JPH0339287B2 - - Google Patents

Info

Publication number
JPH0339287B2
JPH0339287B2 JP10781182A JP10781182A JPH0339287B2 JP H0339287 B2 JPH0339287 B2 JP H0339287B2 JP 10781182 A JP10781182 A JP 10781182A JP 10781182 A JP10781182 A JP 10781182A JP H0339287 B2 JPH0339287 B2 JP H0339287B2
Authority
JP
Japan
Prior art keywords
light beam
axis
lens
light
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10781182A
Other languages
Japanese (ja)
Other versions
JPS58224316A (en
Inventor
Hideo Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10781182A priority Critical patent/JPS58224316A/en
Publication of JPS58224316A publication Critical patent/JPS58224316A/en
Publication of JPH0339287B2 publication Critical patent/JPH0339287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 本発明は光束の焦点調整装置に関し、特にレー
ザ光等の光束の焦点位置を自動的に調整する光束
の焦点調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus adjustment device for a light beam, and more particularly to a focus adjustment device for a light beam that automatically adjusts the focal position of a light beam such as a laser beam.

従来、レーザ光による作画装置などの分野にお
いて、光束の焦点位置を自動的に調整する装置と
しては、レンズを光軸に平行に移動する機構を有
する装置が知られていた。しかし、これらの従来
装置ではレンズを移動する機械的動作を必要とす
るので、レンズの質量の慣性のため、高速動作が
困難である欠点があつた。
Conventionally, in the field of drawing devices using laser light, devices having a mechanism for moving a lens parallel to an optical axis have been known as devices for automatically adjusting the focal position of a light beam. However, since these conventional devices require mechanical operation to move the lens, they have the disadvantage that high-speed operation is difficult due to the inertia of the mass of the lens.

たとえば、レーザ光源からのレーザ光をレンズ
を介して回転多面鏡に反射させることによつて平
面上の一端から他端へレーザ光を走査させる場
合、回転多面鏡で反射されたレーザ光が走査平面
の一端から他端へ直線移動するにつれてレンズと
走査点との間の光路長が長くなるような一般的構
成においては上記光路長が長くなるにつれてレン
ズを回転多面鏡へ近づけることによつてレーザ光
の焦点位置を調整できるが、回転多面鏡の回転に
同期させて高速にレンズ位置を変えるのは実用的
とは言えない。
For example, when scanning a plane from one end of a plane to the other by reflecting a laser beam from a laser light source onto a rotating polygon mirror through a lens, the laser beam reflected by the rotating polygon mirror is reflected onto the scanning plane. In a general configuration in which the optical path length between the lens and the scanning point increases as it moves in a straight line from one end to the other, the laser beam is moved closer to the rotating polygon mirror as the optical path length increases. However, it is not practical to change the lens position rapidly in synchronization with the rotation of the rotating polygon mirror.

本発明の目的は、かかる従来欠点を除去した光
束の焦点調整装置を提供することにある。上記の
例でいえば、レンズの位置を移動させる代りにレ
ンズへ入射する光の拡がり角度を変えることので
きる光束の焦点調整装置を提供することにある。
上記例の場合のように回転多面鏡を用いて光走査
する場合には、レンズの位置は固定しておき、回
転多面鏡で反射された光が走査面上の一端から他
端へ移動するにつれてレンズへの入射光のレンズ
上の拡がり角を広げてやれば、レンズ自体を回転
多面鏡に近づけるのと等価な作用効果を有する。
すなわち、本発明の光束の焦点調整装置は平行光
束を音響光学偏向器で偏向させて、光束の入射位
置に応じて光束の焦点位置の補正量が異なる光補
正板に上記偏向器で偏向された光束が入射する位
置を決め、上記光補正板を透過した光束を光補正
板の後に近接させて配置した平面鏡で反射させて
入射光路を逆行させて偏向器から逆に出射させる
ことにより偏向角度に応じた拡がり角の出射光を
生ずることを特徴とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a focusing device for a light beam that eliminates such conventional drawbacks. In the above example, the object is to provide a focusing device for a light beam that can change the spread angle of light incident on a lens instead of moving the position of the lens.
When scanning light using a rotating polygon mirror as in the above example, the position of the lens is fixed, and as the light reflected by the rotating polygon mirror moves from one end of the scanning surface to the other, By widening the divergence angle of the incident light on the lens, the effect is equivalent to bringing the lens itself closer to a rotating polygon mirror.
That is, the light beam focus adjustment device of the present invention deflects a parallel light beam using an acousto-optic deflector, and deflects the parallel light beam using the deflector to a light correction plate that corrects the focal position of the light beam by a different amount depending on the incident position of the light beam. The incident position of the light beam is determined, and the light beam that has passed through the light correction plate is reflected by a plane mirror placed close to the back of the light correction plate, the incident optical path is reversed, and the light beam is output from the deflector in the opposite direction, thereby adjusting the deflection angle. It is characterized by producing emitted light with a corresponding spread angle.

以下、本発明を実施例の図面を参照して説明す
る。第1図は本発明の実施例の斜視図であり、第
2図a,bは本発明の実施例の平面図および側面
図である。
Hereinafter, the present invention will be explained with reference to drawings of embodiments. FIG. 1 is a perspective view of an embodiment of the invention, and FIGS. 2a and 2b are a plan view and a side view of the embodiment of the invention.

本発明の光束の焦点調整装置の光束の入口の光
軸1に偏光プリズムフイルター2と、光束を偏向
させる音響光学偏向器3(以下、偏向器3と呼称
する)とを配設する。
A polarizing prism filter 2 and an acousto-optic deflector 3 (hereinafter referred to as deflector 3) for deflecting the light beam are disposed on the optical axis 1 at the entrance of the light beam of the light beam focusing device of the present invention.

(偏向器3が光軸1を走行する光束4を偏向す
る点を傾向点5と呼称し、偏向点5を始点とし
て、偏向器3が光束を偏向する角度範囲の中心角
の方向の中心線を中心軸6と呼称し、光軸1と中
心軸6とを含む面を偏向面と呼称する。) 中心軸6に、λ/4波長補正板7と、レンズ
8、円筒レンズ9,10、レンズ11と、それに
近接した光補正板12及び平面鏡13とをこの順
に配設する。偏向点5とレンズ8との間を間隔u
で離す。
(The point at which the deflector 3 deflects the light beam 4 traveling along the optical axis 1 is called a tendency point 5. Starting from the deflection point 5, the center line in the direction of the central angle of the angle range at which the deflector 3 deflects the light beam is referred to as the central axis 6, and the surface including the optical axis 1 and the central axis 6 is referred to as the deflection surface.) On the central axis 6, a λ/4 wavelength correction plate 7, a lens 8, cylindrical lenses 9, 10, A lens 11, a light correction plate 12 and a plane mirror 13 close to the lens 11 are arranged in this order. The distance u between the deflection point 5 and the lens 8 is
Release it.

レンズ8とレンズ11との間を両者の焦点距離
(f1、f2とする)の和の間隔で離す。円筒レンズ
9と10との間を間隔Sで離す。円筒レンズ9,
10は偏向面に垂直な方向(以下、Y方向と呼称
する)に円筒の軸を配向する。
The distance between lens 8 and lens 11 is equal to the sum of their focal lengths (referred to as f 1 and f 2 ). Cylindrical lenses 9 and 10 are separated by a distance S. cylindrical lens 9,
10 orients the axis of the cylinder in a direction perpendicular to the deflection plane (hereinafter referred to as the Y direction).

(中心軸6の方向をZ軸と呼称し、それに垂直
かつY方向に垂直な方向をX方向と呼称する。) レンズ8からその焦点距離f1後方の位置(以後
焦点位置と称す)14から円筒レンズ10までの
間隔をaとする。
(The direction of the central axis 6 is called the Z-axis, and the direction perpendicular to it and perpendicular to the Y direction is called the Let the distance to the cylindrical lens 10 be a.

各間隔u、S及びaは、以下の条件を満足する
ように設定する。
Each interval u, S, and a is set so as to satisfy the following conditions.

(イ) 光束4のX方向成分に円筒レンズ9,10が
作用するが、この円筒レンズ9,10の焦点距
離をf3とすると、その間の距離Sは、 S=√2・f3 ……(1) とする。
(b) The cylindrical lenses 9 and 10 act on the X-direction component of the light beam 4. If the focal length of the cylindrical lenses 9 and 10 is f 3 , then the distance S between them is S=√2・f 3 ... (1).

こうすることにより、円筒レンズ9,10の
組合せは、焦点距離Fが次式で与えられる光学
系になる。
By doing so, the combination of the cylindrical lenses 9 and 10 becomes an optical system whose focal length F is given by the following equation.

F=(2+√2)/2・f3 ……(1‐1) また、この光学系の前焦点及び後焦点は、と
もに2枚のレンズの間の中点になる。
F=(2+√2)/2·f 3 (1-1) Also, both the front focal point and the rear focal point of this optical system are the midpoint between the two lenses.

(ロ) 平行光束4がレンズ8の焦点に集合させられ
たものを円筒レンズ9,10の組合せ光学系
が、レンズ11と光補正板12及び平面鏡13
の位置に再度集合させる様に間隔aを決める。
(b) A combined optical system of cylindrical lenses 9 and 10 collects the collimated light beam 4 at the focal point of the lens 8, and converts it into a lens 11, a light correction plate 12, and a plane mirror 13.
The interval a is determined so that the parts are assembled again at the position.

すなわち、aは次式で与えられる。 That is, a is given by the following equation.

a=f3/√2+(f32/f2・ (1+Δa)/(6−4・√2) ……(2) Δa=4・(F/f24/(1−2・(F/f22 +√1−4(22) ……(2‐1) ここで、f3をf2より十分小さいものにする。そ
の結果、Fもf2より十分小さくなるのでΔaは無
視できる。
a=f 3 /√2+(f 3 ) 2 /f 2・(1+Δa)/(6−4・√2) …(2) Δa=4・(F/f 2 ) 4 /(1−2・(F/ f2 ) 2 +√1-4( 2 ) 2 )...(2-1) Here, f3 is made sufficiently smaller than f2 . As a result, F also becomes sufficiently smaller than f2 , so Δa can be ignored.

(ハ) 間隔uは、偏向器3の偏向点5で偏向された
光束4のX方向成分が、レンズ8、円筒レンズ
9,10、レンズ11を通り鏡13で反射され
た後、再び偏向点5に戻るように設定する。
(c) The interval u is the distance between the X-direction component of the light beam 4 that is deflected at the deflection point 5 of the deflector 3, passes through the lens 8, cylindrical lenses 9 and 10, and the lens 11, and is reflected by the mirror 13, and then returns to the deflection point. Set to return to 5.

すなわち、uは次式で表される。 That is, u is expressed by the following formula.

u=f1+(f12/f2/(1−Δu) ……(3) Δu=2・F/f2 ……(3−1) ここで、条件(2)と同様に、Δuは無視できる。 u=f 1 + (f 1 ) 2 /f 2 /(1-Δu) ...(3) Δu=2・F/f 2 ...(3-1) Here, similarly to condition (2), Δu can be ignored.

次に、第3図を参照して光補正板12を説明す
る。
Next, the light correction plate 12 will be explained with reference to FIG.

X、Y、Z方向にそれぞれX・Y・Z軸を設定
した座標系において、 光学ガラス板の厚さ(tとする)がf(x)をXの
関数として次式(4)で与えられる厚さを持つ光補正
板12を用いる。
In a coordinate system with X, Y, and Z axes set in the X, Y, and Z directions, the thickness (t) of the optical glass plate is given by the following equation (4) using f(x) as a function of X. A light correction plate 12 having a thickness is used.

t=(定数)−f(x)・Y2 ……(4) なお、レンズ11と光補正板12と平面鏡13
とは、面を合わせて接着して一体形成したものを
用いてもよい。また、レンズ11と光補正板12
と平面鏡13とを、 次式(5)で与えられる凹面を持つ補正凹面鏡で置
き換えて用いてもよい。
t=(constant)−f(x)・Y 2 ...(4) In addition, the lens 11, the light correction plate 12, and the plane mirror 13
It is also possible to use one that is integrally formed by bonding the surfaces together. In addition, the lens 11 and the light correction plate 12
and the plane mirror 13 may be replaced with a correction concave mirror having a concave surface given by the following equation (5).

Z=(定数)−(X2+Y2)÷(4・f2) −f(x)・Y2 ……(5) 具体例として、各レンズの焦点距離を以下の通
りに選ぶ。
Z=(constant)−(X 2 +Y 2 )÷(4·f 2 )−f(x)·Y 2 (5) As a specific example, the focal length of each lens is selected as follows.

f1=100mm f2=100mm f3=10mm すると、各距離間隔u、Sおよびaは式(1)、(2)、
(3)に従つて次のような値が必要になる。
f 1 = 100mm f 2 = 100mm f 3 = 10mm Then, each distance interval u, S and a are calculated by formulas (1), (2),
According to (3), the following values are required.

u=200mm、S=14mm、a=10mm 次に本発明の光束の焦点調整装置の動作を第2
図a,bを参照して説明する。
u = 200 mm, S = 14 mm, a = 10 mm Next, the operation of the light flux focusing device of the present invention will be explained as follows.
This will be explained with reference to Figures a and b.

光軸1にそつて光束4を本発明の光束の焦点調
整装置に入射する。最初に偏光プリズムフイルタ
ー2を透過して平面鏡13までの光路を往復して
再び偏光プリズムフイルター2に戻つてきた光束
4′はλ/4波長補正板7を往復することにより
偏光面が90度回転しているため、偏光プリズムフ
イルター2で反射されて出射方向15に出射す
る。光束4の偏向面に平行な成分に対してはレン
ズ8と円筒レンズ9,10とレンズ11とが働
く。
A light beam 4 is incident along the optical axis 1 into the light beam focusing device of the present invention. The light beam 4', which first passes through the polarizing prism filter 2, travels back and forth on the optical path to the plane mirror 13, and returns to the polarizing prism filter 2 again, travels back and forth through the λ/4 wavelength correction plate 7, so that the plane of polarization is rotated by 90 degrees. Therefore, it is reflected by the polarizing prism filter 2 and output in the output direction 15. Lens 8, cylindrical lenses 9 and 10, and lens 11 act on the component parallel to the deflection plane of light beam 4.

偏向点5において、偏向器3で偏向された後の
光束4が中心軸6と成す角をθとし、 光束4の中心軸6からの高さをhとする。
At the deflection point 5, the angle that the light beam 4 makes with the central axis 6 after being deflected by the deflector 3 is θ, and the height of the light beam 4 from the center axis 6 is h.

平面鏡13の位置において、光束4の偏向面に
平行な成分が中心軸6と成す角をΩとし、中心軸
6からの高さをxとする。
At the position of the plane mirror 13, the angle formed by the component parallel to the deflection plane of the light beam 4 with the central axis 6 is Ω, and the height from the central axis 6 is x.

条件(1)により、偏向点5で光束4が中心軸6と
成す角θが平面鏡13の位置での光束4の中心軸
6からの高さxを規定することになる。この高さ
xは次式(6)、(7)で与えられる。
According to condition (1), the angle θ that the light beam 4 forms with the central axis 6 at the deflection point 5 defines the height x of the light beam 4 from the center axis 6 at the position of the plane mirror 13. This height x is given by the following equations (6) and (7).

x=b・sinθ ……(6) b=f1・f2/f3・(2−√2)・(1−Δb) ……(7) Δb=(Δa・(1/f2+1/F)−(F/f22) /(1+F/f2+Δa/F) ……(7‐1) この計算の前提として、光学系に正弦条件が成
り立つものとした。
x=b・sinθ ……(6) b=f 1・f 2 /f 3・(2−√2)・(1−Δb) ……(7) Δb=(Δa・(1/f 2 +1/ F)-(F/ f2 ) 2 )/(1+F/ f2 +Δa/F)...(7-1) As a premise for this calculation, it is assumed that the sine condition holds in the optical system.

ここで、条件(1)と同様にΔbは無視できる。 Here, Δb can be ignored as in condition (1).

他方、条件(2)が成り立つことから、鏡13の位
置で光束4が中心軸6と成す角度Ωが偏向点5の
位置での光束の中心軸6からの高さhを規定する
ことになり、これは次式(8)で与えられる。
On the other hand, since condition (2) holds, the angle Ω that the light beam 4 forms with the central axis 6 at the position of the mirror 13 defines the height h of the light beam from the central axis 6 at the position of the deflection point 5. , which is given by the following equation (8).

h=b・sin(Ω) ……(8) 式(7)によれば、平面鏡13の位置で光束4の偏
向面に平行な成分が中心軸6と成す角Ωが変化し
ても偏向点5での光束4の進行角θに影響を及ぼ
さない。
h=b・sin(Ω) ...(8) According to equation (7), even if the angle Ω that the component parallel to the deflection plane of the light beam 4 forms with the central axis 6 changes at the position of the plane mirror 13, the deflection point remains unchanged. does not affect the advancing angle θ of the light beam 4 at 5.

すなわち、平面鏡13により反射されて偏向器
3の偏向点5を往復する光束4の偏向円に平行な
成分は平面鏡13の面の向きにかかわらず、偏向
点5での順方向と逆方向との進行方向が平行にな
る。このため、本発明の光束の焦点調整装置は偏
向器3において光束4を往復させるために必要
な、光束4の進行方向条件を自動的に満足する特
徴を有する。
That is, the component parallel to the deflection circle of the light beam 4 reflected by the plane mirror 13 and reciprocating to the deflection point 5 of the deflector 3 is the forward direction and the reverse direction at the deflection point 5, regardless of the orientation of the surface of the plane mirror 13. The direction of travel becomes parallel. Therefore, the focusing device for a light beam according to the present invention has a feature that automatically satisfies the traveling direction conditions of the light beam 4 necessary for causing the light beam 4 to reciprocate in the deflector 3.

光束4の、偏向面に垂直で中心軸6を含む面
(以下、垂直面と呼称する)に平行な成分に対し
ては、レンズ8,11と光補正板12とが働く。
光補正板12はそれへ入射する光束4の偏向面に
平行な成分の中心軸6からの高さをxとすると、
その焦点距離(Fとする)が次式(9)のとおりに高
さxにより変化する円筒レンズとして働く。
The lenses 8 and 11 and the light correction plate 12 act on the component of the light beam 4 that is perpendicular to the deflection plane and parallel to a plane containing the central axis 6 (hereinafter referred to as a vertical plane).
If the height of the component parallel to the deflection plane of the light beam 4 incident on the light correction plate 12 from the central axis 6 is x, then
It functions as a cylindrical lens whose focal length (denoted as F) changes depending on the height x as shown in the following equation (9).

F=1÷〔2・f(x)・(n−1)〕……(9) ここで、nは光補正板12の材質の光学ガラス
板の屈折率である。
F=1÷[2·f(x)·(n−1)] (9) Here, n is the refractive index of the optical glass plate that is the material of the light correction plate 12.

偏向器3とレンズ8,11と光補正板12と平
面鏡13とを、それに等価な円筒レンズと平面鏡
とに置きかえても、光束4の垂直面に平行な成分
に対する光学作用は等価である。等価な円筒レン
ズと平面鏡は、偏向器3を除去した状態で偏向点
5の位置に存在する。
Even if the deflector 3, lenses 8, 11, light correction plate 12, and plane mirror 13 are replaced with equivalent cylindrical lenses and plane mirrors, the optical effect on the component parallel to the vertical plane of the light beam 4 is equivalent. An equivalent cylindrical lens and plane mirror are present at the deflection point 5 with the deflector 3 removed.

そして、等価な円筒レンズの焦点距離(fとす
る)は、実際に偏向器3が光束4を偏向する角度
に応じて変化する。fは次式(10)で与えられる。
The focal length (referred to as f) of the equivalent cylindrical lens changes depending on the angle at which the light beam 4 is actually deflected by the deflector 3. f is given by the following equation (10).

f=(f1÷f2)÷〔2・f(x)・(n−1)〕 ……(10) すなわち、本発明の光束の焦点調整装置は、等
価な円筒レンズの焦点距離fを機械的動作を用い
ずに変えることができる特徴を有する。
f=(f 1 ÷ f 2 ) ÷ [2・f(x)・(n-1)] ...(10) In other words, the light flux focusing device of the present invention calculates the focal length f of the equivalent cylindrical lens. It has characteristics that can be changed without mechanical action.

等価は円筒レンズと平面鏡は、偏向器3を除去
した光軸1上の偏光点5の位置に存在する。その
ため、偏向点5から平面鏡までの間を往復して逆
戻りした光束4は偏向点5を最初に透過した位置
と同じ位置を必ず透過する。すなわち、光束4が
偏向点5が往復する位置条件を自動的に満足する
特徴を有する。
Equivalently, a cylindrical lens and a plane mirror exist at a polarization point 5 on the optical axis 1 with the deflector 3 removed. Therefore, the light beam 4 that has gone back and forth between the deflection point 5 and the plane mirror and returns will always pass through the same position where it first passed through the deflection point 5. That is, it has a feature that the light beam 4 automatically satisfies the positional condition in which the deflection point 5 reciprocates.

以上を定性的に述べると、入射光束4が平行光
束で断面円形であつても、光補正板12へ入射す
るときは、円筒レンズ9,10の作用によつて光
束の断面はY軸方向に延びた扁平形状となる。そ
してその扁平断面を有する光束は、偏向器3によ
るX軸方向の偏向量によつて、光補正板12上の
X軸方向に沿つた異なる位置に入射することとな
る。光補正板12へ入射した扁平な光束は、その
入射位置に応じてY時方向成分のみがY軸方向へ
屈折されて平面鏡13へ入射する。平面鏡13で
反射された光束は再度Y軸方向成分のみが屈折さ
れて偏向器3へ戻り、偏光プリズムフイルター2
で反射されて出射光15として出射する。この出
射光を回転多面鏡にて光走査する場合は、偏向器
3の偏向と回転多面鏡の回転とを同期させること
は言うまでもない。走査平面上の一端から他端へ
光束が移動するにつれて偏向器3の偏向角を大き
くする。第1図の実線で示した光路のように大き
く偏向された光束は円筒レンズ9,10の働きで
Y軸方向に扁平な断面を有して光補正板12のX
軸方向の端部(第3図の凹レンズ部)を通過する
から、Y軸方向成分のみが凹レンズの屈折作用を
大きく受ける。
To state the above qualitatively, even if the incident light beam 4 is parallel and has a circular cross section, when it enters the light correction plate 12, the cross section of the light beam is directed in the Y-axis direction due to the action of the cylindrical lenses 9 and 10. It has an elongated flat shape. The light beam having a flat cross section will be incident on different positions along the X-axis direction on the light correction plate 12 depending on the amount of deflection in the X-axis direction by the deflector 3. In the flat light beam incident on the light correction plate 12, only the Y-time direction component is refracted in the Y-axis direction depending on the incident position, and the beam is incident on the plane mirror 13. Of the light beam reflected by the plane mirror 13, only the Y-axis direction component is refracted and returned to the deflector 3, where it passes through the polarizing prism filter 2.
The light is reflected by the light beam and is emitted as emitted light 15. When this emitted light is optically scanned by a rotating polygon mirror, it goes without saying that the deflection of the deflector 3 and the rotation of the rotating polygon mirror are synchronized. As the light beam moves from one end to the other end on the scanning plane, the deflection angle of the deflector 3 is increased. The light beam that is largely deflected as shown by the solid line in FIG.
Since it passes through the end in the axial direction (the concave lens portion in FIG. 3), only the Y-axis direction component is greatly affected by the refraction effect of the concave lens.

一方、上記偏向角が小さいときの光束は第3図
の凸レンズ部を通過し、Y軸方向成のみが凸レン
ズの屈折作用を受ける。光補正板12へ照射され
た時点の光束の断面は、偏向量に関係なく同じ扁
平断面形状を有しているが、光補正板12中を往
復することによつて受けるY軸方向成分への屈折
作用は偏向角が覆いきいほど凹レンズ作用を大き
く受け、偏向角が小さいほど凸レンズ作用を大き
く受ける。その結果、偏光プリズムフイルター2
からの出射光15のその出射端面上における拡が
り角は、大きく偏向された光ほど凹レンズ作用を
大きく受けて大きくなり、小さく偏向された光ほ
ど凸レンズ作用を大きく受けて小さくなる。した
がつてこの出射光15をレンズを介して回転多面
体で反射させて平面走査させる場合には、レンズ
を固定したままで、光走査距離に応じてレンズを
移動させたのと同様の効果を奏することとなる。
On the other hand, when the deflection angle is small, the light beam passes through the convex lens section shown in FIG. 3, and only the component in the Y-axis direction is subjected to the refraction effect of the convex lens. The cross-section of the light beam irradiated onto the light correction plate 12 has the same flat cross-sectional shape regardless of the amount of deflection; As for refraction, the more the deflection angle is covered, the more the concave lens effect is applied, and the smaller the deflection angle, the more the convex lens effect is applied. As a result, the polarizing prism filter 2
The divergence angle of the emitted light 15 on the exit end face becomes larger as the light is deflected more greatly as it is affected by the concave lens action, and the spread angle of the light 15 becomes smaller as the light is deflected to a smaller extent as it is more affected by the convex lens action. Therefore, when this emitted light 15 is reflected by a rotating polyhedron through a lens to scan a plane, the same effect as when the lens is kept fixed and moved according to the optical scanning distance is produced. That will happen.

() 機械的動作を用いずに光束の焦点調整を行
なうことができるので高速の焦点調整を容易に
行なえる。
() Since the focus of the light beam can be adjusted without using mechanical operation, high-speed focus adjustment can be easily performed.

() 音響光学偏向器より平面鏡までの間を光束
を往復させてもとの位置に光束を戻すために必
要な条件が円筒レンズを含むレンズ系の配置に
よつて満足されているので光束に合わせた光学
機構の調整がきわめて容易にできる。等の利点
を有する。
() The conditions necessary for reciprocating the luminous flux from the acousto-optic deflector to the plane mirror and returning the luminous flux to the original position are satisfied by the arrangement of the lens system including the cylindrical lens. The optical mechanism can be adjusted very easily. It has the following advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例の斜視図、第2図
a,bは本発明の実施例の平面図および側面図、
第3図は本発明の光補正板の斜視図である。 〔図中の符号〕、1……光軸、2……偏光プリ
ズムフイルター、3……(音響光学)偏向器、
4,4′……光束、5……偏向点、6……中心軸、
7……λ/4波長補正板、8……レンズ、9,1
0……円筒レンズ、11……レンズ、12……光
補正板、13……平面鏡、14……(レンズ8の
後)焦点位置、15……出射方向。
FIG. 1 is a perspective view of an embodiment of the invention, FIGS. 2a and 2b are a plan view and a side view of an embodiment of the invention,
FIG. 3 is a perspective view of the light correction plate of the present invention. [Symbols in the figure], 1... optical axis, 2... polarizing prism filter, 3... (acousto-optic) deflector,
4, 4'... Luminous flux, 5... Deflection point, 6... Central axis,
7...λ/4 wavelength correction plate, 8... Lens, 9,1
0... Cylindrical lens, 11... Lens, 12... Light correction plate, 13... Plane mirror, 14... Focal position (after lens 8), 15... Outgoing direction.

Claims (1)

【特許請求の範囲】 1 音響光学偏向器と、前記偏向器が光束を偏向
する角度範囲の中心角の方向の軸(以下、中心軸
と呼称する)に、前記偏向器が光束を偏向する偏
向点から第1の間隔で配置した第1のレンズと、 前記偏向器が光束を偏向する偏向面に垂直な方
向(以下、Y方向と呼称する)に円筒の軸を持つ
て第1のレンズから第2の間隔で配置した第2の
円筒レンズと、前記Y方向に円筒の軸を持つて第
2の円筒レンズから第3の間隔で配置した第3の
円筒レンズと、前記第3の円筒レンズから第4の
間隔で配置した光補正反射光学機構とを、以下の
条件を満足する間隔で配置して成ることを特徴と
する光束の焦点調整装置。 (1‐1) 前記偏向点で偏向された光束が、第一の
レンズ、第二第三の円筒レンズを通り光補正反
射光学機構で反射されて、再び偏向点に戻るよ
うにする。 (1‐2) 前記偏向器における平行光束の偏向面に
平行な成分に関しては、光補正反射光学機構で
一点に集光させる。 2 前記第2の円筒レンズと第3の円筒レンズの
焦点距離を等しくし、該焦点距離を2の平方根倍
した距離を第3の間隔としたことを特徴とする特
許請求範囲第1項記載の光束の焦点調整装置。 3 前記光補正反射光学機構を、レンズと、前記
光束の中心軸に垂直で偏向面に平行な方向にX軸
を設定して前記Y方向にY軸を設定すると、光学
ガラス板の厚さtがf(x)をXの関数としてt=
(定数)−f(x)・Y2の式で与えられる厚さを持つ
光補正板と、平面鏡とを近接して配置して構成す
ることを特徴とする特許請求の範囲第1項記載の
光束の焦点調整装置。 4 前記光補正反射光学機構を、 前記中心軸に平行にZ軸を設定し前記X軸、Y
軸と合わせて設定した座標系で、 鏡の面が、f(x)をXの関数として、 Z=(定数)−(X2+Y2)÷(4・f2)−f(x)・Y2 の式であらわされる面を持つ補正鏡を有すること
を特徴とする特許請求範囲第1項記載の光束の焦
点調整装置。
[Claims] 1. an acousto-optic deflector, and a deflection device in which the deflector deflects a light beam along an axis (hereinafter referred to as the central axis) in the direction of the central angle of the angular range in which the deflector deflects the light beam. a first lens arranged at a first interval from the point; and a cylindrical axis extending from the first lens in a direction perpendicular to the deflection plane on which the deflector deflects the light beam (hereinafter referred to as the Y direction). a second cylindrical lens disposed at a second interval; a third cylindrical lens having a cylinder axis in the Y direction and disposed at a third interval from the second cylindrical lens; and a third cylindrical lens disposed at a third interval from the second cylindrical lens. A focusing device for a light beam, comprising: a light correction reflection optical mechanism arranged at a fourth interval from the center at a distance satisfying the following condition. (1-1) The light beam deflected at the deflection point passes through the first lens, second and third cylindrical lenses, is reflected by the light correction reflection optical mechanism, and returns to the deflection point again. (1-2) A component parallel to the deflection plane of the parallel light beam in the deflector is focused on one point by a light correction reflection optical mechanism. 2. The second cylindrical lens and the third cylindrical lens have the same focal length, and the third interval is a distance obtained by multiplying the focal length by the square root of 2. Focusing device for light flux. 3 When the light correction reflection optical mechanism is set to a lens, the X axis is set in a direction perpendicular to the central axis of the light beam and parallel to the deflection plane, and the Y axis is set in the Y direction, the thickness t of the optical glass plate is f(x) as a function of X and t=
(Constant) -f(x)・Y2 A light correction plate having a thickness given by the formula: (constant) - f(x)・Y Focusing device for light flux. 4. The light correction reflection optical mechanism is configured such that the Z-axis is set parallel to the central axis, and the X-axis, Y-axis
In the coordinate system set along with the axis, the surface of the mirror is expressed as Z = (constant) - (X 2 + Y 2 ) ÷ (4・f 2 ) − f(x)・2. A focusing device for a light beam according to claim 1, further comprising a correction mirror having a surface expressed by the formula Y2 .
JP10781182A 1982-06-23 1982-06-23 Focusing device for luminous flux Granted JPS58224316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10781182A JPS58224316A (en) 1982-06-23 1982-06-23 Focusing device for luminous flux

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10781182A JPS58224316A (en) 1982-06-23 1982-06-23 Focusing device for luminous flux

Publications (2)

Publication Number Publication Date
JPS58224316A JPS58224316A (en) 1983-12-26
JPH0339287B2 true JPH0339287B2 (en) 1991-06-13

Family

ID=14468631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10781182A Granted JPS58224316A (en) 1982-06-23 1982-06-23 Focusing device for luminous flux

Country Status (1)

Country Link
JP (1) JPS58224316A (en)

Also Published As

Publication number Publication date
JPS58224316A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US5805748A (en) Laser beam shaping system
US20070070302A1 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
JP2000137139A (en) Optical luminous flux converter
JPS6336482B2 (en)
JPH02175090A (en) Laser beam forming machine
JPH0693044B2 (en) Prism optical system and information device using the same
TWI406730B (en) Vorrichtung zur bearbeitung eines werkstuecks mittels paralleler laserstrahlen
US20020122185A1 (en) 3D-shape measurement apparatus
JPH0339287B2 (en)
US5438412A (en) Phase conjugate interferometer for testing paraboloidal mirror surfaces
JPH1039250A (en) Device for forming flat beam
JP2915519B2 (en) Laser irradiation equipment
KR940022119A (en) Optical scanning device
JP2001121281A (en) Laser emitting optical part for laser working
JP2003295083A (en) Luminous flux scanner and luminous flux scanning method
JPH063616A (en) Polygon scanner
JPH0915520A (en) Optical device for optical scanning
JPS62203117A (en) Scanning device for light beam
JP3326682B2 (en) Displacement measuring device
CN115685529A (en) Optical delay line based on reflecting lens and application thereof
JPS5855470B2 (en) Phase unevenness mixing homogenization device for light wave ranging equipment
JP2001147402A (en) Beam uniformizing device
JPH05196885A (en) Laser-beam scanning apparatus of optical system
JPH11311748A (en) Optical scanning device
JP2000221432A (en) Optical scanner