JPH0338026A - Synchrotron radiation aligner - Google Patents
Synchrotron radiation alignerInfo
- Publication number
- JPH0338026A JPH0338026A JP1172778A JP17277889A JPH0338026A JP H0338026 A JPH0338026 A JP H0338026A JP 1172778 A JP1172778 A JP 1172778A JP 17277889 A JP17277889 A JP 17277889A JP H0338026 A JPH0338026 A JP H0338026A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- mirror
- synchrotron radiation
- aligner
- extraction window
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005469 synchrotron radiation Effects 0.000 title claims description 24
- 238000000605 extraction Methods 0.000 claims description 51
- 238000002834 transmittance Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims 2
- 229910052790 beryllium Inorganic materials 0.000 abstract description 14
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052734 helium Inorganic materials 0.000 description 19
- 239000001307 helium Substances 0.000 description 19
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 19
- 238000003860 storage Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高密度集積回路の製造、材料等の分析にシン
クロトロン放射光(以下放射光と呼ぶ)を利用する際に
、X線を取り出すビームラインに揺動可能なXB反射ミ
ラーとX線取り出し窓を有する放射光露光装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to the use of X-rays when synchrotron radiation (hereinafter referred to as synchrotron radiation) is used for manufacturing high-density integrated circuits, analyzing materials, etc. The present invention relates to a synchrotron radiation exposure apparatus having a swingable XB reflection mirror and an X-ray extraction window in an extraction beam line.
(従来の技術)
最近、高出力のX線が得られるX線発生装置として、放
射光が注目され、大気中で集積回路の微細パターン露光
に利用されようとしている。(Prior Art) Recently, synchrotron radiation has attracted attention as an X-ray generator capable of generating high-output X-rays, and is being used to expose fine patterns of integrated circuits in the atmosphere.
しかし、放射光は第2図に示すようにX線の縦方向の広
がりが1mradであり、たとえば、10mのビームラ
インではマスク面上の露光エリアは1cm幅となるのみ
である。垂直方向にX線を広げて露光エリアを大きくす
るためには、■ξミラー動によるエリアの拡大、■アラ
イナ上のマスクとウェハを一定の速度で揺動する方法、
■蓄積リング内でビームを揺動する方法等が考えられて
いる。このような3つの方法のうちで現在は、露光エリ
アの拡大にはミラー揺動による方法が一般的に良く使用
されている。しかし、ミラーにより露光エリアを拡大し
てもX線取り出し窓がアライナのマスク近傍に位置して
いるため、X線取り出し窓を薄くすることができず、X
線の取り出し効率が悪いのが現状である。However, as shown in FIG. 2, the vertical spread of synchrotron radiation is 1 mrad, and for example, in a 10 m beam line, the exposure area on the mask surface is only 1 cm wide. In order to enlarge the exposure area by spreading the X-rays in the vertical direction, there are two methods: ■ Enlarging the area by ξ mirror movement, ■ Swinging the mask and wafer on the aligner at a constant speed,
■Methods such as swinging the beam within the storage ring are being considered. Of these three methods, currently, the method using mirror swinging is commonly used to enlarge the exposure area. However, even if the exposure area is expanded using a mirror, the X-ray extraction window is located near the aligner mask, so it is not possible to make the X-ray extraction window thinner.
The current situation is that the wire extraction efficiency is poor.
第3図はX線露光に使用されるビームラインの構成の一
例である。lは蓄積リング、2は放射光、3はX線反射
ミラー、4はミラーの位置決めと11動するくラー駆動
機構、5はX線取り出し窓、6は露光用アライナ、7は
マスク、8はミラーチャンバ、9はビームライン、lO
は真空へローズ、11はミラー駆動機構4とごラーを連
結する連結棒、12はミラーは動するためのミラー揺動
棒である。放射光露光装置は、蓄積リング1 % lジ
−チャンバ8、X線取り出し窓5、等から成るビームラ
イン9、そして、マスク7をアライメントする露光用ア
ライナ6から構成されている。FIG. 3 shows an example of the configuration of a beam line used for X-ray exposure. 1 is a storage ring, 2 is a synchrotron radiation beam, 3 is an X-ray reflecting mirror, 4 is a mirror positioning mechanism and a roller drive mechanism that moves 11, 5 is an X-ray extraction window, 6 is an exposure aligner, 7 is a mask, and 8 is a Mirror chamber, 9 beam line, lO
11 is a connecting rod connecting the mirror drive mechanism 4 and the mirror, and 12 is a mirror swinging rod for moving the mirror. The radiation exposure apparatus is composed of a beam line 9 consisting of a storage ring 1% l g-chamber 8, an X-ray extraction window 5, etc., and an exposure aligner 6 for aligning a mask 7.
蓄積リング1から出た放射光2はX線反射ミラー3で反
射され、X線反射ミラー3の揺動によって一定の幅で揺
動される。くラーは一般に3軸あるいは6軸駆動ができ
るようになっており、そのうちの1軸が揺動軸となって
いる。いま、6軸駆動の場合、ビームの進行方向成分を
X、その水平方向直角成分をY、上下方向成分をZ11
成分の回転をそれぞれα、β、Tとすると、α軸がビー
ムの揺動軸となる。一方、蓄積リング1、ミラーチャン
バ8、ビームライン9は10−’ Torrの超高真空
となっており、超高真空と大気とを隔てるX線取り出し
窓5が必要である。X線取り出し窓5にはX線透過率の
高いベリリウムが一般に用いられている。X線取り出し
窓5のベリリウムは大気でのX線の減衰を少なくするた
め、マスク7の近傍にあり、露光エリアの拡大からその
面積は30mm角が要求されている。また、304s角
の大きさで1気圧の強度を持たせるためには、1100
u以上の膜厚が必要である。しかし、膜厚1100uで
は、波長8入でX線透過率が5%であり、ベリリウム膜
だけでX線強度が1/20に減衰してしまう(ベリリウ
ム膜以外ではもっと減衰してしまう)。このように、従
来は露光エリア確保の為、大きなベリリウム膜が必要で
あり、上述のような大きなベリリウム膜に超高真空と大
気とを隔てるだけの強度をもたせようとすると膜厚が厚
くなり、X線透過率が悪くなるため、ある一定以上の露
光エリアをもち十分なX線強度をもつ放射光露光装置は
従来なかった。The synchrotron radiation 2 emitted from the storage ring 1 is reflected by the X-ray reflecting mirror 3, and is oscillated in a constant width by the oscillation of the X-ray reflecting mirror 3. A wheeler is generally capable of driving on 3 or 6 axes, one of which is a swing axis. Now, in the case of 6-axis drive, the beam traveling direction component is X, its horizontal direction perpendicular component is Y, and the vertical direction component is Z11.
Letting the rotations of the components be α, β, and T, respectively, the α axis becomes the swing axis of the beam. On the other hand, the storage ring 1, mirror chamber 8, and beam line 9 are in an ultra-high vacuum of 10-' Torr, and an X-ray extraction window 5 is required to separate the ultra-high vacuum from the atmosphere. For the X-ray extraction window 5, beryllium, which has high X-ray transmittance, is generally used. The beryllium of the X-ray extraction window 5 is located near the mask 7 in order to reduce the attenuation of X-rays in the atmosphere, and its area is required to be 30 mm square in order to expand the exposure area. In addition, in order to have a strength of 1 atm with a size of 304s square, 1100
A film thickness of u or more is required. However, with a film thickness of 1100 μ, the X-ray transmittance is 5% at a wavelength of 8, and the X-ray intensity is attenuated to 1/20 by the beryllium film alone (other than the beryllium film attenuates more). In this way, in the past, a large beryllium film was required to secure the exposure area, and if a large beryllium film like the one mentioned above was to have enough strength to separate the ultra-high vacuum from the atmosphere, the film would become thicker. Since the X-ray transmittance deteriorates, there has been no synchrotron radiation exposure apparatus that has an exposure area larger than a certain level and has sufficient X-ray intensity.
(発明が解決しようとする課題)
本発明は、一定以上の露光エリアをもち、ビームライン
でのX線の減衰の小さい放射光露光装置を実現しようと
するものである。(Problems to be Solved by the Invention) The present invention aims to realize a synchrotron radiation exposure apparatus that has an exposure area of a certain size or more and has a small attenuation of X-rays at a beam line.
(課題そ解決しようとする手段)
本発明は、X線を取り出すためのX線取り出し窓を帰動
可能なX線反射ミラーの直後に設置してXM取り出し窓
の大きさを小さくすることを特徴とする。(Means for Solving the Problem) The present invention is characterized in that an X-ray extraction window for extracting X-rays is installed immediately after a movable X-ray reflecting mirror to reduce the size of the XM extraction window. shall be.
(作用)
X線反射ミラーの直後にX線取り出し窓をもってきたた
め窓を小さくしても十分な露光エリアがとれる。また、
窓が小さいので窓の膜厚を従来より薄くしてX線透過率
を向上させても、ミラーチャンバとマスクを圧力的に隔
てるのに十分な膜の強度を得られる。(Function) Since the X-ray extraction window is placed immediately after the X-ray reflection mirror, a sufficient exposure area can be obtained even if the window is made small. Also,
Since the window is small, even if the film thickness of the window is made thinner than before to improve X-ray transmittance, the film can have sufficient strength to pressure-separate the mirror chamber and the mask.
(実施例)
第1図は本発明の実施例の放射光露光装置の構成の一例
であり、lは蓄積リング、2は放射光、3はX線反射ミ
ラー、4はミラーの位置決めと揺動するミラー駆動機構
、5はX線取り出し窓、6は露光用アライナ、7はマス
ク、8!よミラーチャンバ、9はビームライン、10は
真空ベローズ、11は逅う−駆動機構とミラーを連結す
る連結棒、12はミラー揺動棒
ミラー揺動棒、13はヘリウムパイプである。(Embodiment) Fig. 1 shows an example of the configuration of a synchrotron radiation exposure apparatus according to an embodiment of the present invention, where l is a storage ring, 2 is a synchrotron radiation beam, 3 is an X-ray reflecting mirror, and 4 is mirror positioning and rocking. 5 is an X-ray extraction window, 6 is an exposure aligner, 7 is a mask, 8! 1 is a mirror chamber, 9 is a beam line, 10 is a vacuum bellows, 11 is a connecting rod that connects the drive mechanism and the mirror, 12 is a mirror swing rod, and 13 is a helium pipe.
放射光露光装置は蓄積リングlとミラーチャンバ8、X
線取り出し窓5、等から成るビームライン9、そして、
露光用アライナ6から構成されている。X線取り出し窓
5は一般にX線透過率が高く、比較的強度の強いベリリ
ウムが使用されている。蓄積リング1から出た放射光2
はX線反射ミラー3で反射される。X線反射ミラー3は
ミラー駆動機構4と真空ベローズ10、連結棒11を介
して連結されており、ごラー駆動機構4によりX線が露
光用アライナ6のマスク7上に来るようにX線反射ミラ
ー3の位置を調整する。X線反射ミラー3から出たX線
は、そのX線反射ミラー3の位置を調整する。X線反射
ミラー3から出たX線は、そのX線反射ミラー3の極く
近傍に位置するX線取り出し窓5を通り、さらにヘリウ
ムパイプ13を通って、露光用アライナ6のマスク7上
に到達する。ヘリウムパイプ13中のヘリウムは1気圧
で、透過率は空気の約260倍である。また、X線反射
ミラー3は業う−帰動棒12でミラー駆動機構4と接続
されており、ミラー駆動機構4内に持つ揺動機構により
揺動される。このX線反射ミラーの揺動によって露光エ
リアが拡大される。本実施例では露光用アライナ6はマ
スク7を含む露光系がヘリウム中にあり、ヘリウム中露
光が可能となっている。いま、第4図はX線反射ミラー
3とX線取り出し窓5、マスク7の位置関係を示したも
ので、X線反射ミラー3とマスク7の位置が1mとしX
線取り出し窓5がX線反射ミラー3の中心から30cm
の位置にあり、露光位置で30mm幅で揺動するとX線
取り出し窓5の幅は10−程度で良いことになる。した
がって、X線取り出し窓5の大きさは露光エリア30I
III11角でも10auaX30mmの大きさで良く
、X線取り出し窓5すなわちベリリウムの厚さを極力薄
くすることが、可能である。本実施例ではベリリウムの
膜厚を20uI11とし透過率は50%以上である。な
お、横方向も従来窓よりも小さくできるので従来と同じ
露光エリアであれば、横方向の大きさも30.mm以下
の大きさでよい。このようにX線取り出し窓5のへリリ
ウムの膜厚を薄くすることにより、ビームライン9での
X線透過率が高くなり、X線取り出し効率が向上する。The synchrotron radiation exposure device includes a storage ring l and mirror chambers 8 and
A beam line 9 consisting of a line extraction window 5, etc., and
It is composed of an aligner 6 for exposure. The X-ray extraction window 5 is generally made of beryllium, which has a high X-ray transmittance and is relatively strong. Synchrotron radiation 2 emitted from storage ring 1
is reflected by the X-ray reflecting mirror 3. The X-ray reflecting mirror 3 is connected to a mirror drive mechanism 4 via a vacuum bellows 10 and a connecting rod 11. Adjust the position of mirror 3. The X-rays emitted from the X-ray reflecting mirror 3 adjust the position of the X-ray reflecting mirror 3. The X-rays emitted from the X-ray reflection mirror 3 pass through the X-ray extraction window 5 located very close to the X-ray reflection mirror 3, and then pass through the helium pipe 13 and onto the mask 7 of the exposure aligner 6. reach. The helium in the helium pipe 13 has a pressure of 1 atm and a permeability that is approximately 260 times that of air. Further, the X-ray reflecting mirror 3 is connected to a mirror drive mechanism 4 through a return rod 12, and is swung by a swing mechanism provided within the mirror drive mechanism 4. The exposure area is expanded by this swinging of the X-ray reflecting mirror. In this embodiment, the exposure aligner 6 has an exposure system including a mask 7 in helium, making it possible to perform exposure in helium. Now, Fig. 4 shows the positional relationship between the X-ray reflection mirror 3, the X-ray extraction window 5, and the mask 7.
The radiation extraction window 5 is 30 cm from the center of the X-ray reflection mirror 3.
If the X-ray extraction window 5 is located at the position , and swings by a width of 30 mm at the exposure position, the width of the X-ray extraction window 5 may be about 10 mm. Therefore, the size of the X-ray extraction window 5 is the exposure area 30I.
The size of the X-ray extraction window 5, that is, the thickness of the beryllium, can be made as thin as possible since the size of the X-ray extraction window 5, that is, the thickness of the beryllium, can be made as thin as possible. In this example, the beryllium film thickness is 20 μI11, and the transmittance is 50% or more. In addition, since the horizontal direction can also be made smaller than conventional windows, if the exposure area is the same as conventional windows, the horizontal size will also be 30. The size may be less than mm. By reducing the helium film thickness of the X-ray extraction window 5 in this manner, the X-ray transmittance at the beam line 9 is increased, and the X-ray extraction efficiency is improved.
もちろん、ヘリウムパイプ13の中は露光用アライナ6
が減圧ヘリウム中で使用可能な装置であれば、減圧ヘリ
ウムでも良く、さらにX線取り出し効率の向上が望める
。また、減圧ヘリウムとすることでX線取り出し窓5か
らリークする可能性も減少し安定なX線の取り出しが可
能である。X線取り出し窓5にベリリウムの金属膜を中
心に述べてきたが、SiN膜、SiC膜、BN膜等の無
機膜、ポリイミド、ポリエステル等の有機膜でも同様で
ある。Of course, inside the helium pipe 13 is the exposure aligner 6.
As long as the device can be used in reduced pressure helium, reduced pressure helium may be used, and further improvement in X-ray extraction efficiency can be expected. Further, by using reduced pressure helium, the possibility of leakage from the X-ray extraction window 5 is reduced, and stable extraction of X-rays is possible. Although we have mainly described a metal film of beryllium for the X-ray extraction window 5, the same applies to inorganic films such as SiN film, SiC film, and BN film, and organic films such as polyimide and polyester.
次に本発明の他の実施例について述べる。Next, other embodiments of the present invention will be described.
第5図は露光用アライナ6が大気中露光装置の場合の実
施例であり、1は蓄積リング、2は放射光、3はX線反
射ミラー、4は旦う−の位置決めと揺動するミラー駆動
機構、6はn光用アライナ、7はマスク、8はミラーチ
ャンバ、9はビームライン、13はヘリウムパイプ、1
4は第−X線取り出し窓、15は第二X線取り出し窓で
ある。FIG. 5 shows an embodiment in which the exposure aligner 6 is an atmospheric exposure device, where 1 is a storage ring, 2 is a synchrotron radiation beam, 3 is an X-ray reflecting mirror, and 4 is a mirror for positioning and swinging. Drive mechanism, 6 is an n-light aligner, 7 is a mask, 8 is a mirror chamber, 9 is a beam line, 13 is a helium pipe, 1
4 is a first X-ray extraction window, and 15 is a second X-ray extraction window.
放射光露光装置は前の実施例と同様に蓄積リング1とミ
ラーチャンバ7、X線取り出し窓1415、ヘリウムパ
イプ13等から成るビームライン9、そして、露光用ア
ライナ6から構成されている。蓄積リング1から出た放
射光2はX線反射ミラー3で反射し、X線反射ミラー3
の近傍に位置された第一のX線取り出し窓14を通り、
ヘリウムパイプ13、第二X線取り出し窓15を通って
アライナ6のマスク7上に到達して露光に寄与される。The synchrotron radiation exposure apparatus is composed of a storage ring 1, a mirror chamber 7, an X-ray extraction window 1415, a beam line 9 consisting of a helium pipe 13, etc., and an exposure aligner 6, as in the previous embodiment. The synchrotron radiation 2 emitted from the storage ring 1 is reflected by the X-ray reflecting mirror 3, and
passing through the first X-ray extraction window 14 located near the
The light passes through the helium pipe 13 and the second X-ray extraction window 15, reaches the mask 7 of the aligner 6, and contributes to exposure.
蓄積リングlやビームライン13は10−9Torrの
超高真空となっており、露光用アライナ6は大気中にあ
る。1O−97orrの超高真空と大気とはX線取り出
し窓1415で仕切られている。第−X線取り出し窓1
4と第二X線取り出し窓15の間はヘリウムパイプ13
で接続され、ヘリウムパイプ13は1気圧のX線透過率
の高いヘリウムで満たされている。また、第−X線取り
出し窓14には比較的強度の高いベリリウムが使用され
、大気圧のかからない第二X線取り出し窓15には厚さ
1μm程度の有機膜が使用されている。この有機膜は例
えばポリエステルであり、ヘリウムがヘリウムパイプ1
3から逃げない、マスク側から空気が入ってこないもの
であればよい。このように大気圧のかかる第−X線取り
出し窓14は、X線反射ミラー3の近くに位置した構成
となっているため、第1の実施例のX線取り出し窓5と
同様にベリリウムの厚さを薄くでき、ビームライン9で
のX線取り出し効率を高くすることが可能である。The storage ring 1 and the beam line 13 are in an ultra-high vacuum of 10 -9 Torr, and the exposure aligner 6 is in the atmosphere. The ultra-high vacuum of 10-97 orr and the atmosphere are separated by an X-ray extraction window 1415. No.-X-ray extraction window 1
4 and the second X-ray extraction window 15 is a helium pipe 13.
The helium pipe 13 is filled with 1 atm helium with high X-ray transmittance. Furthermore, beryllium, which has relatively high strength, is used for the first X-ray extraction window 14, and an organic film with a thickness of about 1 μm is used for the second X-ray extraction window 15, which is not exposed to atmospheric pressure. This organic film is made of polyester, for example, and the helium pipe 1
It is fine as long as it does not escape from 3 and does not allow air to enter from the mask side. Since the X-ray extraction window 14, which is exposed to atmospheric pressure, is located near the X-ray reflection mirror 3, the beryllium thickness is similar to the X-ray extraction window 5 of the first embodiment. The X-ray extraction efficiency at the beam line 9 can be increased.
(発明の効果)
以上説明したように、本発明のX線反射ミラーの掻く近
傍にX線取り出し窓を設けることによって、露光エリア
を確保しながらX線取り出し窓の大きさを小さくできる
ため、膜厚を薄くすることが可能であり、X線取り出し
効率の向上が図れる。(Effects of the Invention) As explained above, by providing the X-ray extraction window in the vicinity of the X-ray reflection mirror of the present invention, the size of the X-ray extraction window can be reduced while securing the exposure area. The thickness can be reduced, and the X-ray extraction efficiency can be improved.
第1図は本発明の実施例の構成図
第2図はシンクロトン放射光の特徴を示す図第3図は従
来技術の構成図
第4図は本発明のくう−とX線取り出し窓、マスクの位
置関係を示す図
第5図は本発明の他の実施例を示す図
1・・・蓄積リング
2・・・放射光
3・・・X線反射ミラー
4・・・ミラー駆動系
5・・・XvA取り出し窓
6・・・露光用アライナ
7・・・マスク
8・・・ミラーチャンバ
9・・・ビームライン
10・・・真空ベローズ
11・・・連結棒
12・・・ミラー揺動棒
13・・・ヘリウムパイプ
4・・・第−X線取り出し窓
5・・・第二X線取り出し窓Fig. 1 is a block diagram of an embodiment of the present invention Fig. 2 is a diagram showing the characteristics of synchroton radiation Fig. 3 is a block diagram of a prior art FIG. 5 is a diagram showing the positional relationship of FIG. 1 showing another embodiment of the present invention... Storage ring 2... Synchrotron radiation 3... X-ray reflecting mirror 4... Mirror drive system 5...・XvA extraction window 6 ・Exposure aligner 7 ・Mask 8 ・Mirror chamber 9 ・Beam line 10 ・Vacuum bellows 11 ・Connection rod 12 ・Mirror swing rod 13 ・...Helium pipe 4...Second X-ray extraction window 5...Second X-ray extraction window
Claims (2)
備えた放射光露光装置において、光路上に放射光を反射
するX線反射ミラーを有し、X線反射ミラーを位置決め
揺動するミラー駆動機構があり、X線反射ミラーとアラ
イナとの間にX線取り出し窓を設け、そのX線取り出し
窓の揺動方向の寸法が露光エリアの揺動方向の寸法より
小さいことを特徴とする放射光露光装置。(1) A synchrotron radiation exposure apparatus equipped with a chamber containing an X-ray reflection mirror and an aligner, which has an X-ray reflection mirror that reflects synchrotron radiation on the optical path, and a mirror drive mechanism that positions and swings the X-ray reflection mirror. Synchrotron radiation exposure characterized in that an X-ray extraction window is provided between the X-ray reflecting mirror and the aligner, and the dimension of the X-ray extraction window in the swinging direction is smaller than the dimension of the exposure area in the swinging direction. Device.
備えた放射光露光装置において、光路上に放射光を反射
するX線反射ミラーを有し、X線反射ミラーを位置決め
揺動するミラー駆動機構があり、X線反射ミラーとアラ
イナとの間でビームラインの通過する位置にX線透過率
が空気より高いガスを充填させたガスパイプを設け、X
線反射ミラーに近い側の窓の揺動方向の寸法が露光エリ
アの揺動方向の寸法より小さいことを特徴とする放射光
露光装置。(2) A synchrotron radiation exposure apparatus equipped with a chamber containing an X-ray reflection mirror and an aligner, which has an X-ray reflection mirror that reflects synchrotron radiation on the optical path, and a mirror drive mechanism that positions and swings the X-ray reflection mirror. A gas pipe filled with a gas whose X-ray transmittance is higher than that of air is installed between the X-ray reflecting mirror and the aligner at the position where the beam line passes.
A synchrotron radiation exposure apparatus characterized in that the dimension in the swinging direction of the window on the side closer to the line reflecting mirror is smaller than the dimension in the swinging direction of the exposure area.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172778A JPH0338026A (en) | 1989-07-04 | 1989-07-04 | Synchrotron radiation aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172778A JPH0338026A (en) | 1989-07-04 | 1989-07-04 | Synchrotron radiation aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0338026A true JPH0338026A (en) | 1991-02-19 |
Family
ID=15948176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172778A Pending JPH0338026A (en) | 1989-07-04 | 1989-07-04 | Synchrotron radiation aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0338026A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647620A (en) * | 1987-06-30 | 1989-01-11 | Nec Corp | X-ray aligner |
-
1989
- 1989-07-04 JP JP1172778A patent/JPH0338026A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS647620A (en) * | 1987-06-30 | 1989-01-11 | Nec Corp | X-ray aligner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4692934A (en) | X-ray lithography system | |
US7745079B2 (en) | Apparatus for and method of thermophoretic protection of an object in a high-vacuum environment | |
JPS5826825B2 (en) | X-ray lithography | |
US4231657A (en) | Light-reflection type pattern forming system | |
JPS62222634A (en) | X-ray exposure method | |
JP2691865B2 (en) | Extreme UV reduction projection exposure system | |
JPH0338026A (en) | Synchrotron radiation aligner | |
US5581590A (en) | SOR exposure system and method of manufacturing semiconductor devices using same | |
JP2012114140A (en) | Exposure method and exposure device | |
JPH0419998A (en) | Radiation takeout window | |
JP3090708B2 (en) | Synchrotron radiation light irradiation device and X-ray exposure device | |
JPS59222932A (en) | Semiconductor device | |
JP6262891B2 (en) | Exposure method | |
JP3013341B2 (en) | X-ray irradiation optical system and X-ray projection exposure apparatus using the same | |
JP3058603B2 (en) | Beamline for X-ray lithography | |
JPH03120714A (en) | X-ray exposure device | |
JP3254771B2 (en) | X-ray reduction projection exposure apparatus and method | |
JPH08250420A (en) | Processing method of plurality field in x-ray lithography | |
JPH0527080B2 (en) | ||
JP2783973B2 (en) | Method of manufacturing mask for X-ray lithography | |
JPS62150720A (en) | Surface treatment equipment applying radiation light | |
JPH0794397A (en) | Lighting device and aligner having same | |
JPH023000A (en) | X-ray exposure device | |
JP3069832B2 (en) | Teflon processing equipment | |
JPH03155116A (en) | Synchrotron radiation light exposure device and its exposure |