JPH0338692Y2 - - Google Patents

Info

Publication number
JPH0338692Y2
JPH0338692Y2 JP5319185U JP5319185U JPH0338692Y2 JP H0338692 Y2 JPH0338692 Y2 JP H0338692Y2 JP 5319185 U JP5319185 U JP 5319185U JP 5319185 U JP5319185 U JP 5319185U JP H0338692 Y2 JPH0338692 Y2 JP H0338692Y2
Authority
JP
Japan
Prior art keywords
sensor
core
steel plate
sensor element
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5319185U
Other languages
Japanese (ja)
Other versions
JPS61170067U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5319185U priority Critical patent/JPH0338692Y2/ja
Publication of JPS61170067U publication Critical patent/JPS61170067U/ja
Application granted granted Critical
Publication of JPH0338692Y2 publication Critical patent/JPH0338692Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、走行中の鋼板の非金属介在物等の疵
検出に好適な欠陥検出センサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a defect detection sensor suitable for detecting defects such as non-metallic inclusions in a running steel plate.

〔従来の技術〕[Conventional technology]

鋼板を磁化すると疵部で漏洩磁束が発生するの
で、この漏洩磁束を検知することにより鋼板の疵
を検出することができる。漏洩磁束を検知するに
はホール素子、SMD磁気ダイオード、薄膜磁気
抵抗素子、テープレコーダ等の磁気ヘツドなどが
あるが、かゝるセンサと鋼板とは0.2mm程度に接
近させる必要があり、しかし接近していると鋼板
破断時に損傷しやすいという問題がある。
When a steel plate is magnetized, leakage magnetic flux is generated at the flawed portion, so by detecting this leakage magnetic flux, it is possible to detect flaws in the steel plate. To detect leakage magnetic flux, Hall elements, SMD magnetic diodes, thin film magnetoresistive elements, magnetic heads of tape recorders, etc. are used, but such sensors and steel plates need to be placed close to each other by about 0.2 mm, but If so, there is a problem that the steel plate is easily damaged when it breaks.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

薄板製造設備などでは鋼板を1200mpmなどの
高速で走行させ、加減速も多いので、鋼板破断事
故が発生しやすく、鋼板が破断するとセンサ表面
は強烈な掻きむしりや機械的衝撃を受け、破損す
る恐れがある。
In thin plate manufacturing equipment, steel plates are run at high speeds such as 1200mpm, and there are many accelerations and decelerations, so accidents that break the steel plate are likely to occur.If the steel plate breaks, the sensor surface will be subjected to intense scratching or mechanical shock, and there is a risk of damage. be.

それ故本考案は、高速通板ラインに設置しても
損傷しにくゝ、製作容易で耐熱性に優れ、均一感
度の特性を有する検出センサを提供しようとする
ものである。
Therefore, the present invention aims to provide a detection sensor that is not easily damaged even when installed in a high-speed sheet threading line, is easy to manufacture, has excellent heat resistance, and has characteristics of uniform sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は、漏洩磁束法による鋼板の欠陥検出用
センサにおいて、U字型のコアにコイルを巻装
し、該コアの両脚端をコイルより突出させ、該突
出両脚端の間隔は検出すべき欠陥の長さに一致さ
せたセンサ素子を複数個、共通のスペースバーに
前記突出両端を挿入して並べ、かゝるセンサ素子
群を複数個、各々のセンサ素子が千鳥状になるよ
うに並列し、端面開放のケースに入れてモールド
し、該端面を研削して各センサ素子のコア両脚端
面が同一平面で整列するようにしてなることを特
徴とするものである。
The present invention is a sensor for detecting defects in steel plates using the magnetic flux leakage method, in which a coil is wound around a U-shaped core, both leg ends of the core are made to protrude from the coil, and the distance between the protruding leg ends is determined by the defect to be detected. A plurality of sensor elements whose lengths match the length of the sensor elements are inserted into a common space bar with both protruding ends inserted, and a plurality of such sensor element groups are arranged in parallel so that each sensor element is staggered. The sensor element is characterized in that it is molded in a case with open end faces, and the end faces are ground so that the end faces of both core legs of each sensor element are aligned on the same plane.

〔実施例〕〔Example〕

図面を参照しながら説明すると、第1図は本考
案に係る欠陥検出センサの1要素を示し、1はコ
字型のコアで1枚の珪素鋼板を曲げて作られる。
2及び3はコア1の両脚に巻装されるコイルで、
同じ巻回数とされかつコア1を通る磁束の変化に
よる誘起電圧が和動する極性で直列に接続され
る。コア1の両脚の間隔dは、検出すべき微小欠
陥の長さ又は幅に合わせて微小とする。第3図
は、鋼板Sの検出すべき欠陥DFの長さが0.5〜2.5
mmなので、これに合わせて間隔dを最大分布長さ
に設定した例を示す。コア1はコイル2,3より
長さLだけ突出するようにし、この突出部分に非
磁性のスペースバー4を挿入する。
To explain with reference to the drawings, FIG. 1 shows one element of a defect detection sensor according to the present invention, and 1 is a U-shaped core made by bending a single silicon steel plate.
2 and 3 are coils wound around both legs of core 1;
They have the same number of turns and are connected in series with polarity such that the induced voltage due to changes in magnetic flux passing through the core 1 is summed. The distance d between the legs of the core 1 is set to be small according to the length or width of the micro defect to be detected. Figure 3 shows that the length of defect DF to be detected in steel plate S is 0.5 to 2.5.
mm, so an example will be shown in which the interval d is set to the maximum distribution length accordingly. The core 1 is made to protrude from the coils 2 and 3 by a length L, and a nonmagnetic space bar 4 is inserted into this protruding portion.

コイル2,3を巻装したコア1つまりセンサ素
子は多数並設され、これらのコア1の両脚延長部
にスペースバー4が通り、第2図aの如くなる。
1a,1b,1c,……はコア1で、添字a,b,
c,……は相互を区別するものである。このよう
なスペースバー4を挿通したコイル巻装コア1
a,1b,……は2組設けられ、各々はコア位置
が千鳥状にずれるように置かれる。第2図bはこ
れを示す図で、1a′,1b′,……及び4′はもう
一方のコア及びスペースバーであり、コア1a′,
1b′,……は本例ではコア1a,1b,……の間
にくるように置かれる。このように並べられたコ
ア等は、第4図に示すように両端面開放の非磁性
ケース5に挿入され、樹脂6などを注入されてモ
ールドされ、一体に固められる。その後端面(検
出面)を研削して平坦化し、全てのセンサのコア
1の端面が露出し、鋼板面と均一な微小間隔を介
して対向可能とされる。
A large number of cores 1 wound with coils 2 and 3, that is, sensor elements, are arranged in parallel, and a space bar 4 passes through the extensions of both legs of these cores 1, as shown in FIG. 2a.
1a, 1b, 1c, ... are core 1, and subscripts a, b,
c, . . . are used to distinguish them from each other. Coil-wrapped core 1 with such a space bar 4 inserted through it
Two sets of a, 1b, . . . are provided, and the core positions of each are staggered. FIG. 2b shows this, in which 1a', 1b', ... and 4' are the other core and space bar, and the cores 1a',
In this example, cores 1b', . . . are placed between cores 1a, 1b, . The cores and the like arranged in this manner are inserted into a non-magnetic case 5 with both ends open as shown in FIG. 4, and are injected with resin 6 and molded to be solidified into one piece. After that, the end surfaces (detection surfaces) are ground and flattened, so that the end surfaces of the cores 1 of all the sensors are exposed and can face the steel plate surface at uniform minute intervals.

こうしてなるセンサ10を用いての欠陥検出は
例えば第5図に示すようにして行なう。11は非
磁性中空ロール、12は補助ロールで、これらは
図示のように走行する鋼板Sを上下から抑え、そ
の位置を一定にする。こうして位置一定すればセ
ンサ10の端面を鋼板Sの表面と微小間隙を介し
て対向させることが容易になる。図示しないがセ
ンサ10は、空気などの流体を噴出して鋼板Sと
の間に間隙を作る流体浮上ボートに取付けるとよ
い。中空ロール11の内部には鋼板Sの磁化装置
13を収容する。ロール11,12は鋼板Sの移
動で回転するが、磁化装置13は回転せず、図示
状態を保つ。即ちこの磁化装置は鋼板幅方向に延
びる一対の平行なN極とS極を持ち、これらの
N,S極は鋼板長さ方向に並ぶので、該鋼板を長
さ方向に磁化する。磁化する範囲は勿論、該N,
S極が存在する鋼板幅方向及び長さ方向領域とそ
の近傍である。
Defect detection using this sensor 10 is performed, for example, as shown in FIG. 11 is a non-magnetic hollow roll, and 12 is an auxiliary roll, which hold down the traveling steel plate S from above and below as shown in the figure, and keep the position constant. By keeping the position constant in this way, it becomes easy to make the end face of the sensor 10 face the surface of the steel plate S with a small gap therebetween. Although not shown, the sensor 10 may be attached to a fluid floating boat that blows out fluid such as air to create a gap between the boat and the steel plate S. A magnetizing device 13 for the steel sheet S is housed inside the hollow roll 11 . The rolls 11 and 12 rotate as the steel plate S moves, but the magnetization device 13 does not rotate and maintains the state shown in the figure. That is, this magnetizing device has a pair of parallel N and S poles extending in the width direction of the steel sheet, and since these N and S poles are aligned in the length direction of the steel sheet, the steel sheet is magnetized in the length direction. Of course, the range of magnetization is the N,
This is the region in the width direction and length direction of the steel sheet where the S pole exists and its vicinity.

このような磁化をすると第3図の疵DFはその
長さ方向の両端がN,S極となり、外部に漏洩磁
束を生じる。この漏洩磁束はセンサ10のコア1
aまたは1a′等に直下にきたとき、U字形の該コ
アを通り、このときコイル2a,3a等に電圧を
誘起し、これが欠陥検出信号となる。コア1a,
1a′,……を千鳥配置にすると、鋼板幅方向全体
に亘つてコア1a,1a′,……のいずれかが存在
することになり、疵が鋼板の何処にあつても検出
可能になる。
When magnetized in this way, the flaw DF shown in FIG. 3 becomes N and S poles at both ends in the length direction, causing leakage magnetic flux to the outside. This leakage magnetic flux is caused by the core 1 of the sensor 10.
When it comes directly below a or 1a', etc., it passes through the U-shaped core and induces a voltage in the coils 2a, 3a, etc., which becomes a defect detection signal. Core 1a,
If the cores 1a', . . . are arranged in a staggered manner, any one of the cores 1a, 1a', .

U字形のコア1は両脚部の間隔dを小にすると
S/Nをよくすることができる。即ち疵DFによ
る漏洩磁界によりコア1を通る磁束は第3図の実
線矢印方向(又はその逆方向)であり、この方向
で磁束が通るときコイル2,3に誘起する電圧が
和動するように該コイルが接続されているので、
例えば点線矢印で示す方向の外部磁界Nφにより
コイル2,3に誘起する電圧は互いに差動し、従
つてノイズ成分は小になる。外部磁界Nφは一般
に不均一で、方向も変るが、コア1の両脚部が接
近していればいる程、同じ方向及び大きさの外部
磁界を受けコイル2,3の誘起電圧が同じになつ
て互いに打消し合い易くなる。
The S/N ratio of the U-shaped core 1 can be improved by reducing the distance d between both legs. In other words, the magnetic flux passing through the core 1 due to the leakage magnetic field due to the flaw DF is in the direction of the solid arrow in Fig. 3 (or the opposite direction), and when the magnetic flux passes in this direction, the voltages induced in the coils 2 and 3 are summed. Since the coil is connected,
For example, the voltages induced in the coils 2 and 3 by the external magnetic field Nφ in the direction indicated by the dotted arrow are differentially generated, so that the noise component becomes small. The external magnetic field Nφ is generally non-uniform and changes in direction, but the closer the legs of the core 1 are, the more the induced voltages in the coils 2 and 3 become the same as they receive the external magnetic field in the same direction and magnitude. They tend to cancel each other out.

疵DFによるコイル2,3の誘起電圧(信号S
成分)は微小なので、外部磁界による誘起電圧は
問題である。例えば外部磁界によるコイル2,3
の誘起電圧は10mV、疵DFによる出力電圧(コ
イル2,3の誘起電圧の和)は100μV程度であ
り、外部磁界によるコイル2,3の誘起電圧を差
動にしてこれをほゞ0にすることができればよい
が、1%のアンバランスがあつてコイル2,3の
誘起電圧は一方が10.1mV、他方が10mVとする
とノイズ出力は100μVとなり、信号電圧と同じに
なつてしまう。コア1の両脚部を接近させて、ア
ンバランスを小にする意識は大きい。勿論、余り
に接近させて疵DFの長さ以下にすると信号電圧
が小になるから、両脚部の間隔dは微小な特定欠
陥長に同調させるのがよい。
Induced voltage in coils 2 and 3 due to flaw DF (signal S
component) is minute, so the induced voltage caused by an external magnetic field is a problem. For example, coils 2 and 3 due to external magnetic field
The induced voltage of is 10 mV, and the output voltage due to the flaw DF (the sum of the induced voltages of coils 2 and 3) is about 100 μV, and the induced voltage of coils 2 and 3 due to the external magnetic field is made differential to reduce this to almost 0. However, if there is a 1% imbalance and the induced voltage in coils 2 and 3 is 10.1 mV on one side and 10 mV on the other, the noise output will be 100 μV, which will be the same as the signal voltage. There is a great deal of awareness to bring the legs of core 1 closer together to minimize imbalance. Of course, if they are brought too close to each other so that the length of the flaw DF is less than the length of the flaw DF, the signal voltage will become small, so it is preferable that the distance d between both legs is tuned to the length of a minute specific flaw.

このセンサ10は、コアがコイルより長さLだ
け突出しており、このコア突出部にスペースバー
4が挿通され、ケース5に入れられてモールドさ
れているので、機械的に強固であり、走行中の鋼
板に破断事故が生じても、使用不能となる恐れは
少ない。鋼板Sが加熱されていてセンサが耐熱性
が要求される場合は、コア1に巻装するコイル
2,3を耐熱性とし、またケース5に注入してコ
ア群を固定するモールド材料に耐熱性のものを使
用するとよい。
This sensor 10 has a core that protrudes from the coil by a length L, and the space bar 4 is inserted into this core protrusion, and the sensor 10 is placed in a case 5 and molded, so it is mechanically strong and is stable during driving. Even if a breakage accident occurs in a steel plate, there is little risk that it will become unusable. If the steel plate S is heated and the sensor is required to be heat resistant, the coils 2 and 3 wrapped around the core 1 should be heat resistant, and the molding material injected into the case 5 to fix the core group should be heat resistant. It is better to use the one from

センサ10の長さが鋼板Sの幅以下の場合は、
センサ10を複数個鋼板幅方向に並べて使用す
る、等の方法をとり、またセンサの各コイルはブ
リツジの1脚とする、等の適宜の回路構成をとつ
てよい。コア1の幅dは検出すべき欠陥の長さ
(大きさ)に合せるが、このようにすると感度が
高まる。種々の長さの欠陥がある場合は、間隔d
が異なるセンサを複数種用意しておくとよい。
If the length of the sensor 10 is less than or equal to the width of the steel plate S,
An appropriate circuit configuration may be used, such as using a plurality of sensors 10 arranged in the width direction of the steel plate, or using each coil of the sensor as one leg of a bridge. The width d of the core 1 is adjusted to the length (size) of the defect to be detected, which increases the sensitivity. If there are defects of various lengths, the spacing d
It is better to prepare multiple types of sensors with different values.

〔考案の効果〕 以上説明したように本考案によれば、漏洩磁束
検出法による鋼板欠陥検出用センサとして強固
で、感度が高く、加工が容易であり、第5図に示
した磁化装置と組合わせると鋼板幅方向全体に亘
つて均一な検出感度が得られ、耐熱性付与も容易
などの種々の利点を有するセンサを提供すること
ができる。
[Effects of the invention] As explained above, according to the invention, the sensor is strong, has high sensitivity, and is easy to process as a sensor for detecting defects in steel sheets using the leakage magnetic flux detection method, and can be combined with the magnetization device shown in Fig. 5. When combined, it is possible to provide a sensor that has various advantages such as uniform detection sensitivity over the entire width direction of the steel plate and easy provision of heat resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るセンサ素子の構造を示す
斜視図、第2図はセンサ素子の配列状態を説明す
る図でaは側面図、bは端面図、第3図はセンサ
素子のコア間隔の説明図、第4図はセンサ素子群
をモールドした状態を示す斜視図、第5図は欠陥
検出装置の説明図である。
Figure 1 is a perspective view showing the structure of the sensor element according to the present invention, Figure 2 is a diagram explaining the arrangement of the sensor elements, where a is a side view, b is an end view, and Figure 3 is the core spacing of the sensor element. FIG. 4 is a perspective view showing a state in which the sensor element group is molded, and FIG. 5 is an explanatory view of the defect detection device.

Claims (1)

【実用新案登録請求の範囲】 漏洩磁束法による鋼板の欠陥検出用センサにお
いて、 U字型のコアにコイルを巻装し、該コアの両脚
端をコイルより突出させ、該突出両脚端の間隔は
検出すべき欠陥の長さに一致させたセンサ素子を
複数個、共通のスペースバーに前記突出両端を挿
入して並べ、かゝるセンサ素子群を複数個、各々
のセンサ素子が千鳥状になるように並列し、端面
開放のケースに入れてモールドし、該端面を研削
して各センサ素子のコア両脚端面が同一平面で整
列するようにしてなることを特徴とする鋼板の欠
陥検出用センサ。
[Claims for Utility Model Registration] A sensor for detecting defects in steel plates using the magnetic flux leakage method, in which a coil is wound around a U-shaped core, both leg ends of the core protrude from the coil, and the distance between the two protruding leg ends is A plurality of sensor elements whose length matches the length of the defect to be detected are lined up by inserting both of the protruding ends into a common space bar, and a plurality of such sensor element groups are arranged so that each sensor element is staggered. A sensor for detecting defects in a steel plate, characterized in that the sensor elements are arranged in parallel, placed in a case with open ends and molded, and the end faces are ground so that the end faces of both core legs of each sensor element are aligned on the same plane.
JP5319185U 1985-04-10 1985-04-10 Expired JPH0338692Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319185U JPH0338692Y2 (en) 1985-04-10 1985-04-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319185U JPH0338692Y2 (en) 1985-04-10 1985-04-10

Publications (2)

Publication Number Publication Date
JPS61170067U JPS61170067U (en) 1986-10-22
JPH0338692Y2 true JPH0338692Y2 (en) 1991-08-15

Family

ID=30573823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319185U Expired JPH0338692Y2 (en) 1985-04-10 1985-04-10

Country Status (1)

Country Link
JP (1) JPH0338692Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151094A (en) * 2002-10-15 2004-05-27 General Electric Co <Ge> Test probe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083117A (en) * 2010-10-07 2012-04-26 Lasertec Corp Inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004151094A (en) * 2002-10-15 2004-05-27 General Electric Co <Ge> Test probe
JP4503972B2 (en) * 2002-10-15 2010-07-14 ゼネラル・エレクトリック・カンパニイ Test probe

Also Published As

Publication number Publication date
JPS61170067U (en) 1986-10-22

Similar Documents

Publication Publication Date Title
US6057684A (en) Magnetic flaw detection apparatus using an E-shaped magnetic sensor and high-pass filter
JP3457102B2 (en) Magnetic position sensor
US4891992A (en) Torque detecting apparatus
US5278500A (en) Planar, core saturation principle, low flux magnetic field sensor
JP2002195984A (en) Magnetic leakage detecting sensor for magnetic test device
JPH02201117A (en) Apparatus for detecting motion of member
JPH0338692Y2 (en)
JPH06294850A (en) Method and apparatus for measuring weak magnetism and non-destructive inspecting method using the same
JP3584452B2 (en) Micro defect detector
JPH0341795B2 (en)
GB1378505A (en) Detection of electrical or magnetic properties of metal strip
JPH08193980A (en) Method and device for magnetic flaw detection
JPS5910499B2 (en) Magnetic flaw detection equipment for steel cables using magnetically sensitive elements
JPH0628691Y2 (en) Diagnostic device for steel sheet defect detection sensor
JP3618425B2 (en) Magnetic sensor
JP2588034B2 (en) Inductance displacement sensor
JPH03277962A (en) Magnetic flaw detecting apparatus
JPH0481081U (en)
JPS63107849U (en)
JPH0815227A (en) Magnetizing device for steel plate
SU930179A1 (en) Device for checking magnetic properties of ferromagnetic materials
JPH0510980A (en) Current detection method
JPH0288961A (en) Flaw detecting method for metallic wire or the like
JPS609718Y2 (en) Flaw detection coil device
JPH05250506A (en) Reading and discriminating device for magnetic marker