JPH0339024B2 - - Google Patents

Info

Publication number
JPH0339024B2
JPH0339024B2 JP58083806A JP8380683A JPH0339024B2 JP H0339024 B2 JPH0339024 B2 JP H0339024B2 JP 58083806 A JP58083806 A JP 58083806A JP 8380683 A JP8380683 A JP 8380683A JP H0339024 B2 JPH0339024 B2 JP H0339024B2
Authority
JP
Japan
Prior art keywords
cement
weight
resistance
parts
portland cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58083806A
Other languages
Japanese (ja)
Other versions
JPS59207857A (en
Inventor
Hiroshi Isozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP58083806A priority Critical patent/JPS59207857A/en
Publication of JPS59207857A publication Critical patent/JPS59207857A/en
Publication of JPH0339024B2 publication Critical patent/JPH0339024B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐薬品性、耐熱性にすぐれた結合材
に関するものである。 従来、ポルトランドセメントと呼ばれるものに
は、通常、普通ポルトランドセメント、早強ポル
トランドセメント、及び耐硫酸塩ポルトランドセ
メント等があるが。これらポルトランドセメント
は酸性物質に対し抵抗性がないため、耐酸性を要
求される箇所に施工することはできず、強いて施
工しても頻繁に補修をしなければならないという
課題があつた。 一方、耐酸セメントと呼ばれるものには、水ガ
ラス系、アルミナセメント系、及び高炉セメント
系があるが、水ガラス系のものは耐アルカリ性や
耐水性が低い、アルミナセメント系のものは酸の
種類や濃度によつて耐酸効果を全く発現しないこ
とがある、高炉セメント系のものはポルトランド
セメントをかなり含んでいるので耐酸性は高くな
い、などの課題があつた。 このため水ガラスにアルミナセメントあるいは
フライアツシユなどを配合し、化学抵抗性を改良
する試みがなされているが未だ満足なものが得ら
れていない(特公昭47−32811号公報)。 また、ポルトランドセメントは200〜250℃以上
の温度における長期間使用は危険であるので一般
にアルミナセメントを耐火物バインダーとして使
用している。 しかしながら、アルミナセメントは500〜1000
℃のいわゆる中間温度領域における強度が小さい
という課題があつた。 このため、ポルトランドセメントや微粒のシリ
カを添加する方法が提案されているが、長期の耐
久性について充分ではなかつた(特開昭57−3772
号公報、特開昭58−15086号公報)。 本発明は、ポルトランドセメント又はアルミナ
セメントに存在する前記の耐酸性や耐熱性の課題
の改善を目的としたものである。 即ち、本発明は、ポルトランドセメント又はア
ルミナセメントと、反応性シリカ質含有物と、ポ
ルトランドセメント又はアルミナセメント100重
量部に対し0.5〜4.0重量部の糖類とを配合してな
る耐薬品性、耐熱性結合材である。 以下、さらに詳しく本発明を説明する。 本発明に係るポルトランドセメント又はアルミ
ナセメント(以下水硬性セメントという)のポル
トランドセメントとしては、普通ポルトランドセ
メント、早強ポルトランドセメント、及び中庸熱
セメントなどのポルトランドセメント、さらに、
これらポルトランドセメントにシリカ物質を混入
した高炉セメントやフライアツシユセメントなど
が挙げられる。 また、本発明に係る反応性シリカ質含有物とし
ては、いわゆる活性シリカ、オパール、シリカフ
ラワー、コロイダルシリカ、ケイソウ土、アエロ
ジル、シリカゲル、ガラス質の1、2、3、4号
珪酸ナトリウム、結晶質のメタ珪酸ナトリウム、
オルソ珪酸ナトリウム、及びピロ珪酸ナトリウム
等が挙げられる。このうち、珪酸ナトリウム系の
ものについては、組成はNa2O/SiO2のモル比
が、0.1〜5.0が好ましく、0.2〜1.1がより好まし
い。 反応性シリカ質含有物の使用量は、水硬性セメ
ント100重量部に対し、1〜100重量部が好まし
く、20〜60重量部がより好ましく、強度発現と耐
薬品性と耐熱性が実用上バランスのとれた結合材
を得ることができる面から、30〜40重量部が最も
好ましい。 本発明に係る糖類とは、分散剤としての機能を
有し、水硬性セメントや反応性シリカ質含有物と
併用することによつて、著しい作業性改善と耐薬
品性の向上効果があるものである。 なお、分散剤として一般に市販されているもの
には、分子内にスルホン基を有する化合物、例え
ば、アルキルアリルスルホン酸塩系、芳香族多環
縮合物スルホン酸塩性、及びオキシ有機酸塩系等
がある。 糖類としては、庶糖、果糖、ブドウ糖、デンプ
ン、デキストリン、及びその他の単糖類や多糖類
であり、これらのうち一種又は二種以上が使用可
能である。そのうち、特に、デキストリンの使用
が最も好ましい。 糖類の使用量は、水硬性セメント100重量部に
対し、0.5〜4.0重量部である。 さらに耐薬品性を向上させるために、一般のポ
リマーセメントコンクリート用ポリマーを併用す
ることは好ましい。 ポリマーとしては、例えば、天然ゴム(NR)、
クロロプレンゴム(CR)、スチレンブタジエンゴ
ム(SBR)、及びアクリロニトリルブタジエンゴ
ム(NBR)等のゴムラテツクス、エポキシ、塩
化ビニール、塩化ビニリデン、酢酸ビニール、エ
チレン一酢酸ビニル共重合物、アスフアルト、主
びゴムアスフアルト等の樹脂エマルジヨン、並び
に、カゼイン、セルロース誘導体、エチレングリ
コール−プロピレングリコール共重合体、ビニー
ルアルコール、アクリル酸塩、フルスリルアルコ
ール、及びアクリルアミド等の水溶性ポリマーが
挙げられ、これらを粉末化して添加してもよい。
これらポリマーを配合すると耐薬品性に限らず接
着力、曲げ強度及び流動性が向上する。 本発明の結合材は耐薬品性が要求される構造
物、コンクリート二次製品など、普通ポルトラン
ドセメントが使用されている用途すべてに用いら
れる。また普通ポルトランドセメントで作製され
た構造物、あるいは、ヒユーム管、パイル、及び
ポール等のコンクリート二次製品の表面をライニ
ングすることによつて耐薬品性を付与することも
できる。さらには、普通ポルトランドセメントと
比べ著しく耐熱性に優れているため、耐酸キヤス
タブルの結合材として使用することもできる。さ
らに、接着性、耐水性、及び流動性が優れている
ため、床仕上材、即ち、セルフレベリング材とし
て、特に化学薬品や食品などを取扱う場所の床材
として用いれば優れた効果が得られる。 実施例 以下実施例を挙げて本発明を具体的に説明す
る。 実施例 1 普通ポルトランドセメントとアルミナセメント
に、反応性シリカ含有物として、シリカフラワー
と3号珪酸ナトリウムを用い、糖類としてデキス
トリンを使用して、表−1に示す種々の比率に配
合し結合材を調製した。これに砂と水を加えて混
練し供試体を作製し、強度発現や耐薬品性の試験
を行なつた。その結果を表−1に併記する。 なお、供試体はセメント:砂比1:2、水・セ
メント比40%とし、4×4×16cmのものを作り、
20℃、80%R.H.で気乾養生した。
The present invention relates to a bonding material with excellent chemical resistance and heat resistance. Conventionally, things called Portland cement include ordinary Portland cement, early-strength Portland cement, and sulfate-resistant Portland cement. Since these Portland cements have no resistance to acidic substances, they cannot be applied to areas that require acid resistance, and even if they were to be used, they had the problem of requiring frequent repairs. On the other hand, acid-resistant cements include water glass-based, alumina cement-based, and blast-furnace cement. Water glass-based cements have low alkali resistance and water resistance, while alumina cement-based cements have low alkali resistance and water resistance. Problems were that depending on the concentration, the acid resistance effect may not be exhibited at all, and that blast furnace cement-based materials do not have high acid resistance because they contain a considerable amount of Portland cement. For this reason, attempts have been made to improve the chemical resistance by adding alumina cement or fly ash to water glass, but nothing satisfactory has yet been achieved (Japanese Patent Publication No. 32811/1983). In addition, alumina cement is generally used as a refractory binder because it is dangerous to use Portland cement for a long period of time at temperatures above 200 to 250°C. However, alumina cement is 500-1000
The problem was that the strength was low in the so-called intermediate temperature range of °C. For this reason, methods of adding portland cement or fine silica have been proposed, but these have not been sufficient in terms of long-term durability (Japanese Patent Laid-Open No. 57-3772
(Japanese Patent Application Laid-open No. 15086/1986). The present invention aims to improve the above-mentioned problems of acid resistance and heat resistance that exist in Portland cement or alumina cement. That is, the present invention provides a chemical-resistant and heat-resistant material made by blending Portland cement or alumina cement, a reactive siliceous material, and 0.5 to 4.0 parts by weight of sugar per 100 parts by weight of Portland cement or alumina cement. It is a binding material. The present invention will be explained in more detail below. Examples of the Portland cement of the Portland cement or alumina cement (hereinafter referred to as hydraulic cement) according to the present invention include ordinary Portland cement, early strength Portland cement, and moderate heat cement;
Examples include blast furnace cement and fly ash cement, which are made by mixing silica into Portland cement. In addition, the reactive siliceous substances according to the present invention include so-called activated silica, opal, silica flower, colloidal silica, diatomaceous earth, Aerosil, silica gel, vitreous No. 1, 2, 3, and 4 sodium silicate, crystalline sodium metasilicate,
Examples include sodium orthosilicate and sodium pyrosilicate. Among these, for the sodium silicate type, the molar ratio of Na 2 O/SiO 2 is preferably 0.1 to 5.0, more preferably 0.2 to 1.1. The amount of the reactive siliceous material to be used is preferably 1 to 100 parts by weight, more preferably 20 to 60 parts by weight, based on 100 parts by weight of hydraulic cement, which provides a practical balance between strength development, chemical resistance, and heat resistance. The most preferred amount is 30 to 40 parts by weight in terms of obtaining a smooth bonding material. The saccharide according to the present invention has a function as a dispersant, and when used in combination with hydraulic cement or a reactive siliceous substance, it has the effect of significantly improving workability and chemical resistance. be. In addition, commercially available dispersants include compounds having a sulfone group in the molecule, such as alkylaryl sulfonate salts, aromatic polycyclic condensate sulfonate salts, and oxyorganic acid salts. There is. Examples of saccharides include sucrose, fructose, glucose, starch, dextrin, and other monosaccharides and polysaccharides, and one or more of these can be used. Among these, the use of dextrin is particularly preferred. The amount of sugar used is 0.5 to 4.0 parts by weight per 100 parts by weight of hydraulic cement. In order to further improve chemical resistance, it is preferable to use a general polymer cement concrete polymer in combination. Examples of polymers include natural rubber (NR),
Rubber latex such as chloroprene rubber (CR), styrene butadiene rubber (SBR), and acrylonitrile butadiene rubber (NBR), epoxy, vinyl chloride, vinylidene chloride, vinyl acetate, ethylene monovinyl acetate copolymer, asphalt, rubber asphalt, etc. and water-soluble polymers such as casein, cellulose derivatives, ethylene glycol-propylene glycol copolymers, vinyl alcohol, acrylates, furthryl alcohol, and acrylamide, which can be powdered and added. Good too.
Blending these polymers improves not only chemical resistance but also adhesive strength, bending strength, and fluidity. The binder of the present invention can be used in all applications where Portland cement is normally used, such as structures that require chemical resistance and secondary concrete products. Chemical resistance can also be imparted by lining the surface of structures normally made with Portland cement or secondary concrete products such as humid pipes, piles, and poles. Furthermore, since it has significantly better heat resistance than ordinary Portland cement, it can also be used as a binding material for acid-resistant castables. Furthermore, since it has excellent adhesion, water resistance, and fluidity, it can be used with excellent effects as a floor finishing material, that is, a self-leveling material, especially as a flooring material in places where chemicals, food, etc. are handled. EXAMPLES The present invention will be specifically described below with reference to Examples. Example 1 Ordinary Portland cement and alumina cement were mixed with silica flour and No. 3 sodium silicate as reactive silica-containing substances, and dextrin was used as a saccharide in various ratios shown in Table 1, and binders were added. Prepared. Sand and water were added and kneaded to prepare specimens, which were tested for strength development and chemical resistance. The results are also listed in Table-1. The specimens were made with a cement:sand ratio of 1:2 and a water/cement ratio of 40%, measuring 4 x 4 x 16 cm.
It was air-dried and cured at 20°C and 80%RH.

【表】 なお、フロー値、圧縮強度はJIS R5201に従つ
て測定した。耐薬品性は7日間気乾養生後に各液
に浸漬し28日後に取出して重量測定を行ない変化
率を求めた。 実施例 2 表−1に示す配合に、さらにSBRラテツクス
10重量部を加えたこと以外は実施例1と同様にし
て耐酸性試験を行なつた。その結果、実施例1の
各実験No.より重量変化率が1〜2割減少し、耐酸
性が向上した。 実施例 3 セメント・砂比=1:3としたこと以外は実施
例1と同様な配合で4×4×16cmのモルタル供試
体を作製し、耐熱性試験を行なつた。供試体は7
日間気乾養生後、表−2に示す各温度で3時間加
熱した。加熱後冷却して圧縮強度を測定した。 なお本実施例においてシヤモツト質の骨材を用
いた。
[Table] The flow value and compressive strength were measured according to JIS R5201. Chemical resistance was determined by immersing in each solution after air-drying for 7 days, taking it out after 28 days, and measuring the weight to determine the rate of change. Example 2 SBR latex was added to the formulation shown in Table 1.
An acid resistance test was conducted in the same manner as in Example 1 except that 10 parts by weight was added. As a result, the weight change rate was reduced by 10 to 20% compared to each experiment No. of Example 1, and the acid resistance was improved. Example 3 A mortar specimen measuring 4 x 4 x 16 cm was prepared using the same composition as in Example 1 except that the cement/sand ratio was 1:3, and a heat resistance test was conducted. The specimen is 7
After being air-dried for one day, it was heated for 3 hours at each temperature shown in Table 2. After heating and cooling, the compressive strength was measured. Incidentally, in this example, a staghorn aggregate was used.

【表】 養生後:7日間気乾養生後
数値は圧縮強度(Kgf/cm2)
実施例 4 水硬性セメントに対する反応性シリカ質含有物
の配合量を変えて、耐酸性、耐アルカリ性、及び
耐水性を調べた。表−1の実験No.1−5配合に3
号珪酸ナトリウムを、さらに、10、20、40、60、
80、及び100重量部加えたものを、各々50℃の、
30%H2SO4、30%NaOH、及び純水に浸漬した。
その他の実験条件は実施例1と同様である。 その結果、3号珪酸ナトリウムの追加添加量が
水硬性セメント100重量部に対し60重量部以下、
特に、10重量部では耐酸性が向上し、アルカリや
水に対する重量減少は28日浸漬後5%以下であつ
た。追加添加量が80重量部を越えると耐酸性は向
上するが、耐アルカリ性や耐水性は極端に低下
し、50℃の30%NaOHや純水中では7日以内に
供試体が崩壊した。 実施例 5 普通ポルトランドセメント100重量部、3号珪
酸ナトリウム30重量部に、表−3に示すように、
デキストリンを添加したこと以外は実施例1と同
様に行つた。結果を表−3に併記する。
[Table] After curing: After air drying for 7 days, the values are compressive strength (Kgf/cm 2 )
Example 4 Acid resistance, alkali resistance, and water resistance were investigated by varying the amount of reactive siliceous material added to hydraulic cement. 3 for experiment No. 1-5 combination in Table-1
No. sodium silicate, further 10, 20, 40, 60,
80 and 100 parts by weight were added at 50℃, respectively.
Soaked in 30% H 2 SO 4 , 30% NaOH, and pure water.
Other experimental conditions were the same as in Example 1. As a result, the additional amount of No. 3 sodium silicate added was 60 parts by weight or less per 100 parts by weight of hydraulic cement.
In particular, at 10 parts by weight, the acid resistance was improved, and the weight loss against alkali and water was less than 5% after 28 days of immersion. When the additional amount exceeds 80 parts by weight, the acid resistance improves, but the alkali resistance and water resistance are extremely reduced, and the specimen disintegrated within 7 days in 30% NaOH or pure water at 50°C. Example 5 100 parts by weight of ordinary Portland cement and 30 parts by weight of No. 3 sodium silicate were added as shown in Table 3.
The same procedure as in Example 1 was carried out except that dextrin was added. The results are also listed in Table-3.

【表】 実施例 6 表−1に示す実験No.1−5の配合において、デ
キストリンの代わりにデンプン又はシヨ糖を用い
たこと以外は実施例1と同様にして耐酸性を調べ
た。その結果、デンプンの場合は約12%、シヨ糖
の場合は約15%劣つた。
[Table] Example 6 Acid resistance was examined in the same manner as in Example 1 except that starch or sucrose was used instead of dextrin in the formulation of Experiment No. 1-5 shown in Table-1. As a result, starch was about 12% inferior, and sucrose was about 15% inferior.

Claims (1)

【特許請求の範囲】[Claims] 1 ポルトランドセメント又はアルミナセメント
と、反応性シリカ質含有物と、ポルトランドセメ
ント又はアルミナセメント100重量部に対し0.5〜
4.0重量部の糖類とを配合してなる耐薬品性、耐
熱性結合材。
1. Portland cement or alumina cement, reactive siliceous material, and 0.5 to 100 parts by weight of Portland cement or alumina cement.
A chemical-resistant and heat-resistant binder containing 4.0 parts by weight of sugar.
JP58083806A 1983-05-13 1983-05-13 Chemical resistant heat resistant binder Granted JPS59207857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083806A JPS59207857A (en) 1983-05-13 1983-05-13 Chemical resistant heat resistant binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083806A JPS59207857A (en) 1983-05-13 1983-05-13 Chemical resistant heat resistant binder

Publications (2)

Publication Number Publication Date
JPS59207857A JPS59207857A (en) 1984-11-26
JPH0339024B2 true JPH0339024B2 (en) 1991-06-12

Family

ID=13812904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083806A Granted JPS59207857A (en) 1983-05-13 1983-05-13 Chemical resistant heat resistant binder

Country Status (1)

Country Link
JP (1) JPS59207857A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161546A (en) * 2005-12-15 2007-06-28 Toshiya Kawamata Cement composition, hardening method of cement composition, and cement hardened material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767057A (en) * 1980-10-08 1982-04-23 Denki Kagaku Kogyo Kk Manufacture of centrifugally reinforced concrete moldings
JPS589863A (en) * 1981-05-29 1983-01-20 電気化学工業株式会社 Inorganic binder
JPS5930751A (en) * 1982-08-14 1984-02-18 電気化学工業株式会社 High acid-resistance heat-resistance binder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767057A (en) * 1980-10-08 1982-04-23 Denki Kagaku Kogyo Kk Manufacture of centrifugally reinforced concrete moldings
JPS589863A (en) * 1981-05-29 1983-01-20 電気化学工業株式会社 Inorganic binder
JPS5930751A (en) * 1982-08-14 1984-02-18 電気化学工業株式会社 High acid-resistance heat-resistance binder

Also Published As

Publication number Publication date
JPS59207857A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
Lee et al. Mechanical properties and setting characteristics of geopolymer mortar using styrene-butadiene (SB) latex
US4793861A (en) Glass reinforced compositions
US4780141A (en) Cementitious composite material containing metal fiber
KR101067891B1 (en) Crack repairing composition of concrete structure using geopolymer
CA2416705A1 (en) Composition of materials for production of acid resistant cement and concrete and methods thereof
CN112194427B (en) Preparation method of high-waterproof corrosion-resistant concrete
CN102272067A (en) Manufacturing hydraulic cement aggregates for use in insulating and heat reflecting products
Gonzalez-Sanchez et al. Improving lime-based rendering mortars with admixtures
CN112645647B (en) Nano-silica modified geopolymer anticorrosive mortar and preparation method thereof
WO2020199907A1 (en) Low-shrinkage alkali-activated dry mix repair mortar
JP2849118B2 (en) Method for selecting pozzolans for incorporation into composites including cement and glass
JP2008297170A (en) High strength repair material
JPS6366788B2 (en)
BR112020026435A2 (en) binder containing a clay
CN113968702A (en) Fiber and polymer composite modified cement-based repair mortar and preparation method thereof
CN113321776A (en) Mud-resistant polycarboxylic acid water reducing agent
CN107628790A (en) A kind of decoration cement
JPH0339024B2 (en)
JPH0375254A (en) Cement composition
US20120240825A1 (en) Low-Shrinkage Binder System
KR100707519B1 (en) Fire-resistant board adhesive composition for concrete
CN115521118A (en) Impact-resistant wear-resistant concrete for rapid road restoration and preparation process thereof
Janotka The influence of zeolitic cement and sand on resistance of mortar subjected to hydrochloric acid solution attack
KR101927530B1 (en) Compositon for fire-resistant gypsum board and a fireproof structure comprising gypsum board prepared by the same composition
JPH0549621B2 (en)