実度の高い鮮明な画像が得られ
た。 又、30℃、85%RHの高温、高温時においても
疎水化処理の為、ブロツキングは生ぜず、カブリ
のない鮮明画像が得られた。 比較例 1 実施例1の疎水化度60%の疎水性コロイド状酸
化チタンの代りに疎水化処理されていないコロイ
ド状酸化チタン(P−25日本アエロジル社製)を
用いたところ、トナー混合物の空隙率は66.2%で
満足の行く流動性が得られなかつた。また、実施
例1と同様にして現像剤とし、60℃の恒温槽に放
置したところ8時間程度でブロツキング現象が生
じ、十分な保存安定性が得られなかつた。又、
FT−6600で10万枚コピーをとつたところ、感光
体等へのフイルミングがみられ、画像もカブリの
ある画質の劣つたものであつた。 実施例 2 スチレン−アクリル酸ブチル共重合体50重量
部、磁性体47.5重量部、荷電制御剤2.5重量部か
らなる混合物を溶融混練し、冷却後ジエツト粉砕
し、平均12μmの乾式磁性トナーを得た。該トナ
ーに実施例1で用いた疎水性コロイド状酸化チタ
ンを0.5重量部加え、ヘンシエルミキサーにて混
合し、所定のトナー混合物を得た。この空隙率を
測定したところ、57.5%と十分な流動性が得られ
た。まだ、このトナーの保存安定性を実施例1と
同様に評価したところ、ブロツキング現象は殆ど
認められず、良好であつた。さらに複写機FT−
4700(リコー社製)にて10万枚コピーをとつたと
ころ、感光体、スリーブ等へのフイルミングがみ
られず、安定した忠実度の高い鮮明な画像が得ら
れた。 比較例 2 実施例2の酸化チタンの代りに比較例1と同じ
酸化チタンを用いたところ、トナー混合物の空隙
率は65.3%で十分な流動性が得られず、保存安定
性も60℃の恒温槽において8時間程度でブロツキ
ング現象が認められ、十分でなかつた。さらに
FT−4700で10万枚コピーをとつたところ、感光
体、スリーブ等へのフイルミングがみられ、画像
もカブリの多い画質の劣るものであつた。 実施例 3〜5 実施例1の酸化チタンの代りに表−1に示した
疎水化度の酸化チタンを用いたところ、表のよう
にトナー流動性が大幅に向上し、トナーブロツキ
ング、感光体、スリーブ等へのトナーフイルミン
グも一切生じることなく、保存安定性、剤寿命と
もに優れた現像剤が得られた。また画像も安定し
た忠実度の高い鮮明画像が得られた。
The present invention relates to a dry developer toner used in electrophotography, and in particular to improving the fluidity of the toner. When dry developer toner is used and stored for long periods of time, especially under high temperature and high humidity conditions, its fluidity decreases over time, resulting in toner aggregation (blocking),
There has been a problem that toner filming occurs on the photoreceptor or sleeve, impairing developer properties. In order to improve these problems and obtain stable development characteristics over a long period of time, we have conventionally used carbon black, zinc oxide, titanium oxide, silicon oxide, aluminum oxide, chromium oxide, iron oxide, zinc stearate, and calcium stearate. ,asbestos,
Fine powders such as kaolin, clay, basic magnesium carbonate, and precipitated calcium carbonate are contained in toners, but among these conventional fine powders, only titanium oxide, silica, and alumina have been shown to have some degree of effectiveness. However, fine powders other than these not only have little effect on improving fluidity, but also have the disadvantage of having a negative impact on properties other than fluidity depending on how they are used, making them impractical. . Furthermore, with conventional usage methods for titanium oxide, silica, and alumina, the porosity defined below is at most 65%.
Not only is it impossible to obtain sufficient fluidity because of the limit, but over time, the above-mentioned toner blocking and toner filming occur, and properties such as triboelectric charging, replenishment (transportability), and storage stability gradually deteriorate. It is damaged and has a short service life. Such deterioration over time is mainly related to the hydrophobicity of the surface of the fine powder. That is, the inclusion of the fine powder in the toner means (1) reducing the contact area between toner particles, (2) increasing the distance between toner particles,
This is intended to reduce the electrostatic force and van der Waals force between toner particles, reduce the adhesion force between toner particles, and improve fluidity. However, if there is a large amount of water adsorbed on the surface of the added fine powder, the adhesion between the fine powders increases due to hydrogen bonds caused by the adsorbed water, and the fluidity gradually decreases. Therefore, for the purpose of solving such drawbacks, for example,
The surface of the fine powder is treated with aminosilane as described in Japanese Patent Publication No. 135739, or
As described in Japanese Patent No. 16219, a method has been proposed in which silica is subjected to a hydrophobic treatment to prevent a decrease in fluidity over time, but a satisfactory effect has not yet been obtained. The purpose of the present invention is to solve the above-mentioned conventional drawbacks, and specifically, to improve the fluidity of the toner by sufficiently hydrophobicizing the titanium oxide added to the toner, and to improve the fluidity of the toner for long-term use or storage. To provide a toner for a dry type developer which prevents toner blocking and toner filming on the surface of a photoreceptor and a sleeve during processing, has excellent developability and storage stability, and has a long service life. That is, in the present invention, fine titanium oxide powder that has been hydrophobized with an alkyltrialkoxysilane having an alkyl group of 6 to 8 carbon atoms is mixed or adhered to toner base particles containing a colorant and a fixing component as main components. The gist of the present invention is to provide a toner for a dry type developer, which is characterized by comprising: To explain the present invention in detail below, the titanium oxide of the present invention is made hydrophobic by reacting the [≡Ti-OH] group present on the surface with an alkyltrialkoxysilane having 6 to 8 carbon atoms in the alkyl group. This results in a hydrophobic colloidal titanium oxide with a higher degree of hydrophobicity than conventional products, which has a degree of hydrophobicity of 60% or more. A specific method for hydrophobizing titanium oxide fine powder is, for example, a fluidized bed reaction in which titanium oxide fine powder produced by high-temperature hydrolysis, alkyltrialkoxysilane, and steam are heated to about 400°C. The titanium oxide surface is hydrophobized with alkyltrialkoxysilane by cocurrently blowing an inert gas such as nitrogen gas into the vessel. By using the titanium oxide hydrophobized as described above, it is possible to produce the toner of the present invention, for example, in which the amount of titanium oxide added is 1 part by weight relative to the toner base excluding said components, and the porosity is 60% or less. It is easy to obtain and can greatly improve flowability. The porosity referred to in the present invention is expressed by the following formula. Porosity (%) = (1-ρ/ρo)×100 (ρ: loose apparent specific gravity ρo: true specific gravity) Carbon number of the alkyl group used in the present invention is 6 to 8
Examples of the alkyltolylalkoxysilane include hexyltrimethoxysilane, octyltrimethoxysilane, and the like, with octyltrimethoxysilane being the most preferred. Further, in the present invention, the method for measuring the hydrophobicity of fine powder was carried out using, for example, an apparatus as shown in the figure. To explain the specific measurement method using this device, 0.2g
Add fine powder to 50 ml of water, and drop methanol little by little from bottle 1 until fine powder 2 floating on the water surface is completely wet and sinks into water 3. If the amount of methanol dripped up to this point is, for example, 36 ml, the degree of hydrophobicity will be 42% (36/50 + 36 x 100 = 42 (%)). The thing to be careful about with this measurement method is that if the fine powder 2 comes into direct contact with methanol, it will immediately get wet and sink, so be sure to place the tip of the brewet 1 in water 3 to prevent direct contact between the methanol and the differential powder 2. At the same time, during methanol dropping, the water 3 in the beaker 4 must be constantly stirred using a magnetic stirrer 5 or the like. 6 in the figure is a stirring bar.
In addition, the measurement of the degree of hydrophobicity of the following examples and comparative examples of the present invention is the value obtained by the above-mentioned method. As the toner to which the hydrophobized titanium oxide of the present invention is mixed or adhered, any conventionally known toner can be used. , image quality, etc. can be made excellent. The amount of titanium oxide added is 0.01 to the toner base.
It is preferable to adjust the amount to 15% by weight. The present invention will be explained below with reference to Examples. Example 1 A mixture consisting of 88 parts by weight of styrene/butyl acrylate copolymer, 10 parts by weight of carbon, and 2 parts by weight of a charge control agent was melt-kneaded, cooled, and jet-pulverized to obtain a dry toner having an average particle size of 10 μm. To this toner was added 1 part by weight of hydrophobic colloidal titanium treated with octyltrimethoxysilane so that the degree of hydrophobicity was 60%, and mixed in a Henschel mixer to obtain a predetermined toner mixture. The porosity of this toner mixture was measured.
At 59.5%, sufficient liquidity was obtained compared to conventional methods. In addition, 10 g of this mixture and iron powder (Nippon Iron Powder Co., Ltd. product name "TEFV150-250") 190 as a carrier
Mix g and use it as a developer in a 200c.c. beaker.
When 100 c.c. of developer was added and left in a constant temperature bath at a temperature of 60° C. for 12 hours and then taken out at room temperature, no blocking development was observed, indicating good storage stability.
Furthermore, using this developer, two-component copying machine FT-
When 100,000 copies were made using 6600 (manufactured by Ricoh), there was almost no filming on the photoconductor, and clear images with stable high fidelity were obtained. In addition, even at high temperatures of 30°C and 85% RH, due to the hydrophobic treatment, no blocking occurred and clear images without fog were obtained. Comparative Example 1 When colloidal titanium oxide (P-25 manufactured by Nippon Aerosil Co., Ltd.) which had not been hydrophobically treated was used instead of the hydrophobic colloidal titanium oxide with a degree of hydrophobicity of 60% in Example 1, the voids in the toner mixture were The ratio was 66.2%, meaning that satisfactory liquidity could not be obtained. Further, when a developer was prepared in the same manner as in Example 1 and left in a constant temperature bath at 60°C, a blocking phenomenon occurred after about 8 hours, and sufficient storage stability was not obtained. or,
When 100,000 copies were made using the FT-6600, filming was observed on the photoconductor, etc., and the images were of poor quality with fog. Example 2 A mixture consisting of 50 parts by weight of styrene-butyl acrylate copolymer, 47.5 parts by weight of magnetic material, and 2.5 parts by weight of charge control agent was melt-kneaded, cooled, and then jet-pulverized to obtain a dry magnetic toner with an average diameter of 12 μm. . 0.5 parts by weight of the hydrophobic colloidal titanium oxide used in Example 1 was added to the toner and mixed in a Henschel mixer to obtain a predetermined toner mixture. When this porosity was measured, it was found to be 57.5%, indicating sufficient fluidity. However, when the storage stability of this toner was evaluated in the same manner as in Example 1, it was found to be good with almost no blocking phenomenon observed. Furthermore, the copier FT-
When 100,000 copies were made using the 4700 (manufactured by Ricoh), no filming was observed on the photoreceptor, sleeve, etc., and clear images with stable high fidelity were obtained. Comparative Example 2 When the same titanium oxide as in Comparative Example 1 was used instead of the titanium oxide in Example 2, the porosity of the toner mixture was 65.3%, and sufficient fluidity could not be obtained, and the storage stability was also limited to a constant temperature of 60°C. A blocking phenomenon was observed in the tank after about 8 hours, which was not sufficient. moreover
When 100,000 copies were made using the FT-4700, filming was observed on the photoreceptor, sleeve, etc., and the images were of poor quality with a lot of fog. Examples 3 to 5 When titanium oxide having the degree of hydrophobicity shown in Table 1 was used in place of the titanium oxide in Example 1, toner fluidity was greatly improved as shown in the table, and toner blocking and photosensitivity were significantly improved. A developer with excellent storage stability and long life was obtained without any toner filming on the body, sleeve, etc. In addition, stable and clear images with high fidelity were obtained.

【表】 品質
又、実施例1の如く、30℃、85%RHの高温、
高湿下においてもブロツキングは生ぜず、カブリ
のない良質の画像が得られた。 比較例 3、4 疎水化剤としてジメチルジクロロシランおよび
ジメチルジメトキシシランを各々用い酸化チタン
を種々の条件で処理したところ、疎水化度は各々
せいぜい30%および55.1%と低いものしか得られ
なかつた。 次に、実施例1において用いた疎水性コロイド
状酸化チタンの代わりに、上で得られた疎水化チ
タンを用いる他は同様にして比較例3および4の
トナー、並びに現像剤を得、試験したところ表−
2の如き結果が得られた。表−2の結果から判る
ようにトナーの流動性、恒温槽での保存性、画質
ともに本発明品に比べ劣るものであり、又、高温
高湿(30℃、85RH%)においても短時間でブロ
ツキングが生じ使用寿命の短いものであつた。
[Table] Quality Also, as in Example 1, high temperature of 30℃, 85%RH,
No blocking occurred even under high humidity, and high-quality images without fog were obtained. Comparative Examples 3 and 4 When titanium oxide was treated under various conditions using dimethyldichlorosilane and dimethyldimethoxysilane as hydrophobizing agents, the degrees of hydrophobization were as low as 30% and 55.1%, respectively. Next, toners and developers of Comparative Examples 3 and 4 were obtained and tested in the same manner except that the hydrophobic titanium obtained above was used instead of the hydrophobic colloidal titanium oxide used in Example 1. Tokoro table-
Results like 2 were obtained. As can be seen from the results in Table 2, the fluidity of the toner, the storage stability in a constant temperature bath, and the image quality are all inferior to the products of the present invention, and even in high temperature and high humidity (30°C, 85RH%), it can be used in a short period of time. Blocking occurred and the service life was short.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

図は微粉末の疎水性を測定するに用いた測定装
置の具体例である。 1……ビユレツト、2……微粉末、3……水、
4……ビーカー、5……マグネツトスタラー、6
……撹拌子。
The figure shows a specific example of a measuring device used to measure the hydrophobicity of fine powder. 1...Biuretsu, 2...Fine powder, 3...Water,
4... Beaker, 5... Magnetic stirrer, 6
... Stirrer.

Claims (1)

【特許請求の範囲】[Claims] 1 着色剤及び定着成分を主成分としてなるトナ
ー母体粒子に、アルキル基の炭素数6〜8のアル
キルトリアルコキシシランで疎水化処理の施され
た酸化チタン微粉末を混合もしくは付着せしめて
成ることを特徴とする乾式現像剤用トナー。
1. Titanium oxide fine powder that has been hydrophobized with an alkyltrialkoxysilane having an alkyl group of 6 to 8 carbon atoms is mixed or adhered to toner base particles whose main components are a colorant and a fixing component. Toner for dry type developer with special features.
JP57163604A 1982-09-20 1982-09-20 Dry tyre developing toner Granted JPS5952255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57163604A JPS5952255A (en) 1982-09-20 1982-09-20 Dry tyre developing toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57163604A JPS5952255A (en) 1982-09-20 1982-09-20 Dry tyre developing toner

Publications (2)

Publication Number Publication Date
JPS5952255A JPS5952255A (en) 1984-03-26
JPH0339307B2 true JPH0339307B2 (en) 1991-06-13

Family

ID=15777079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57163604A Granted JPS5952255A (en) 1982-09-20 1982-09-20 Dry tyre developing toner

Country Status (1)

Country Link
JP (1) JPS5952255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713153A2 (en) 1994-11-08 1996-05-22 Canon Kabushiki Kaisha Toner for developing electrostatic images, two component type developer, developing method, image forming method, heat fixing method, and process for producing toner

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237465A (en) * 1986-04-08 1987-10-17 Fuji Photo Film Co Ltd Developing toner
JPS62148728A (en) * 1986-11-27 1987-07-02 Komatsu Ltd Automatic controller for power shovel
JP2596563B2 (en) * 1987-09-29 1997-04-02 三田工業株式会社 Toner composition
DE69217755T2 (en) * 1991-07-16 1997-09-04 Canon Kk Toner for developing electrostatic images
DE4202694C1 (en) * 1992-01-31 1993-07-01 Degussa Ag, 6000 Frankfurt, De Silane surface-modified pyrogenic alumina, for use in toner - to increase charge stability, produced by spraying with silane mixt. free from solvent
US5637432A (en) * 1992-06-01 1997-06-10 Canon Kabushiki Kaisha Toner for developing electrostatic image comprising titanium oxide particles
JP3018858B2 (en) * 1992-11-20 2000-03-13 富士ゼロックス株式会社 Electrophotographic toner composition and image forming method
US5512402A (en) * 1993-05-20 1996-04-30 Canon Kabushiki Kaisha Carrier for electrophotography, two-component type developer, and image forming method
EP0650099B1 (en) * 1993-10-15 2000-08-23 Canon Kabushiki Kaisha Carrier for electrophotography, two-component type developer, and image forming method
EP0674237B1 (en) * 1994-02-10 2000-05-31 Canon Kabushiki Kaisha Toner for developing an electrostatic image
JPH07230179A (en) * 1994-02-17 1995-08-29 Fuji Xerox Co Ltd Electrophotographic toner composition
US5607994A (en) * 1994-02-28 1997-03-04 E. I. Du Pont De Nemours And Company Processibility and lacing resistance when silanized pigments are incorporated in polymers
US5752151A (en) * 1994-12-27 1998-05-12 Canon Kabushiki Kaisha Image forming apparatus having a cleaning blade with a tensile strength from 80 to 120 kg/cm2
US5821023A (en) * 1996-05-27 1998-10-13 Fuji Xerox Co., Ltd. Developer of electrostatic latent image, carrier therefor, method for forming image and image forming apparatus thereby
CN1089033C (en) * 1998-05-22 2002-08-14 中国科学院山西煤炭化学研究所 Non-crystal Cu/SiO2 catalyst and its preparing process and usage
DE60120556T2 (en) 2000-05-23 2007-06-06 Ricoh Co., Ltd. Two-component developer, a container filled with this developer, and image forming apparatus
JP3590759B2 (en) 2000-07-03 2004-11-17 株式会社巴川製紙所 Toner for electrostatic image development and two-component developer
JP2003345058A (en) 2002-05-28 2003-12-03 Fuji Xerox Co Ltd Electrophotographic color toner, electrophotographic color developer, toner cartridge and apparatus and method for image forming using it
JP2004347654A (en) 2003-05-20 2004-12-09 Fuji Xerox Co Ltd Electrostatic latent image developer and image forming method
JP4047768B2 (en) 2003-05-27 2008-02-13 株式会社リコー Dry electrostatic image developing toner, developer using the toner, image forming method using the developer, image forming apparatus and process cartridge
JP5392460B2 (en) 2007-09-12 2014-01-22 株式会社リコー Manufacturing method of external additives

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0713153A2 (en) 1994-11-08 1996-05-22 Canon Kabushiki Kaisha Toner for developing electrostatic images, two component type developer, developing method, image forming method, heat fixing method, and process for producing toner

Also Published As

Publication number Publication date
JPS5952255A (en) 1984-03-26

Similar Documents

Publication Publication Date Title
JPH0339307B2 (en)
US4845004A (en) Fluidity improver for positively-charging resin powder
JPS62279352A (en) Magnetic toner
JP4343378B2 (en) Toner manufacturing method and image forming method
JPH04337739A (en) Electrophotographic toner composition
JPH049860A (en) Nonmagnetic toner
JPH02135368A (en) Positively chargeable magnetic toner
JP2001194819A (en) Toner external addition agent for electrostatic charge image developing
JPS5981650A (en) Developer of electrostatic image
JP3869954B2 (en) Magnetic toner, image forming method, and process cartridge
JP2866257B2 (en) Magnetic developer
JPH0352857B2 (en)
JPH09319135A (en) Toner composition for developing electrostatic charge image, electrostatic charge developer and image forming method
JPH02308174A (en) Positively chargeable magnetic developer
JP3049278B2 (en) Magnetic developer for electrostatic latent image development
JPH0484140A (en) Positively charged magnetic toner
JP3962479B2 (en) Toner for electrostatic image development
JPH049861A (en) Nonmagnetic toner
JPH05100471A (en) Toner for electrophotography
JP2726740B2 (en) Toner for developing electrostatic images
JPH02308173A (en) Positively chargeable magnetic developer
JPH08184985A (en) Positive charge type toner
JPH08305072A (en) Positive charge type toner
JPH07325427A (en) Dry toner for developing electrostatic charge image
JPH04199060A (en) Toner for development of electrostatic image