JPH0338943B2 - - Google Patents

Info

Publication number
JPH0338943B2
JPH0338943B2 JP23479084A JP23479084A JPH0338943B2 JP H0338943 B2 JPH0338943 B2 JP H0338943B2 JP 23479084 A JP23479084 A JP 23479084A JP 23479084 A JP23479084 A JP 23479084A JP H0338943 B2 JPH0338943 B2 JP H0338943B2
Authority
JP
Japan
Prior art keywords
cooling plate
target
tin
copper
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23479084A
Other languages
Japanese (ja)
Other versions
JPS61115667A (en
Inventor
Akira Mori
Hideaki Yoshida
Masaki Morikawa
Tsutomu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP23479084A priority Critical patent/JPS61115667A/en
Publication of JPS61115667A publication Critical patent/JPS61115667A/en
Publication of JPH0338943B2 publication Critical patent/JPH0338943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、スパツタリングによつて半導体デ
バイスの電極および配線を形成させるために使用
されるアルミニウム製またはアルミニウム合金製
のターゲツトを銅製の冷却板に接合する方法に関
する。 〔従来の技術〕 半導体デバイス内における電極および配線の材
料として使用されるアルミニウムおよびアルミニ
ウム合金(Al−Si、Al−Cu、Al−Si−Cu)は、
スパツタリングによつて半導体デバイスの電極お
よび配線材に供するために、ターゲツトに加工さ
れるが、そのスパツタリング中にターゲツトは過
熱されるので、それを防ぐため、これらのターゲ
ツトは一般に銅製の冷却板に接合される。 このようなアルミニウム製およびアルミニウム
合金製のターゲツトは約350℃から再結晶を起こ
して結晶の粗大化及び合金成分の析出を生じ、特
に400℃以上の温度ではこの現象が極めて顕著に
なり、このような状態になつたターゲツトを使用
してスパツタリングすると、生成した被膜の組成
や厚さが不均一になるので、前記ターゲツトと冷
却板との接合は350℃よりも低い温度において遂
行しなければならない。 したがつて、アルミニウムとその合金の有力な
炉中ろう付け法として近年登場したGeneral
Electric社の真空ろう付け法や西独で開発された
VAW法は、フラツクスを使用しないで、しかも
Zn、Cdのような揮発し易い元素を含むろうを使
用しないという点では、極端に汚染を嫌う電子材
料として使用されるターゲツトのろう付けに適し
ているけれども、これらの方法はいずれも約600
℃またはそれを越える温度において遂行されるも
のであるから、約350℃以上の温度に曝すことが
できないアルミニウム製またはアルミニウム合金
製のターゲツトのろう付けには不向きであり、し
たがつて、このようなターゲツトを銅製の冷却板
に接合するには、現在のところ、イオンプレーテ
イング等によつてターゲツト表面に直接銅の薄膜
を堆積させてから、その上に錫の薄膜を例えば真
空蒸着によつて堆積させる一方、冷却板の表面に
錫の薄膜を被覆し、ついでこれらの錫の薄膜間に
シート状のろうを挟み込んだ後、加熱下にターゲ
ツトと冷却板とを圧接するという方法に頼つてい
る。 〔発明が解決しようとする問題点〕 しかしながら、上述の従来方法によつてターゲ
ツトを冷却板に接合すると、アルミニウムと銅と
は元来密着性に乏しい上に、その接合面に欠陥
(空洞)が生じ易いため、これら部材間の接合強
度が弱くなり、ターゲツトをスパツタリングして
いる間に受ける熱や荷重に起因する歪によつて、
その接合面が剥離するという問題があつた。 〔問題点を解決するための手段〕 そこで本発明者等は、上述のような観点から、
接合強度が強く、かつ接合面に欠陥を生じない前
記ターゲツトと銅製冷却板との接合方法を得るべ
く種々探究した結果、アルミニウムおよびその合
金に対して極めて密着性のよい亜鉛をまずターゲ
ツト表面に約0.05μm被覆し、ついで亜鉛に対し
て極めて密着性のよいニツケルを被覆し、さらに
ニツケルと非常に密着性のよい銅を被覆し、最後
にろうとのぬれ性をよくするために錫を被覆する
と、そのターゲツトに対して極めて接合強度のす
ぐれた複合被膜が得られ、この被膜と、予め錫の
薄膜が被覆されている銅製冷却板のその薄膜との
間にシート状のろうを挟み込んだ後、真空中また
は不活性ガス雰囲気中、加熱下においてターゲツ
トと冷却板とを互に圧接すると、全体としてきわ
めて接合強度がすぐれ、かつその接合面に欠陥が
ない、冷却板付きのターゲツトが得られることを
見出した。 この発明は、上記知見に基いて発明されたもの
であつて、 アルミニウム製またはアルミニウム合金製のス
パツタリング用ターゲツトを銅製冷却板に接合す
る方法において、そのターゲツトの表面に順次、
亜鉛、ニツケル、銅および錫の各薄膜を被覆する
一方、冷却板の表面に錫の薄膜を被覆し、ついで
これらのターゲツトと冷却板にそれぞれ被覆され
た錫の薄膜の間にシート状のろうを挟み込んだ
後、真空中または不活性ガス雰囲気中、加熱下に
おいて前記ターゲツトと冷却板とを互に圧接する
ことによつて前記ターゲツトを前記冷却板に接合
することを特徴とするものである。 このターゲツトの素材となるアルミニウムおよ
びアルミニウム合金の代表的な例として、純度
99.999%以上の高純度アルミニウム、Al−1重量
%SiおよびAl−0.5重量%Cuが挙げられ、一方冷
却板の素材として例えば無酸素銅およびO.M.C.
(Cu−0.15重量%Zr−0.45重量%Cr)が挙げられ
る。 ターゲツトおよび冷却板に被覆される各金属の
薄層のうち、亜鉛層は亜鉛酸塩溶液に品物を浸漬
する無電解めつき(ジンケート処理)によつて形
成され、その他のニツケル層、銅層および錫層は
慣用の電気めつきによつて形成させるのが好都合
であり、通常これらのニツケル層、銅層および錫
層はそれぞれ1〜10μm、10〜30μmおよび1〜
5μmの厚さで被覆される。 ろう付けに使用されるろうとしては、普通、例
えば純錫またはSn−3.5%Agのような錫をベース
にした厚さ約50μmのシート状の軟ろうが有利に
使用され、そしてターゲツトと冷却板との接合
は、一般に荷重:1.8〜2.2Kg/cm2、温度:245〜
260℃、雰囲気:5×10-4Torr以下の真空中また
はアルゴンのような不活性ガス中、圧接時間:15
〜20分間の条件の下で遂行される。 〔実施例〕 ついで、この発明を実施例によつて説明する。 Al−1重量%Siの組成と、直径30cm×厚さ60
cmの寸法を有する円板状のスパツタリング用ター
ゲツトを市販のジンケート処理用の亜鉛酸塩溶液
に1分間浸漬することによつて、その表面に亜鉛
被膜を形成させ、ついでその亜鉛被膜の上に、 スルフアミン酸ニツケル浴組成: Ni(NH2SO32・4H2O 450g/ NiCl2・6H2O 10g/ H3BO3 30g/ 電流密度: 5A/dm2 時 間: 10分 液 温: 50℃ の条件下で、厚さ10μmのニツケルめつきを施
し、さらにそのニツケル被膜の上に、 硫酸銅浴組成: CuSO4・5H2O 200g/ H2SO4 50g/ 電流密度: 5A/dm2 時 間: 20分 液 温: 室温 の条件下で、厚さ20μmの銅めつきを施し、最後
にその銅被膜の上に、 硫酸錫浴組成: SnSO4 30g/ H2SO4 100ml/ 電流密度: 1.5A/dm2 時 間: 3分 液 温: 室温 の条件下で、厚さ5μmの錫めつきを施した。 一方、無酸素銅からなる直径30cm×厚さ60cmの
円板状冷却板に上記と同じ条件下で厚さ5μmの
錫めつきを施した。 ついで、このように表面処理を施した円板状の
ターゲツトと冷却板との間に、ろうとして厚さ:
50μmの純錫の箔を挟み込み、5×10-4Torrの真
空中、250℃に昇温して両者の間に2Kg/cm2の荷
重を15分間かけることによつて、ターゲツトを冷
却板に接合した。 つぎに、従来方法により、すなわち、上記と同
じ組成と寸法を有するターゲツトの表面に銅をイ
オンプレーテイングすることによつてそれを20μ
mの厚さに堆積させ、さらにその銅被膜の上に、
上記と同じ方法で錫めつきを施すことによつて厚
さ5μmの錫の被膜を形成させる一方、上記と同
じ寸法を有する無酸素銅の冷却板上にも同様に錫
めつきを施して厚さ5μmの錫の被膜を形成させ、
その後このように被覆処理を施したターゲツトと
冷却板とを、上記と全く同じ方法および条件を用
いて接合した。 このように本発明および従来方法によつてそれ
ぞれ接合したターゲツトと冷却板との接合面にお
いて生じた欠陥の割合をX線によつて調べたとこ
ろ、接合面全体の面積に対する欠陥を生じていた
部分の面積の割合、すなわち欠陥率は、本発明に
よつて接合した接合面において0%であるのに対
し、従来方法による接合面においては20%であつ
た。 つぎに、本発明によつて接合したターゲツトと
冷却板との接合強度を引張試験によつて評価する
ために、外径28mm×高さ75mmの寸法を有する円柱
を上記のAl−1重量%Siおよび無酸素銅部材か
らそれぞれ採取し、それらの一方の端面にそれぞ
れねじ穴を穿つとともに、その他方の端面を互に
つき合わせてアルミニウム合金製の円柱と無酸素
銅製の円柱とを上記と同様な本発明方法および従
来方法によつてそれぞれ接合し、本発明によつて
接合した試験片と従来方法によつて接合した試験
片をそれぞれ5個づつ製作した。 このようにして得られた各試験片を引張試験機
にかけてこれらの接合面を剥離するのに要する引
張強さを室温において測定したところ、第1表に
示す結果が得られた。
[Industrial Field of Application] The present invention relates to a method of bonding an aluminum or aluminum alloy target to a copper cooling plate, which is used to form electrodes and wiring of a semiconductor device by sputtering. [Prior Art] Aluminum and aluminum alloys (Al-Si, Al-Cu, Al-Si-Cu) used as materials for electrodes and wiring in semiconductor devices are
Targets are processed by sputtering to be used as electrodes and wiring materials for semiconductor devices, but the targets are overheated during sputtering, so to prevent this, these targets are generally bonded to a copper cooling plate. be done. Such targets made of aluminum and aluminum alloys recrystallize from about 350°C, resulting in coarsening of the crystals and precipitation of alloy components, and this phenomenon becomes extremely noticeable especially at temperatures above 400°C. If sputtering is carried out using a target in a rough state, the composition and thickness of the resulting film will be non-uniform, so the bonding between the target and the cooling plate must be carried out at a temperature lower than 350°C. Therefore, General has recently emerged as an effective furnace brazing method for aluminum and its alloys.
Electric's vacuum brazing method and developed in West Germany
The VAW method does not use flux, and
In that they do not use solders containing easily volatile elements such as Zn and Cd, they are suitable for brazing targets used as electronic materials that are extremely sensitive to contamination.
℃ or above, it is unsuitable for brazing targets made of aluminum or aluminum alloys that cannot be exposed to temperatures above about 350℃; At present, bonding a target to a copper cooling plate involves depositing a thin film of copper directly on the target surface, such as by ion plating, and then depositing a thin film of tin, for example, by vacuum evaporation, on top of the thin film of copper. On the other hand, it relies on a method in which the surface of the cooling plate is coated with a thin film of tin, a sheet of solder is then sandwiched between the thin films of tin, and the target and the cooling plate are pressed together under heat. [Problems to be Solved by the Invention] However, when the target is bonded to the cooling plate using the above-mentioned conventional method, not only does aluminum and copper inherently have poor adhesion, but also defects (cavities) occur on the bonded surface. As this is easy to occur, the bonding strength between these parts is weakened, and the strain caused by the heat and load received while sputtering the target causes
There was a problem that the bonded surface would peel off. [Means for solving the problem] Therefore, from the above-mentioned viewpoint, the present inventors have solved the problem.
As a result of various researches to find a method for joining the target and the copper cooling plate that has strong joint strength and does not cause defects on the joint surface, we first applied zinc, which has extremely good adhesion to aluminum and its alloys, to the target surface. Coating with a thickness of 0.05 μm, then coating with nickel, which has very good adhesion to zinc, then coating with copper, which has very good adhesion to nickel, and finally coating with tin to improve wettability with the wax. A composite film with extremely high bonding strength was obtained for the target, and after sandwiching a sheet of solder between this film and the thin film of a copper cooling plate that had been previously coated with a thin film of tin, vacuum It has been discovered that when a target and a cooling plate are pressed together under heating in a medium or inert gas atmosphere, a target with a cooling plate can be obtained that has extremely good bonding strength as a whole and has no defects on the bonded surface. Ta. This invention was invented based on the above knowledge, and includes a method for joining an aluminum or aluminum alloy sputtering target to a copper cooling plate, in which the surface of the target is sequentially coated with
While coating each thin film of zinc, nickel, copper, and tin, the surface of the cooling plate is coated with a thin film of tin, and then a sheet of wax is placed between these targets and the thin films of tin coated on each of the cooling plates. After being sandwiched, the target is joined to the cooling plate by pressing the target and the cooling plate against each other under heating in a vacuum or an inert gas atmosphere. As a typical example of aluminum and aluminum alloys, which are the materials for this target, purity
Examples include high purity aluminum of 99.999% or more, Al-1 wt% Si and Al-0.5 wt% Cu, while cooling plate materials such as oxygen-free copper and OMC
(Cu-0.15% by weight Zr-0.45% by weight Cr). Of the thin layers of each metal coated on the target and cold plate, the zinc layer is formed by electroless plating (zincating) by immersing the item in a zincate solution, and the other nickel, copper and The tin layer is conveniently formed by conventional electroplating, and typically these nickel, copper and tin layers have a thickness of 1-10 μm, 10-30 μm and 1-30 μm, respectively.
Coated with a thickness of 5 μm. The solder used for brazing is usually advantageously a sheet-like soft solder based on tin, such as pure tin or Sn-3.5%Ag, with a thickness of about 50 μm, and the target and the cooling plate are Generally, the bonding with the
260℃, atmosphere: 5×10 -4 Torr or less vacuum or inert gas such as argon, pressure welding time: 15
Carry out under conditions for ~20 min. [Example] Next, the present invention will be explained by referring to an example. Composition of Al-1wt%Si and diameter 30cm x thickness 60cm
A zinc coating is formed on the surface of a disk-shaped sputtering target having dimensions of cm by immersing it in a commercially available zincate solution for 1 minute, and then on the zinc coating. Nickel sulfamate bath composition: Ni (NH 2 SO 3 ) 2・4H 2 O 450g / NiCl 2・6H 2 O 10g / H 3 BO 3 30g / Current density: 5A/dm 2 hours: 10 minutes Liquid temperature: 50 Nickel plating with a thickness of 10 μm was applied under the conditions of ℃, and then copper sulfate bath composition: CuSO 4 5H 2 O 200g / H 2 SO 4 50g / Current density: 5A / dm 2 Time: 20 minutes Liquid temperature: Copper plating with a thickness of 20 μm is applied at room temperature, and finally, tin sulfate bath composition: 30 g of SnSO 4 / 100 ml of H 2 SO 4 / current density : 1.5A/dm 2 hours: 3 minutes Liquid temperature: Tin plating with a thickness of 5 μm was applied at room temperature. On the other hand, a disk-shaped cooling plate made of oxygen-free copper and having a diameter of 30 cm and a thickness of 60 cm was tin-plated to a thickness of 5 μm under the same conditions as above. Next, a layer of wax is placed between the disk-shaped target that has been surface-treated in this way and the cooling plate to a thickness of:
The target was placed on a cooling plate by sandwiching a 50μm pure tin foil, heating it to 250℃ in a vacuum of 5×10 -4 Torr, and applying a load of 2Kg/cm 2 between the two for 15 minutes. Joined. It was then ion-plated with 20 μm of copper by conventional methods, i.e. by ion plating copper onto the surface of a target having the same composition and dimensions as above.
Deposited to a thickness of m, and further on top of the copper coating,
A tin film with a thickness of 5 μm was formed by applying tinning using the same method as above, while tinning was also performed on an oxygen-free copper cooling plate having the same dimensions as above to form a thick tin film. Form a tin film with a thickness of 5 μm,
Thereafter, the target thus coated and the cooling plate were joined using the same method and conditions as above. When the ratio of defects that occurred on the joint surfaces between the target and the cooling plate, which were joined by the present invention and the conventional method, was examined using X-rays, it was found that the portions where defects occurred relative to the total area of the joint surfaces. The area ratio, that is, the defect rate, was 0% for the bonded surfaces bonded according to the present invention, whereas it was 20% for the bonded surfaces bonded by the conventional method. Next, in order to evaluate the bonding strength between the target and the cooling plate bonded according to the present invention by a tensile test, a cylinder having dimensions of 28 mm in outer diameter x 75 mm in height was coated with the above Al-1 wt% Si. and an oxygen-free copper member, drill a screw hole in one end face of each, and align the other end faces with each other to form an aluminum alloy cylinder and an oxygen-free copper cylinder in the same manner as above. Five specimens were each bonded by the invention method and the conventional method, and five test pieces were each bonded by the present invention and the conventional method. Each of the test pieces thus obtained was subjected to a tensile tester to measure the tensile strength required to separate the bonded surfaces at room temperature, and the results shown in Table 1 were obtained.

【表】 ○:はんだ面 ×:メツキ母材間
はんだ付け条件:温度260℃、はんだ:Sn−
5%Ag時間、圧力は同じ
〔発明の効果〕 実施例で示した結果から、本発明方法は、従来
方法に比べて、ターゲツトと冷却板との接合面に
おいて欠陥を生ずることがなく、また本発明方法
によつて得られるターゲツトと冷却板との接合強
度は従来方法によつて得られるものよりも著しく
大きいことがわかる。 以上述べた説明から明らかなように、この発明
によると、アルミニウム製またはアルミニウム合
金製のスパツタリング用ターゲツトを銅製冷却板
に接合した場合に、接合強度がすぐれ、かつ欠陥
のない接合面を得ることができる結果、スパツタ
リングに際してこれらの部材が互に剥離するのが
防止されるので、長期間にわたつて安定したスパ
ツタリング操作を遂行することができる冷却板付
きのターゲツトを提供することができる。
[Table] ○: Solder surface ×: Plated base metal Soldering conditions: Temperature 260℃, Solder: Sn−
5%Ag time and pressure are the same [Effects of the invention] From the results shown in the examples, the method of the present invention does not cause defects at the bonding surface between the target and the cooling plate compared to the conventional method. It can be seen that the joint strength between the target and the cooling plate obtained by the inventive method is significantly greater than that obtained by the conventional method. As is clear from the above description, according to the present invention, when an aluminum or aluminum alloy sputtering target is bonded to a copper cooling plate, it is possible to obtain an excellent bonding strength and a defect-free bonded surface. As a result, these members are prevented from peeling off from each other during sputtering, making it possible to provide a target with a cooling plate that can perform stable sputtering operations over a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム製またはアルミニウム合金製の
スパツタリング用ターゲツトを銅製冷却板に接合
する方法において、そのターゲツトの表面に順
次、亜鉛、ニツケル、銅および錫の各薄膜を被覆
する一方、冷却板の表面に錫の薄膜を被覆し、つ
いでこれらのターゲツトと冷却板にそれぞれ被覆
された錫の薄膜の間にシート状のろうを挟み込ん
だ後、真空中または不活性ガス雰囲気中、加熱下
において前記ターゲツトと冷却板とを互に圧接す
ることによつて前記ターゲツトを前記冷却板に接
合することを特徴とする、上記接合方法。
1. In a method for joining a sputtering target made of aluminum or aluminum alloy to a copper cooling plate, the surface of the target is coated with thin films of zinc, nickel, copper, and tin in sequence, while the surface of the cooling plate is coated with thin films of tin. After coating the targets and the cooling plate with a thin film, a sheet of solder is sandwiched between the thin films of tin coated on the targets and the cooling plate, and then the targets and the cooling plate are heated in a vacuum or an inert gas atmosphere. The above-mentioned joining method is characterized in that the target is joined to the cooling plate by pressing the targets together.
JP23479084A 1984-11-07 1984-11-07 Method of joining target for sputtering to cooling plate Granted JPS61115667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23479084A JPS61115667A (en) 1984-11-07 1984-11-07 Method of joining target for sputtering to cooling plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23479084A JPS61115667A (en) 1984-11-07 1984-11-07 Method of joining target for sputtering to cooling plate

Publications (2)

Publication Number Publication Date
JPS61115667A JPS61115667A (en) 1986-06-03
JPH0338943B2 true JPH0338943B2 (en) 1991-06-12

Family

ID=16976422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23479084A Granted JPS61115667A (en) 1984-11-07 1984-11-07 Method of joining target for sputtering to cooling plate

Country Status (1)

Country Link
JP (1) JPS61115667A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586462A (en) * 1991-06-28 1993-04-06 Mitsubishi Materials Corp Target for sputtering and its manufacture
JP3983862B2 (en) * 1997-10-24 2007-09-26 Dowaホールディングス株式会社 Sputtering target and its joining method and joining apparatus
WO2008041350A1 (en) * 2006-09-29 2008-04-10 Kabushiki Kaisha Toshiba Joint with first and second members with a joining layer located therebetween containing sn metal and another metallic material; methods for forming the same joint
JP5546369B2 (en) * 2010-06-25 2014-07-09 千住金属工業株式会社 Electrode for power storage device, manufacturing method thereof and connection method thereof
JP6854306B2 (en) * 2019-02-12 2021-04-07 Jx金属株式会社 Sputtering target-backing plate joint

Also Published As

Publication number Publication date
JPS61115667A (en) 1986-06-03

Similar Documents

Publication Publication Date Title
US4988035A (en) Method of liquid phase diffusion bonding of metal bodies
CA1284898C (en) Titanium-copper-nickel braze filler metal
US4643875A (en) Tin based ductile brazing alloys
KR960010166B1 (en) Diffusion-bonded sputtering target assembly and method of manufacturing the same
US4451972A (en) Method of making electronic chip with metalized back including a surface stratum of solder
Quan et al. Tensile behavior of Pb-Sn solder/Cu joints
JPH07504945A (en) Method for joining sputter target backing plate assemblies and assemblies produced thereby
MXPA01011258A (en) Brazing sheet product and method of its manufacture.
JPH0217509B2 (en)
JP2003526519A (en) Brazing sheet product and method of manufacturing an assembly using the brazing sheet product
US4448605A (en) Ductile brazing alloys containing reactive metals
US3393446A (en) Method for joining aluminum to metals
JPH0338943B2 (en)
US4606981A (en) Ductile brazing alloys containing reactive metals
JPH0748667A (en) Sputtering target having high joining strength
JPH0263680A (en) Method of forming solder coating to metallized material
US5664723A (en) Brazing technology
US3581382A (en) Diffusion brazing of aluminum and aluminum base alloys
US20040060962A1 (en) Method of joining surfaces
JPH0867978A (en) Method for soldering target for sputtering
US3683488A (en) Methods of bonding metals together
JP3629578B2 (en) Ti-based material and Cu-based bonding method
US3393447A (en) Fluxless brazing of aluminum
JPH0677805B2 (en) Bonding method for targets for sputtering
JP2006509636A (en) Brazing sheet product and manufacturing method thereof