JPH0337956A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH0337956A
JPH0337956A JP1171065A JP17106589A JPH0337956A JP H0337956 A JPH0337956 A JP H0337956A JP 1171065 A JP1171065 A JP 1171065A JP 17106589 A JP17106589 A JP 17106589A JP H0337956 A JPH0337956 A JP H0337956A
Authority
JP
Japan
Prior art keywords
vent hole
valve
battery
gas vent
vent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1171065A
Other languages
Japanese (ja)
Inventor
Koji Fujita
宏次 藤田
Takashi Kato
隆 加藤
Yoshiaki Kawamura
河村 良昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP1171065A priority Critical patent/JPH0337956A/en
Publication of JPH0337956A publication Critical patent/JPH0337956A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PURPOSE:To steadily operate a gas vent valve at a specified pressure over a wide temperature range by forming the vent valve in the form of projection so as not to be in contact with the periphery of a vent hole. CONSTITUTION:A vent hole 11 is installed in the flange of a sealing plate 8 formed in the shape of a cap, and a vent valve 12 is heat-bonded in the periphery of the vent hole 11. The vent valve 12 is formed in the form of projection so as not to be in contact with the periphery of the vent hole 11. Standing resin in the vent hole caused by resin flow produced by melt bonding of the vent valve 12 to the sealing plate 8 is avoided and valve operation pressure is stabilized. By forming the projection in the vent valve, a pressure receiving area is widened over the whole area of the projection inner surface, and valve operation pressure is lowered in spite of the same vent hole shape. The vent valve is steadily operated over the wide temperature range and internal pressure can be released to avoid the breakage of a can.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防爆機構を有する有機電解液電池の弁体の改良
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement of a valve body for an organic electrolyte battery having an explosion-proof mechanism.

〔従来の技術〕[Conventional technology]

リチウム、ナトリウム等の軽金属を負極活物質として用
いる有機電解液電池は、高電圧、高エネルギー密度、長
期信頼性の点に優れ、その需要は増大する傾向にある。
Organic electrolyte batteries that use light metals such as lithium and sodium as negative electrode active materials are excellent in high voltage, high energy density, and long-term reliability, and the demand for them is on the rise.

かかる有機電解液電池は、その性能上から長期に亙って
安定した密閉性、特に気密性が要求されるため、極めて
気密性の高い封口がなされている。こうした気密構造の
ために、内部短絡、外部短絡時や漏れ電流・などによる
充電時等において電池内部でガスが発生すると、電池内
圧が上昇して外装缶等の破裂に至る問題がある。
Such organic electrolyte batteries are required to have a stable seal over a long period of time, especially airtightness, in view of their performance, so they are sealed with extremely high airtightness. Due to such an airtight structure, if gas is generated inside the battery during charging due to internal short circuit, external short circuit, leakage current, etc., the internal pressure of the battery increases and there is a problem that the outer can may burst.

このようなことから、従来、有機電解液電池では以下に
示す防爆機構が設けられている。
For this reason, organic electrolyte batteries have conventionally been provided with the following explosion-proof mechanism.

■、外装缶の一部を薄肉とし、電池内圧が上昇した時に
外装缶全体が破裂する前に、前記薄肉部が破裂してガス
を外部に逃散させる防爆機構。
(2) An explosion-proof mechanism in which a part of the outer can is made thin, and when the internal pressure of the battery rises, the thin wall part ruptures and gas escapes to the outside before the entire outer can ruptures.

■、中央付近を上方に湾曲させると共に、該湾曲した頂
部内面に鋭利な突起部を形成し、かつ該中央付近にガス
抜き穴を開孔した上部板材と、この上部板材と対向して
配置された中央付近が下方に湾曲され、かつ該中央付近
にガス抜き穴を開孔した下部板材と、前記上下の板材間
の弁室にそれら板材に挟持して配置した金属薄板、合成
樹脂、合成ゴムの薄板又は両者を積層した複合薄板とか
ら構成された防爆機構を有する組立て封口板とがあった
。かかる■の封口板を外装缶の上部開口部に気密に取付
けて電池を組立て、電池内圧が上昇した場合には、前記
上下の板材間の弁室に配置された薄板が上方に膨出し、
上部板材の内面に取付けられた鋭利な突起部に接触して
破れるため、外装缶内のガスは下部板材ガス抜き穴、薄
膜の破損箇所、上部板材のガス抜き穴から逃散される。
(2) An upper plate material which is curved upward near the center, has a sharp protrusion formed on the inner surface of the curved top, and has a gas vent hole formed near the center, and is placed opposite to this upper plate material. a lower plate material whose central portion is curved downward and has a gas vent hole formed near the center; and a thin metal plate, synthetic resin, or synthetic rubber placed between the upper and lower plate materials in a valve chamber between the upper and lower plate materials. There is an assembly sealing plate that has an explosion-proof mechanism and is composed of a thin plate of 1, or a composite thin plate made by laminating both of them. When the battery is assembled by airtightly attaching the sealing plate (2) to the upper opening of the outer can, and the internal pressure of the battery increases, the thin plate disposed in the valve chamber between the upper and lower plates bulges upward.
Since it contacts the sharp protrusion attached to the inner surface of the upper plate and ruptures, the gas inside the outer can escapes through the gas vent hole in the lower plate, the damaged area of the thin film, and the gas vent hole in the upper plate.

しかしながら、上記■の防爆機構では例えば鉄製の外装
缶に薄肉部を形成させる際、加工精度からその肉厚を0
.08〜0.15mm程度までしか薄く加工できないの
が現状である。このため、電池内圧が50〜70kgf
/cJの高圧に達しないと防爆機構が作動しないという
問題があった。
However, in the above explosion-proof mechanism (①), for example, when forming a thin wall part on an iron exterior can, the wall thickness is reduced to zero due to processing accuracy.
.. At present, it is only possible to process the thickness to about 0.08 to 0.15 mm. Therefore, the internal pressure of the battery is 50 to 70 kgf.
There was a problem that the explosion-proof mechanism would not operate unless the high pressure of /cJ was reached.

上記■の防爆機構を有する組立て封目板では、上部板材
の湾曲内面に鋭利な突起部を取付けたり、上下の板材の
間に薄板を挟持したりする必要があるため、その製作が
極めて繁雑となるばかりか、部品点数の増大によりコス
ト高となる。さらに正負極いずれかに集電棒を固定し、
この集電棒を巻回軸として正負極及びセパレータを渦巻
き状に巻回して電極群(発電要素)とする場合、集電棒
と組立て封口体の電気的接続が非常に困難となり、事実
上かかる構造の電池を製作することが困難となる問題が
あった。
The assembly sealing plate with the above-mentioned explosion-proof mechanism (■) requires attaching a sharp protrusion to the curved inner surface of the upper plate material and sandwiching a thin plate between the upper and lower plate materials, making it extremely complicated to manufacture. Not only that, but the cost increases due to an increase in the number of parts. Furthermore, fix the current collector rod to either the positive or negative electrode,
When creating an electrode group (power generation element) by spirally winding positive and negative electrodes and a separator around this current collector rod as a winding axis, it becomes very difficult to electrically connect the current collector rod and the assembled sealing body. There was a problem that it was difficult to manufacture batteries.

そこで、本発明者らは、先に特願昭63−044188
、特願昭83−160942 、特願昭133−139
517において、封口板に形設したガス抜き穴を常時閉
塞する弁体を有し、該弁体が金属への接着性を有するポ
リエチレンもしくはポリプロピレンのフィルムと金属薄
板とを貼り合わせた複合被膜からなり、かつ前記ガス抜
き穴の周囲に融着されている防爆機構を有する有機電解
液電池を提案した。
Therefore, the present inventors previously applied for patent application No. 63-044188.
, patent application 1983-160942, patent application 1983-139
517, which has a valve body that constantly closes the gas vent hole formed in the sealing plate, and the valve body is made of a composite coating made by laminating a polyethylene or polypropylene film that has adhesive properties to metal and a thin metal plate. The present invention has proposed an organic electrolyte battery having an explosion-proof mechanism fused around the gas vent hole.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図に従来技術による電池の要部拡大断面図を示す。 FIG. 3 shows an enlarged sectional view of the main parts of a battery according to the prior art.

この場合、弁作動圧はガス抜き穴11の面積と、弁体2
2と封口板8との融着強度とのバランスにより決まる。
In this case, the valve operating pressure is determined by the area of the gas vent hole 11 and the valve body 2.
It is determined by the balance between the strength of the fusion bond between 2 and the sealing plate 8.

低圧で作動させるのにはガス抜き穴11の径を大きくし
、弁体22と封口板8との融着面積を小さくしてやれば
良いが、電池の構成上、ガス抜き穴11の外径は2mm
程度が限界であり、融着面積も弁体22とガス抜き穴1
1の位置合わせの精度、融着部を通して電池内部からの
電解液の逸散、電池外部からの水分等の侵入の防止等の
観点から、ガス抜き穴周縁から弁体外周までの距離を1
關より小さくすることができなかった。このためこの構
造で比較的低温で低い弁作動圧を得るためには高精度の
技術を要し、工業的ではない。−方弁作動圧のバラツキ
については、封口板8へ弁体22を融着する際、ガス抜
き穴11周縁へ流れ込んでくる流延樹脂24が原因と考
えられる。弁作動はガス抜き穴11周縁で弁体22が剥
がれ始めることから始まる。この部分に流延樹脂24が
多く流れ込んでいると接着強度が高まり、弁作動圧が高
くなる。
In order to operate at low pressure, the diameter of the gas vent hole 11 may be increased and the fused area between the valve body 22 and the sealing plate 8 may be reduced, but due to the structure of the battery, the outer diameter of the gas vent hole 11 is 2 mm.
The extent is the limit, and the fused area is also limited to the valve body 22 and gas vent hole 1.
From the viewpoints of alignment accuracy in step 1, dissipation of electrolyte from inside the battery through the fused portion, and prevention of intrusion of moisture etc. from outside the battery, the distance from the periphery of the gas vent hole to the outer periphery of the valve body is set at 1.
I couldn't make it smaller than that. Therefore, in order to obtain a low valve operating pressure at a relatively low temperature with this structure, a highly accurate technique is required, which is not industrially practical. - The variation in the valve operating pressure is thought to be caused by the cast resin 24 flowing into the periphery of the gas vent hole 11 when the valve body 22 is fused to the sealing plate 8. Valve operation begins when the valve body 22 begins to peel off at the periphery of the gas vent hole 11. If a large amount of the cast resin 24 flows into this portion, the adhesive strength will increase and the valve operating pressure will increase.

少なければその逆となる。弁体の樹脂とじては、製造環
境の汚染、電池の外観性の低下防止の観点から、溶融時
の流延性の低い材質を選択して用いているが、流延が皆
無ではないためガス抜き穴へ流れ込んでくる。この量の
違いが弁作動圧のバラツキを生じさせていると考えられ
るが、これを制御するのにも高精度の技術を要し、工業
的ではない。
If it is less, the opposite is true. For the resin of the valve body, a material with low flowability when melted is selected from the viewpoint of preventing contamination of the manufacturing environment and deterioration of the appearance of the battery. It flows into the hole. It is thought that this difference in amount causes variations in valve operating pressure, but controlling this also requires highly accurate technology and is not industrially practical.

前記防爆機構によれば、内部短絡、外部短絡等電池内圧
の上昇に発熱が伴う場合、弁体の樹脂フィルムが溶融す
ることにより、低圧で安定した弁作動を行なうが、充電
、強制過放電等弁体の樹脂フィルムの融点に達しない程
度の発熱で電池内圧が上昇する場合、すなわち比較的低
温での弁作動は、高圧でそのバラツキも大きいものであ
り、弁作動前に電池の破裂・発火を起こす危険性をはら
んでいた。
According to the above-mentioned explosion-proof mechanism, when heat is generated due to an increase in battery internal pressure due to an internal short circuit or an external short circuit, the resin film of the valve element melts and stable valve operation is performed at low pressure. If the battery internal pressure rises due to heat generation that does not reach the melting point of the resin film of the valve body, that is, valve operation at a relatively low temperature, the pressure is high and the variation is large, and the battery may burst or catch fire before the valve operates. There was a risk of causing

本発明は上記従来の課題を解決するためになされたもの
で、低温から高温まで広い温度範囲で、所望の圧力で安
定作動する防爆機構を有する有機電解液電池を提供しよ
うとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide an organic electrolyte battery having an explosion-proof mechanism that operates stably at a desired pressure over a wide temperature range from low to high temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、ガス抜き穴を有する封口板と、金属への接着
性を有するポリエチレンもしくはポリプロピレンのフィ
ルムと金属薄板とを貼り合わせた複合被膜からなる弁体
とからなり、前記弁体がガス抜き穴の周囲に該ガス抜き
穴を常時閉塞するように融着されている防爆機構を有す
る有機電解液電池であって、前記弁体はガス抜き穴周縁
に接触しないように凸部が形成してあることを特徴とす
る有機電解液電池である。
The present invention comprises a sealing plate having a gas vent hole, and a valve body made of a composite coating made by bonding a polyethylene or polypropylene film with adhesive properties to metal and a thin metal plate, and the valve body has a gas vent hole. An organic electrolyte battery having an explosion-proof mechanism that is fused around the gas vent hole so as to always close the valve body, the valve body having a convex portion formed so as not to come into contact with the periphery of the gas vent hole. This is an organic electrolyte battery characterized by the following.

〔作 用〕[For production]

本発明によれば、ガス抜き穴周縁に弁体が接触しないた
め、弁体と封口板との融着時に樹脂が流延してもガス抜
き穴周縁にたまることはなく、弁作動圧を安定化できる
。一方、凸部を形成することにより、電池内圧の受圧部
が従来構造ではガス抜き穴と同面積であったものが、凸
部内面全域に広げられることから、同一ガス抜き穴形状
でも弁作動圧を低くすることができる。
According to the present invention, since the valve body does not come into contact with the periphery of the gas vent hole, even if the resin is flowed when the valve body and the sealing plate are fused together, it does not accumulate on the periphery of the gas vent hole, thereby stabilizing the valve operating pressure. can be converted into On the other hand, by forming the convex part, the pressure receiving part of the battery internal pressure, which in the conventional structure had the same area as the gas vent hole, is expanded to cover the entire inner surface of the convex part, so even with the same gas vent hole shape, the valve operating pressure can be lowered.

〔実施例〕〔Example〕

以下、本発明を直径17.0+u、総高33,5關の円
筒形リチウム電池に適用した例について、第1図及び第
2図を参照して説明する。
Hereinafter, an example in which the present invention is applied to a cylindrical lithium battery having a diameter of 17.0+u and a total height of 33.5 mm will be described with reference to FIGS. 1 and 2.

図中の1は、負極端子を兼ねる有底円筒形の鉄製外装缶
であり、この外装缶1の底部には絶縁紙2が配置されて
いる。前記外装缶1内には、リチウム負極3、電解液が
含浸されたポリプロピレン不織布からなるセパレータ4
及び二酸化マンガン正極5を渦巻状に巻回した発電要素
としての電極群6が収納されており、かつ該電極群6の
中心には正極集電棒7が該電極群6の正極5と接触する
ように挿入されている。なお、前記電極群6の負極3は
図示しないリード線を介して前記外装缶1に接続されて
いる。また、前記外装缶1の上部開口部には正極端子を
兼ねる例えば厚さ0.5泪のSUS 304からなる封
口板8がポリプロピレン製絶縁パツキン9を介して気密
に装着されている。
1 in the figure is a bottomed cylindrical iron outer can that also serves as a negative electrode terminal, and an insulating paper 2 is arranged at the bottom of this outer can 1. Inside the outer can 1 are a lithium negative electrode 3 and a separator 4 made of a polypropylene nonwoven fabric impregnated with an electrolyte.
An electrode group 6 as a power generation element is housed in which a manganese dioxide positive electrode 5 is spirally wound, and a positive current collector rod 7 is placed in the center of the electrode group 6 so as to be in contact with the positive electrode 5 of the electrode group 6. is inserted into. Note that the negative electrode 3 of the electrode group 6 is connected to the outer can 1 via a lead wire (not shown). Further, a sealing plate 8 made of SUS 304 with a thickness of 0.5 mm, for example, which also serves as a positive electrode terminal, is airtightly attached to the upper opening of the outer can 1 via an insulating packing 9 made of polypropylene.

この封口板8は、帽子形状をなし、その突出部周辺下面
には中央に筒部を有する接続リード板10が溶接等によ
り取り付けられている。この接続リード板lOの筒部に
は、前記集電棒7の上端が嵌入され、該接続リード板1
0を介して前記封口板8に接続されている。そして、前
記帽子形状をなす封口板8の鍔部には例えば直径1.5
關のガス抜き穴11が開孔されている。このガス抜き穴
11周辺の封口板8には、弁体12が熱接着されている
。この弁体12は、第2図に示すように、前記封口板8
側に配置されて熱接着されるポリエチレンに無水マレイ
ン酸5重量%をグラフト重合させた変性高密度ポリエチ
レン(JISK6760によるメルトフローレー)1.
2 g/cj、 J I SK6760によるビカット
軟化点128℃)からなる厚さ75μmの熱接着性フィ
ルム12aと、SUS 304からなる厚さ40μmの
金属薄膜12bとの複合薄膜から弁体12は構成されて
いる。さらに、この弁体12はガス抜き穴11の周縁に
接触しないように凸部を形成しである。
This sealing plate 8 has a cap shape, and a connection lead plate 10 having a cylindrical portion in the center is attached to the lower surface around the protrusion by welding or the like. The upper end of the current collector rod 7 is fitted into the cylindrical portion of the connection lead plate 1O.
0 to the sealing plate 8. The flange of the cap-shaped sealing plate 8 has a diameter of, for example, 1.5 mm.
A gas vent hole 11 is opened in the door. A valve body 12 is thermally bonded to the sealing plate 8 around the gas vent hole 11. This valve body 12 is connected to the sealing plate 8 as shown in FIG.
Modified high-density polyethylene in which 5% by weight of maleic anhydride is graft-polymerized onto polyethylene that is placed on the side and thermally bonded (melt flow lay according to JIS K6760)1.
The valve body 12 is composed of a composite thin film of a 75 μm thick thermal adhesive film 12a made of 2 g/cj, Vicat softening point 128° C. according to J I SK6760, and a 40 μm thick metal thin film 12b made of SUS 304. ing. Further, the valve body 12 is formed with a convex portion so as not to come into contact with the periphery of the gas vent hole 11.

ここで本実施例のリチウム電池について、定格出力12
Vの電源を用いて300+aA定電流により充電、強制
過放電させた時の電圧値と電池外壁温度の経時変化を調
べた。その結果第4図、第5図に示す特性図を得た。な
お第4図は充電、第5図は強制過放電の結果を、図中の
Aは電圧変化曲線、Bは電池外壁温度変化曲線を示す。
Here, regarding the lithium battery of this example, the rated output is 12
The battery was charged with a constant current of 300+aA using a V power source, and the voltage value and the change in battery outer wall temperature over time were investigated when forced overdischarge was performed. As a result, characteristic diagrams shown in FIGS. 4 and 5 were obtained. Note that FIG. 4 shows the results of charging, and FIG. 5 shows the results of forced overdischarge. A in the figure shows a voltage change curve, and B shows a battery outer wall temperature change curve.

充電において弁作動すると電解液が漏出してくるため、
電池抵抗が急上昇する。その間外壁温度も上昇し電圧も
上がるが、電池抵抗が40Ωを越え6□EEi[[(7
)fllGl:tlヵ、あ、□27□、4制!旨ように
なり、この範囲では数mALか流れなくなる。
When the valve operates during charging, electrolyte leaks out, so
Battery resistance increases rapidly. During that time, the temperature of the outer wall rises and the voltage rises, but the battery resistance exceeds 40 Ω and exceeds 6□EEi[[(7
) fllGl: tlka, ah, □27□, 4 system! In this range, a few mAL will not flow.

そのため外壁温度は下降する。第4図には充電時間5時
間までしか示していないが、この先15時間まで何ら変
化はなかった。
Therefore, the outer wall temperature decreases. Although FIG. 4 only shows the charging time up to 5 hours, there was no change for the next 15 hours.

同様に、強制過放電の場合も弁作動後電池抵抗が急上昇
し、電源の定格出力である12Vに規制されて電流は数
mALか流れなくなる。第5図には放電時間10時間ま
でしか示してしないが、この先20時間まで何ら変化は
なかった。
Similarly, in the case of forced overdischarge, the battery resistance increases rapidly after the valve is activated, and the current is regulated to 12V, which is the rated output of the power supply, and the current only flows by a few mAL. Although FIG. 5 only shows the discharge time up to 10 hours, there was no change for the next 20 hours.

本発明電池に用いた弁体の樹脂の軟化点が126℃であ
るのに対し、弁作動時の電池外壁温度が、充電で約30
℃、強制過放電で約85℃であり、比較的低温でも弁作
動がおこり、電池の安全性を確保できるものであること
がわかる。
While the softening point of the resin of the valve body used in the battery of the present invention is 126°C, the temperature of the outer wall of the battery when the valve is activated is approximately 30°C during charging.
℃, and about 85 ℃ during forced overdischarge, indicating that valve operation occurs even at relatively low temperatures, and battery safety can be ensured.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば製作が容易でかつ気
密性に優れ、さらに低温から高温まで広い温度範囲で内
圧上昇時安定的弁作動が起り、外部に排出させて外装缶
等の破損を防止でき、ひいては安価で安全かつ長期信頼
性の高い有機電解液電池を提供できる。
As detailed above, according to the present invention, it is easy to manufacture and has excellent airtightness, and furthermore, stable valve operation occurs when internal pressure rises in a wide temperature range from low to high temperatures, causing damage to external cans etc. Therefore, it is possible to provide an organic electrolyte battery that is inexpensive, safe, and has high long-term reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す円筒形リチウム電池の
断面図、第2図は上記実施例電池の要部拡大断面図、第
3図は従来例電池の要部拡大断面図、第4図、第5図は
本発明の実施例の円筒形リチウム電池における300m
Aの充電、強制過放電時の経過時間と電池電圧A、電池
外壁温度Bの変化を示す特性図である。 1・・・外装缶 6・・・電極群 7・・・集電棒 8・・・封口板 11・・・ガス抜き穴 12・・・弁体 12a・・・接着性フィ 12b・・・金属薄板 22・・・弁体 24・・・流延樹脂 ルム
FIG. 1 is a cross-sectional view of a cylindrical lithium battery showing an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of the main part of the battery of the above embodiment, and FIG. Figures 4 and 5 show the length of 300 m in a cylindrical lithium battery according to an embodiment of the present invention.
FIG. 3 is a characteristic diagram showing the elapsed time during charging and forced overdischarge of battery A, and changes in battery voltage A and battery outer wall temperature B. 1... Exterior can 6... Electrode group 7... Current collector rod 8... Sealing plate 11... Gas vent hole 12... Valve body 12a... Adhesive filler 12b... Metal thin plate 22... Valve body 24... Casting resin lume

Claims (1)

【特許請求の範囲】[Claims] ガス抜き穴を有する封口板と、金属への接着性を有する
ポリエチレンもしくはポリプロピレンのフィルムと金属
薄板とを貼り合わせた複合被膜からなる弁体とからなり
、前記弁体がガス抜き穴の周囲に該ガス抜き穴を常時閉
塞するように融着されている防爆機構を有する有機電解
液電池であって、前記弁体がガス抜き穴周縁に接触しな
いように凸部を形成してあることを特徴とする有機電解
液電池。
It consists of a sealing plate having a gas vent hole, and a valve body made of a composite coating made of a thin metal plate and a polyethylene or polypropylene film that has adhesive properties to metal, and the valve body is arranged around the gas vent hole. An organic electrolyte battery having an explosion-proof mechanism in which the gas vent hole is fused so as to be always closed, characterized in that a convex portion is formed so that the valve body does not come into contact with the periphery of the gas vent hole. organic electrolyte battery.
JP1171065A 1989-07-04 1989-07-04 Organic electrolyte battery Pending JPH0337956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171065A JPH0337956A (en) 1989-07-04 1989-07-04 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171065A JPH0337956A (en) 1989-07-04 1989-07-04 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH0337956A true JPH0337956A (en) 1991-02-19

Family

ID=15916399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171065A Pending JPH0337956A (en) 1989-07-04 1989-07-04 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0337956A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256944A (en) * 2000-03-09 2001-09-21 Sanyo Electric Co Ltd Safety valve of battery and its manufacturing method
JP4871266B2 (en) * 2005-03-28 2012-02-08 株式会社クレハ Polyglycolic acid resin-based laminated sheet and packaging container comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256944A (en) * 2000-03-09 2001-09-21 Sanyo Electric Co Ltd Safety valve of battery and its manufacturing method
JP4716538B2 (en) * 2000-03-09 2011-07-06 三洋電機株式会社 Battery safety valve and manufacturing method thereof
JP4871266B2 (en) * 2005-03-28 2012-02-08 株式会社クレハ Polyglycolic acid resin-based laminated sheet and packaging container comprising the same

Similar Documents

Publication Publication Date Title
JP2010092871A (en) Can type secondary battery
JPH05251076A (en) Organic electrolyte battery
JP2012533845A (en) Secondary battery and energy storage device
KR100870461B1 (en) Secondary Battery of Improved Stability Containing Adhesive Resin of Low Melting Point
JP2001210285A (en) Rectangular sealed battery and its manufacture
US4804593A (en) Enclosed cell having safety valve mechanism and fabricating method of the same
US4758482A (en) Enclosed type lead batteries and method for producing the same
JP4128648B2 (en) Sealed battery and manufacturing method thereof
CN211789229U (en) Winding battery cell button battery with inner shell explosion-proof structure
CN211789226U (en) Laminated cell button battery with inner shell explosion-proof structure
US3380857A (en) Hermetic seal closure
JPH0337956A (en) Organic electrolyte battery
EP0246590A2 (en) Enclosed cell having safety valve mechanism and fabricating method of the same
JPH01311558A (en) Organic electrolyte cell
KR100357957B1 (en) Prismatic type sealed battery
JPH01112653A (en) Organic electrolyte battery
US5354628A (en) Hermetically sealed cell comprising liquid active material
JP3649792B2 (en) Sealed battery
JPH0212757A (en) Organic electrolytic cell
JPH01220368A (en) Organic electrolyte cell
JPH04267061A (en) Lithium-iodine battery
KR100508947B1 (en) Secondary battery and methode for sealing thereof
JPH0648620B2 (en) Manufacturing method of assembled sealing plate for organic electrolyte battery
CN219739093U (en) Monopole post battery cover plate
JPH0648766Y2 (en) Airtight terminal