JPH0339163B2 - - Google Patents

Info

Publication number
JPH0339163B2
JPH0339163B2 JP4590383A JP4590383A JPH0339163B2 JP H0339163 B2 JPH0339163 B2 JP H0339163B2 JP 4590383 A JP4590383 A JP 4590383A JP 4590383 A JP4590383 A JP 4590383A JP H0339163 B2 JPH0339163 B2 JP H0339163B2
Authority
JP
Japan
Prior art keywords
load
combined cycle
axis
cycle plant
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4590383A
Other languages
Japanese (ja)
Other versions
JPS59173507A (en
Inventor
Hiroshi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP4590383A priority Critical patent/JPS59173507A/en
Publication of JPS59173507A publication Critical patent/JPS59173507A/en
Publication of JPH0339163B2 publication Critical patent/JPH0339163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンと蒸気タービンとを組み
合わせた複合サイクルプラントが複数軸設置され
た複合サイクルプラントシステムを電力系統から
見て1ユニツトとして機能するように計画された
複合サイクルプラントの統括負荷制御装置に関す
る。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a combined cycle plant system in which a combined cycle plant combining a gas turbine and a steam turbine is installed with multiple shafts so that it functions as one unit when viewed from the power system. This invention relates to an integrated load control system for a combined cycle plant planned for 2017.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

まず第1図を用いて、複合サイクルプラントの
負荷制御装置を説明する。以下、本発明の説明に
はガスタービン、蒸気タービン、発電機を同一軸
で構成する一軸型の複合サイクルプラントを例に
説明する。
First, a load control device for a combined cycle plant will be explained using FIG. Hereinafter, the present invention will be explained by taking as an example a single-shaft type combined cycle plant in which a gas turbine, a steam turbine, and a generator are configured on the same shaft.

速度設定器1から出力される速度設定信号から
回転数検出器6により検出したガスタービン9、
蒸気タービン13、発電機10の回転数(図示の
如くガスタービン9、蒸気タービン13、発電機
10は同一軸で連結されているため回転数は同
一)を、減算器2により減算し、その結果得られ
る偏差信号に演算増幅器(調定率ゲイン)3によ
り比例演算を施し、サーボ増幅器4を通して、燃
料調整弁5の開度を制御する。その結果、ガスタ
ービン9の燃焼器7に入る燃料流量が制御され、
ガスタービン9の出力が制御される。一方、蒸気
タービン13の方はガスタービン9の排ガスのエ
ンタルピーにより、排熱回収ボイラ11からの蒸
気のエンタルピーが決定されるため、蒸気加減弁
12を全開又は、一定開度にしておくと、復水器
14の真空度との関係で、一義的に出力が決定さ
れる。この結果発電機10が、ガスタービン9及
び、蒸気タービン13に連結されているので、ガ
スタービン9と蒸気タービン13の出力の和に発
電機10の効率を乗じたものが、発電機10の出
力となつて図示しない電力系統に出力される。負
荷検出器15によつて検出される実負荷と、負荷
設定器16から出力される負荷設定信号の偏差を
減算器17により演算しその出力に応じて速度設
定器1の設定値を変化させれば、最終的には、偏
差が零、即ち負荷(発電機10の出力)が、負荷
設定値に等しくなる様に制御される。
a gas turbine 9 detected by a rotation speed detector 6 from a speed setting signal output from the speed setting device 1;
The rotational speeds of the steam turbine 13 and the generator 10 (as shown in the figure, the gas turbine 9, the steam turbine 13, and the generator 10 are connected by the same shaft, so the rotational speeds are the same) are subtracted by the subtractor 2, and the result is A proportional calculation is performed on the obtained deviation signal by an operational amplifier (adjustment rate gain) 3, and the opening degree of the fuel adjustment valve 5 is controlled through a servo amplifier 4. As a result, the fuel flow rate entering the combustor 7 of the gas turbine 9 is controlled,
The output of the gas turbine 9 is controlled. On the other hand, in the steam turbine 13, the enthalpy of the steam from the exhaust heat recovery boiler 11 is determined by the enthalpy of the exhaust gas from the gas turbine 9, so if the steam control valve 12 is fully opened or kept at a constant opening, the The output is uniquely determined in relation to the degree of vacuum of the water dispenser 14. As a result, since the generator 10 is connected to the gas turbine 9 and the steam turbine 13, the output of the generator 10 is the sum of the outputs of the gas turbine 9 and the steam turbine 13 multiplied by the efficiency of the generator 10. and is output to a power system (not shown). The difference between the actual load detected by the load detector 15 and the load setting signal output from the load setting device 16 is calculated by a subtracter 17, and the set value of the speed setting device 1 is changed according to the output. For example, control is performed so that the deviation is ultimately zero, that is, the load (output of the generator 10) is equal to the load setting value.

次に複合サイクルプラントが複数軸設置される
事により構成される複合サイクルプラントシステ
ムを電力系統から見て1ユニツトとして機能する
ように計画された複合サイクルプラントの統括負
荷制御システムの構成例を第2図に示す。
Next, a second example of the configuration of a comprehensive load control system for a combined cycle plant is shown in which the combined cycle plant system, which is constructed by installing multiple combined cycle plant shafts, is planned to function as one unit when viewed from the power system. As shown in the figure.

中央給電指令所18より与えられる複合サイク
ルプラントシステムの負荷目標値a又は負荷設定
器20より与えられる所内モード負荷目標値bの
どちらかが切替器19で選択され、負荷変化率制
限器21を経て、複合サイクルプラントシステム
の負荷指令基準値cとなる。一方、中央給電指令
所18からは、負荷目標値aとは別に図示しない
電力系統の周波数変動に応じて(自動周波数制
御)信号dが与えられ、加算器22にて負荷指令
基準値cと加え合わされて、複合サイクルプラン
トシステムの負荷指令値eが得られる。
Either the load target value a of the combined cycle plant system given from the central power dispatch center 18 or the station mode load target value b given from the load setter 20 is selected by the switch 19, and the load change rate limiter 21 , becomes the load command reference value c of the combined cycle plant system. On the other hand, from the central power dispatch center 18, in addition to the load target value a, a (automatic frequency control) signal d is given according to the frequency fluctuation of the power system (not shown), and added to the load command reference value c by the adder 22. Together, the load command value e for the combined cycle plant system is obtained.

図示しない第1軸から第n軸までの複合サイク
ルプラントの各出力を出力検出器281〜28o
り得て加算器23にて加え合せることにより得ら
える複合サイクルプラントシステムの実出力f
と、負荷指令値eとの偏差gが減算器24にて算
出され、その偏差gを入力とする比例積分演算器
25によつて各軸への負荷目標値hが作成され
る。各軸に与えられた各軸の負荷目標値hから各
軸の起動停止時等に使用されるバイアス設定器2
1〜26oによつて与えられるバイアス信号i1
ioを減算器211〜27oにて引算する事により、
各軸の負荷指令値j1〜joが求められる。各軸の負
荷指令値j1〜joと各軸の発電機出力検出器281
28oの出力との偏差m1〜moが減算器291〜2
oによつて求められ、偏差m1〜moに応じて速度
設定器11〜1oの設定値が増減される。これ以降
は第1図に示した負荷制御装置により複合サイク
ルプラントの統括出力制御が行なわれる。
The actual output f of the combined cycle plant system obtained by obtaining each output of the combined cycle plant from the first axis to the nth axis (not shown) from the output detectors 28 1 to 28 o and adding them together in the adder 23
A subtractor 24 calculates the deviation g between the load command value e and the load command value e, and a proportional-integral calculator 25 that receives the deviation g as an input creates a load target value h for each axis. Bias setting device 2 used for starting and stopping each axis based on the load target value h of each axis given to each axis
Bias signal i 1 ~ given by 6 1 ~ 26 o
By subtracting i o with subtractors 21 1 to 27 o ,
Load command values j 1 to j o for each axis are determined. Load command value j 1 ~ j o of each axis and generator output detector 28 1 ~ of each axis
The deviation m 1 ~ m o from the output of 28 o is the subtractor 29 1 ~ 2
9 o , and the set values of the speed setters 1 1 to 1 o are increased or decreased according to the deviations m 1 to m o . From this point on, the load control device shown in FIG. 1 performs overall output control of the combined cycle plant.

プラントの負荷制御を行なう際には、負荷変化
率制限値に対する考慮が必要となる。プラント側
からの制限としては、周波数制御等の短時間の幅
の小さい負荷変化に対する負荷変化率制限値と、
持続的な負荷変化に対する変化率制限値とが考え
られるが、これらは同列に扱うことはできず、一
搬に前者の方が制限がゆるいと考えられる。
When controlling the load of a plant, consideration must be given to the load change rate limit value. Limits from the plant side include load change rate limits for short-term and small load changes such as frequency control,
The rate of change limit value for continuous load changes can be considered, but these cannot be treated in the same way, and the former is considered to have a looser limit.

また、後者の持続的な負荷変化に対する制限値
は、負荷の現在値や構成機器の熱応力値等により
決定される。複数軸を有する複合サイクルプラン
トから構成される複合サイクルプラントシステム
においては、すべての軸が同一の条件のもとに運
転されていれば、変化率制限値はすべて同じとな
るが、特定軸が起動、停止操作等のため負荷バイ
アスを行なつている場合や、軸によつて運転経緯
が異なる(Hot start、Cold startの相違等)場
合など軸ごとに変化率制限値が異なる場合が多
い。
Furthermore, the latter limit value for continuous load changes is determined by the current value of the load, the thermal stress value of the component equipment, etc. In a combined cycle plant system consisting of a combined cycle plant with multiple axes, if all axes are operated under the same conditions, the rate of change limit values will all be the same, but if a specific axis is activated In many cases, the rate of change limit value differs for each axis, such as when load bias is applied for a stop operation, etc., or when the operation history differs depending on the axis (differences between hot start and cold start, etc.).

第2図に示した統括負荷制御装置の回路では、
複合サイクルプラントシステム全体としての負荷
変化率は、負荷指令基準値cの変化率と、AFC
信号dの変化率の和として得られる。このため各
軸の負荷目標値hを見る限りでは、AFCによる
短時間の負荷変化成分と、負荷指令値j1〜jo自体
の持続的変化成分との区別ができず、各軸におい
て持続的な負荷変化成分に対する変化率制限をか
ける事はできない。このため第2図にその構成を
示す回路では、各軸に単に負荷制限器を設置した
としても、持続的な変化に対する変化率制限を守
るような制限をかけると、AFC成分の上のせが
できず、逆にAFCを許容する制限幅とすると、
軸ごとの運転条件に従つた持続的負荷変化に対す
る制限が守れなくなるという不都合が生じる。
In the circuit of the integrated load control device shown in Fig. 2,
The load change rate for the entire combined cycle plant system is determined by the change rate of the load command reference value c and the AFC
It is obtained as the sum of the rates of change of the signal d. Therefore, as long as we look at the load target value h of each axis, we cannot distinguish between the short-term load change component due to AFC and the continuous change component of the load command values j 1 to j o themselves, It is not possible to limit the rate of change for load change components. For this reason, in the circuit whose configuration is shown in Figure 2, even if a load limiter is simply installed on each axis, if a limit is applied to maintain the rate of change limit for continuous changes, the AFC component will be affected. On the other hand, if we set the limit width to allow AFC,
The disadvantage arises that the limits on continuous load changes according to the operating conditions of each axis cannot be observed.

〔発明の目的〕[Purpose of the invention]

本発明は複数軸で構成される複合サイクルプラ
ントシステムの各軸ごとにAFC信号を配分する
機能を付加する事により各軸の状態に応じた持続
的負荷変化制限を守りながら自動周波数制御を行
なえる複合サイクルプラントの統括負荷制御装置
を得る事を目的とするものである。
By adding a function to distribute AFC signals to each axis of a combined cycle plant system consisting of multiple axes, the present invention can perform automatic frequency control while maintaining continuous load change limits according to the status of each axis. The purpose is to obtain an integrated load control device for a combined cycle plant.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面を参照して説明する。第3図
は本発明の一実施例を示すブロツク図である。第
2図に示す装置と同一の構成要素には同一の符号
を付し、その説明は省略する。
The present invention will be explained below with reference to the drawings. FIG. 3 is a block diagram showing one embodiment of the present invention. Components that are the same as those in the device shown in FIG. 2 are designated by the same reference numerals, and their explanations will be omitted.

中央給電指令所18から与えられるAFC信号
dは、補正器(乗算器)30にて統括負荷制御中
の軸数に応じた補正を行つた後(d−d′)、統括
負荷制御装置の制御下にある軸について、切替器
311〜31oを経て各軸に設置された負荷変化率
制限器321〜32oの後の加算器331〜33o
おいて各軸の負荷指令値k1〜koに加算される。
The AFC signal d given from the central power dispatch center 18 is corrected in a corrector (multiplier) 30 according to the number of axes under integrated load control (d-d'), and then used to control the integrated load control device. Regarding the lower axes, the load command value k 1 of each axis is determined by the adders 33 1 - 33 o after the load change rate limiters 32 1 - 32 o installed on each axis via the switchers 31 1 - 31 o . ~ is added to k o .

各軸の負荷変化率制限器321〜32oにより、
各軸の負荷目標値hの変化に対し、AFC信号d
の有無に関係なく、その軸の運転状態に応じた制
限をかける事が可能となる。切替器311〜31o
は、手動負荷設定を行なつていて、統括負荷制御
装置の制御下にない軸について、AFCの制御も
除外するためのものである。
By the load change rate limiters 32 1 to 32 o of each axis,
The AFC signal d responds to changes in the target load value h for each axis.
Regardless of the presence or absence of the shaft, it is possible to apply restrictions according to the operating state of the shaft. Switching device 31 1 ~ 31 o
This is to exclude AFC control for axes that are manually set and are not under the control of the integrated load control device.

本発明の構成においても、負荷指令基準値cと
AFC信号dとの加算器22は必要である。これ
はAFC信号dを軸側に直接かける事により実電
力に表われる負荷変化(加算器22の出力)に対
する補償を行なうためである。
Also in the configuration of the present invention, the load command reference value c and
An adder 22 with the AFC signal d is necessary. This is to compensate for the load change (output of the adder 22) appearing in the actual power by directly applying the AFC signal d to the shaft side.

〔発明の効果〕〔Effect of the invention〕

以上説明の本発明によれば、AFC信号を各軸
負荷制御装部分に直接加える事により、各軸の持
続的な負荷変化に対する変化率制限に無関係に周
波数制御を行なう事が可能となり、複数軸の複合
サイクルプラントから成る複合サイクルプラント
システムにおいて、各構成軸の状態を考慮する事
なく、従来の大容量火力発電所なみのAFC制御
を行なう事が可能となる。
According to the present invention as described above, by directly applying the AFC signal to the load control device for each axis, it is possible to perform frequency control regardless of the rate of change limit for continuous load changes on each axis. In a combined cycle plant system consisting of a combined cycle plant, it is possible to perform AFC control similar to that of a conventional large-capacity thermal power plant without considering the status of each component axis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合サイクルプラントの負荷制御装置
の一例を示すブロツク図、第2図は複合サイクル
プラントの統括負荷制御装置の一例を示すブロツ
ク図、第3図は本発明の一実施例を示すブロツク
図である。 1……速度設定器、2……減算器、3……演算
増幅器、4……サーボ増幅器、5……燃料調整
弁、6……回転数検出器、7……ガスタービン燃
焼器、8……コンプレツサ、9……ガスタービ
ン、10……発電機、11……排熱回収ボイラ、
12……蒸気加減弁、13……蒸気タービン、1
4……復水器、15……負荷検出器、16……負
荷設定器、17……減算器、18……中央給電指
令所、19……切替器、20……所内モード負荷
設定器、21……負荷変化率制限器、22,23
……加算器、24……減算器、25……比例積分
演算器、26……バイアス設定器、27,29…
…減算器、28……出力検出器、30……統括負
荷制御中の軸数による補正器、31……切替器、
32……軸負荷変化率制限器、33……加算器。
Fig. 1 is a block diagram showing an example of a load control device for a combined cycle plant, Fig. 2 is a block diagram showing an example of an integrated load control device for a combined cycle plant, and Fig. 3 is a block diagram showing an embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1...Speed setter, 2...Subtractor, 3...Operation amplifier, 4...Servo amplifier, 5...Fuel adjustment valve, 6...Rotation speed detector, 7...Gas turbine combustor, 8... ...compressor, 9...gas turbine, 10...generator, 11...exhaust heat recovery boiler,
12...Steam control valve, 13...Steam turbine, 1
4...Condenser, 15...Load detector, 16...Load setting device, 17...Subtractor, 18...Central dispatch center, 19...Switching device, 20...In-station mode load setting device, 21...Load change rate limiter, 22, 23
... Adder, 24 ... Subtractor, 25 ... Proportional-integral calculator, 26 ... Bias setting device, 27, 29 ...
...Subtractor, 28...Output detector, 30...Corrector according to the number of axes during integrated load control, 31...Switcher,
32...Shaft load change rate limiter, 33...Adder.

Claims (1)

【特許請求の範囲】[Claims] 1 複数軸からなる複合サイクルプラントを前記
複合サイクルプラントから電力を供給される電力
系統から見て1ユニツトとして機能するように計
画された統括負荷制御装置において、中央給電指
令所からの自動周波数制御信号をプラント全体の
負荷指令値に加えると共に統括負荷制御中の軸に
限り各軸ごとに設けられた負荷変化率制限器の出
力に加える事によつて、自動周波数制御による短
期的な負荷変動を軸としての負荷変化率に無関係
に行なわせる事を特徴とする複合サイクルプラン
トの統括負荷制御装置。
1. In an integrated load control device that is designed to function as one unit when viewed from the power system that supplies power from a combined cycle plant consisting of multiple axes, an automatic frequency control signal from a central power dispatch center is used. By adding this to the load command value for the entire plant and also adding it to the output of the load change rate limiter installed for each axis only for the axes under integrated load control, short-term load fluctuations due to automatic frequency control can be suppressed. An integrated load control device for a combined cycle plant, which is characterized by being able to perform operations regardless of the load change rate.
JP4590383A 1983-03-22 1983-03-22 Overall load control device of composite cycle plant Granted JPS59173507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4590383A JPS59173507A (en) 1983-03-22 1983-03-22 Overall load control device of composite cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4590383A JPS59173507A (en) 1983-03-22 1983-03-22 Overall load control device of composite cycle plant

Publications (2)

Publication Number Publication Date
JPS59173507A JPS59173507A (en) 1984-10-01
JPH0339163B2 true JPH0339163B2 (en) 1991-06-13

Family

ID=12732200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4590383A Granted JPS59173507A (en) 1983-03-22 1983-03-22 Overall load control device of composite cycle plant

Country Status (1)

Country Link
JP (1) JPS59173507A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613248B2 (en) * 1988-04-08 1997-05-21 株式会社日立製作所 Load control device for single shaft combined cycle power plant

Also Published As

Publication number Publication date
JPS59173507A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
JPS6333372B2 (en)
JPH0339163B2 (en)
JPS5912106A (en) Output control device of combined cycle power generating system
JPS637247B2 (en)
JPS6087633A (en) Total load controllr of composite generator plant
JPS6243046B2 (en)
JP2749123B2 (en) Power plant control method and device
JPH0333889B2 (en)
JPS59115406A (en) Load controller of composite cycle power generating plant
JPS59162727A (en) Generalized load controller of composite generating plant
JPS61190103A (en) Load controller for complex power plant
JP2613248B2 (en) Load control device for single shaft combined cycle power plant
JPS637246B2 (en)
JPS6154927B2 (en)
JPH0146683B2 (en)
JPH0146682B2 (en)
JPS6264222A (en) Load controller
JPS6193210A (en) Load controller of one-shaft type composite power plant
JPS6115244B2 (en)
JPS6291605A (en) Steam turbine control device
JPS61200312A (en) Load controller for combined-cycle generating plant
JPS6166809A (en) Load control device in composite generation set
JPS6267209A (en) Electronic governor for steam turbine
JPH0540530A (en) Number of revolution controller for turbine