JPH0337783A - Image normalizing system - Google Patents
Image normalizing systemInfo
- Publication number
- JPH0337783A JPH0337783A JP1172723A JP17272389A JPH0337783A JP H0337783 A JPH0337783 A JP H0337783A JP 1172723 A JP1172723 A JP 1172723A JP 17272389 A JP17272389 A JP 17272389A JP H0337783 A JPH0337783 A JP H0337783A
- Authority
- JP
- Japan
- Prior art keywords
- image
- processing
- character
- normalization
- thinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010606 normalization Methods 0.000 claims abstract description 35
- 238000007781 pre-processing Methods 0.000 abstract description 6
- 230000008034 disappearance Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 20
- 238000005562 fading Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Character Input (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は1画像のサイズを正規化する画像正規化方式に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image normalization method for normalizing the size of one image.
様々なサイズの文字の画像を読みとって認識する装置ま
たはシステムにおいては、文字認識の前処理として、入
力画像のサイズを正規化する必要がある。In a device or system that reads and recognizes images of characters of various sizes, it is necessary to normalize the size of the input image as preprocessing for character recognition.
このような画像の正規化の基本的な手法としては5間引
き正規化とOR正規化がある。Basic techniques for normalizing such images include 5-decimation normalization and OR normalization.
間引き正規化は、第4図に示すように、画素を一定の間
隔が抽出し、その他の画素を捨てることによって、入力
画像よりサイズの小さな正規化画像を生成する手法であ
る。OR正規化は、第5図に示すように、一定間隔内の
画素の論理和(OR)をとることにより、入力画像より
サイズの小さな正規化画像を生成する手法である。As shown in FIG. 4, thinning normalization is a method of extracting pixels at regular intervals and discarding other pixels to generate a normalized image smaller in size than the input image. As shown in FIG. 5, OR normalization is a method of generating a normalized image smaller in size than the input image by calculating the logical sum (OR) of pixels within a certain interval.
しかし、このような手法を文字画像の正規化に適用した
場合、間引き正規化によれば細い線分の消失または“か
すれ″が起こりやす<、OR正規化によれば細い空白の
潰れが起こりやすいことが知られており、これが文字の
誤認識の原因となっている。このような潰れや″かすれ
”の例を第6図及び第7図に示す。However, when such a method is applied to the normalization of character images, thinning normalization tends to cause thin line segments to disappear or become "fainted," while OR normalization tends to cause thin blank spaces to collapse. This is known to be the cause of erroneous recognition of characters. Examples of such collapse or "fading" are shown in FIGS. 6 and 7.
このような問題点に考慮し、間引き正規化の前処理とし
て、線分の細い部分を検出し、その部分に少なくとも1
画素を追加する処理を行うことにより、線分の消失また
は′かすれ″を防ぐ手法(特開昭60−126780号
)や、入力画像をそのままOR正規化した画像と、入力
画像を水平、垂直の各方向へ、1画素分ずらしてOR正
規化した画像の論理積をとることで、文字内の空白の潰
れを防ぐ手法(特開昭60−110086号)も考案さ
れている。Considering these problems, as a preprocessing for thinning normalization, we detect thin parts of line segments and add at least one
There is a method to prevent line segments from disappearing or 'fading' by adding pixels (Japanese Patent Laid-Open No. 60-126780), and an image in which the input image is OR-normalized as it is, and an image in which the input image is horizontally and vertically A method (Japanese Unexamined Patent Application Publication No. 110086/1986) has been devised to prevent blank spaces within characters from being crushed by logically multiplying images that have been OR-normalized by shifting one pixel in each direction.
しかし、いずれの手法も、正規化サイズの2倍より大き
な画像に適用しようとすると、処理が複雑化するととも
に十分な効果が得られないという問題があった。However, when either method is applied to an image larger than twice the normalized size, the processing becomes complicated and a sufficient effect cannot be obtained.
よって本発明の目的は、画像の“かすれ”や潰れを発生
させずに、サイズ等が様々に異なる画像を一括して扱う
ことができる画像正規化方式を提供することにある。Therefore, an object of the present invention is to provide an image normalization method that can handle images of various sizes etc. all at once without causing "blurring" or blurring of the images.
本発明の画像正規化方式の特徴は、基本的な正規化手法
である論理和演算による正規化画像の生成処理(OR正
規化処理)の前処理として、入力画像に対して線分の細
め処理を行うことである。The feature of the image normalization method of the present invention is that line segment thinning processing is performed on the input image as a preprocessing process for generating a normalized image using a logical sum operation (OR normalization processing), which is a basic normalization method. It is to do.
OR正規化処理の前の線分の細め処理により、OR正規
化の弱点すなわち細い空白の潰れが生じやすいという性
質を補うことができる。また、OR正規化は本質的に1
間引き正規化と違って細い線分の“かすれ”または消失
が起きにくいという長所がある。したがって、画像の潰
れやパかすれ′のない正規化画像を得られる。By thinning the line segment before the OR normalization process, it is possible to compensate for the weakness of the OR normalization, that is, the tendency for thin blank spaces to collapse. Also, OR normalization is essentially 1
Unlike thinning normalization, this method has the advantage that thin line segments are less likely to become blurred or disappear. Therefore, a normalized image without image distortion or blurring can be obtained.
また、入力画像のサイズ等に応じて細め処理の回数や方
向を変えて、細め処理の効果を適切化するだけで、サイ
ズ等が異なる様々な画像に対し、潰れや″かすれ″のな
い正規化画像を得られる。In addition, by simply optimizing the effect of the thinning process by changing the number of times and direction of thinning processing depending on the size of the input image, etc., it is possible to normalize images without distortion or "blurring" for various images of different sizes, etc. You can get images.
以下、第1図に示す文字認識システムにおいて、本発明
の一実施例を説明する。An embodiment of the present invention will be described below using the character recognition system shown in FIG.
原画像入力部(ファイル、スキャナ等)1から入力した
原画像のデータより、文字切り出し部2で1文字分の画
像データを切り出し1画像メモリ3内の文字画像バッフ
ァ4に格納すると同時に、その文字のサイズ等の情報を
正規化処理部5へ渡す。この正規化処理部5が本発明に
直接係わる部分である。From the original image data input from the original image input unit (file, scanner, etc.) 1, the character extraction unit 2 extracts image data for one character and stores it in the character image buffer 4 in the 1-image memory 3. Information such as the size of is passed to the normalization processing unit 5. This normalization processing unit 5 is a part directly related to the present invention.
正規化処理部5において、細め処理方向・回数制御部6
で、渡された文字のサイズ等の情報に基づき細め処理を
かける方向と回数を決定して細め処理部7に指定する1
次に細め処理部7で1文字画像バッファ4内の文字画像
に対し、指定された方向からの線分の細め処理を指定回
数分実行する。In the normalization processing section 5, the narrowing processing direction/number of times control section 6
1, which determines the direction and number of times to apply thinning processing based on the passed information such as the size of the characters, and specifies it to the thinning processing section 7.
Next, the narrowing processing unit 7 executes line segment thinning processing from the specified direction on the character image in the single character image buffer 4 for the specified number of times.
細め処理後の文字画像は文字画像バッファ4に残る。こ
の細め処理が終了すると、OR処理部8で文字画像バッ
ファ4より読み込んだ文字画像に対してOR正規化処理
を行い、生成した正規化文字画像のデータを画像メモリ
3内の正規化画像バッファ9に格納する。この画像に対
し、文字認識部10が文字認識処理を実行する。The character image after the narrowing process remains in the character image buffer 4. When this narrowing process is completed, the OR processing unit 8 performs OR normalization processing on the character image read from the character image buffer 4, and the data of the generated normalized character image is transferred to the normalized image buffer 9 in the image memory 3. Store in. The character recognition unit 10 executes character recognition processing on this image.
細め処理について第2図及び第3図により説明する。細
め処理の方向は上から下、下から上、左から右、右から
左、の4種類が可能である。The narrowing process will be explained with reference to FIGS. 2 and 3. There are four possible narrowing directions: top to bottom, bottom to top, left to right, and right to left.
第2図は上から下への方向の細め処理の説明図である。FIG. 2 is an explanatory diagram of narrowing processing from top to bottom.
上から下へ画素を見ていき、その方向へ黒画素が2個以
上重なっている部分では、その−番上の黒画素を1個白
画素へ置き換える(黒画素を1個消す)、この例では、
↓印の部分の一番上の黒画素が消されるが、0印の部分
の黒画素は1個だけであるので消されない。This example looks at the pixels from top to bottom, and if two or more black pixels overlap in that direction, replace the topmost black pixel with one white pixel (delete one black pixel). So,
The top black pixel in the ↓ mark part is erased, but since there is only one black pixel in the 0 mark part, it is not erased.
第3図は下から上への方向の細め処理の説明図である。FIG. 3 is an explanatory diagram of narrowing processing from bottom to top.
この場合、下から上へ黒画素が2個以上重なっている部
分(↑印の部分)では、その一番下の黒画素を1個消す
が、0印の部分では黒画素は1個であるので消さずに残
す。In this case, in the area where two or more black pixels overlap from bottom to top (the area marked ↑), one black pixel at the bottom is erased, but in the area marked 0, there is only one black pixel. So I will leave it without erasing it.
このような処理により、線分のとぎれを発生せずに、横
方向の線分を細めることができる。Through such processing, a line segment in the horizontal direction can be narrowed without causing any break in the line segment.
左右方向の細め処理も同様であり、線分のとぎれを発生
せずに、縦方向の線分を細めることができる。The thinning process in the left and right direction is similar, and it is possible to narrow the line segment in the vertical direction without causing any break in the line segment.
細め処理の方向は、文字画像の性質に応じて決定される
6例えば原画像の読み取りに用いられたスキャナが、文
字の横線分を消しやすい特性を持つ場合や、横線分が太
いフォントを対象とする場合などには上下方向だけが選
ばれる。逆に文字の縦線が潰れやすいスキャナの場合や
縦線が太いフォントを対象とする場合には、左右方向だ
けの細め処理が選ばれる。当然、上下左右の各方向が選
ばれることもある。The direction of thinning processing is determined depending on the characteristics of the character image6. For example, if the scanner used to read the original image has a characteristic that easily erases horizontal line segments of characters, or if the target is a font with thick horizontal line segments. In some cases, only the vertical direction is selected. On the other hand, in the case of a scanner in which the vertical lines of characters are easily crushed, or in the case of a font with thick vertical lines, thinning processing only in the horizontal direction is selected. Naturally, the up, down, left, and right directions may be selected.
このように細め処理の方向を適切に決定すれば、様々な
文字画像に対して、線の消失または″かすれ′″を生じ
させることなく、空白の潰れを効果的に防止できる。By appropriately determining the direction of thinning processing in this manner, it is possible to effectively prevent blank spaces from disappearing or "fading" in various character images without causing lines to disappear or "fading".
また細め処理の回数は、画像サイズに応じて例えば次式
によって決められる。Further, the number of times of narrowing processing is determined according to the image size, for example, by the following equation.
[細め処理回数]
=[縦方向画像サイズ]/[正規化サイズ]このように
細め処理の回数を制御することにより、様々なサイズの
画像に対して適切な細め処理をかけることができる。[Number of narrowing processes] = [Vertical image size]/[Normalized size] By controlling the number of narrowing processes in this way, images of various sizes can be appropriately narrowed down.
具体的には、横方向の線分間の隙間が小さく正規化サイ
ズが縦方向2倍の大きさの文字画像に対しては、例えば
上から下への細め処理と下から上への細め処理を交互に
1回ずつかける。このように反対方向からの細め処理を
交互にかけるのは、細め処理による画像の歪みの影響を
分散させるためである。Specifically, for a character image whose normalized size is twice as large in the vertical direction with small gaps between line segments in the horizontal direction, for example, thinning processing from top to bottom and thinning processing from bottom to top are performed. Apply once each alternately. The reason why the thinning processing is applied alternately from opposite directions in this way is to disperse the influence of image distortion caused by the narrowing processing.
以上説明したような細め処理が前処理として行われるた
め、OR処理部8で生成される正規化文字画像には、O
R正規化の弱点であるを白の潰れが起こりにくく、かつ
OR正規化の手法によるので、間引き正規化によるよう
な細い線分の消失または″かすれ″が起きにくい。した
がって、潰れや″かすれ″による文字の誤認識を減らす
ことができる。Since the narrowing process as described above is performed as preprocessing, the normalized character image generated by the OR processing unit 8 includes O
The weak point of R normalization is that the white is less likely to collapse, and since it uses the OR normalization method, thin line segments are less likely to disappear or become "fainted" as would be the case with thinning normalization. Therefore, it is possible to reduce erroneous recognition of characters due to blurring or "fading".
以上説明した如く、本発明によれば、OR正規化処理の
前処理として線分の細め処理を行うため、OR正規化の
弱点を、その長所を損なうことなく補い、空白の潰れや
線分の消失または″かすれ″のない正規化画像を得るこ
とができるとともに、対象画像の性質やサイズに応じて
細め処理の方向や回数を制御するだけで、様々な画像を
一括して処理できる。As explained above, according to the present invention, line segment narrowing processing is performed as a preprocessing of OR normalization processing, so that the weaknesses of OR normalization can be compensated for without compromising its strengths, and the It is possible to obtain a normalized image without any loss or "fading", and it is also possible to process various images at once by simply controlling the direction and number of thinning processes depending on the nature and size of the target image.
第1図は本発明に係る文字認識システムのブロック図、
第2図は上から下への方向の細め処理の説明図、第3図
は下から上への方向の細め処理の説明図、第4図は間引
き正規化の説明図、第5図はOR正規化の説明図、第6
図は間引き正規化の例を示す図、第7図はOR正規化の
例を示す図である。
1・・・原画像入力部、 2・・・文字切り出し部、3
・・・画像メモリ、 4・・・文字画像バッファ、5・
・・正規化処理部、
6・・・細め処理方向・回数制御部、
7・・・細め処理部、8・・・OR処理部、9・・・正
規化画像バッファ、 10・・・文字認識部。
第
■
図
第4図
第6
図
第5図
第7図FIG. 1 is a block diagram of a character recognition system according to the present invention,
Figure 2 is an explanatory diagram of thinning processing from top to bottom, Figure 3 is an illustration of narrowing processing from bottom to top, Figure 4 is an illustration of thinning normalization, and Figure 5 is an illustration of OR. Explanatory diagram of normalization, 6th
The figure shows an example of thinning normalization, and FIG. 7 shows an example of OR normalization. 1...Original image input section, 2...Character cutting section, 3
...Image memory, 4...Character image buffer, 5.
...Normalization processing unit, 6...Narrowing processing direction/number control unit, 7...Narrowing processing unit, 8...OR processing unit, 9...Normalized image buffer, 10...Character recognition Department. Figure ■ Figure 4 Figure 6 Figure 5 Figure 7
Claims (1)
後の画像に対して論理和演算による正規化を行うことを
特徴とする画像正規化方式。(1) An image normalization method characterized by performing line segment thinning processing on an input image, and normalizing the processed image using a logical sum operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172723A JP2875285B2 (en) | 1989-07-04 | 1989-07-04 | Image normalization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1172723A JP2875285B2 (en) | 1989-07-04 | 1989-07-04 | Image normalization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0337783A true JPH0337783A (en) | 1991-02-19 |
JP2875285B2 JP2875285B2 (en) | 1999-03-31 |
Family
ID=15947137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172723A Expired - Fee Related JP2875285B2 (en) | 1989-07-04 | 1989-07-04 | Image normalization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2875285B2 (en) |
-
1989
- 1989-07-04 JP JP1172723A patent/JP2875285B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2875285B2 (en) | 1999-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5075895A (en) | Method and apparatus for recognizing table area formed in binary image of document | |
US5054091A (en) | Method for determining coordinates of circumscribed rectangular frame of each character for use in optical character reader | |
JP3142550B2 (en) | Graphic processing unit | |
EP2545498B1 (en) | Resolution adjustment of an image that includes text undergoing an ocr process | |
JP3062382B2 (en) | Image processing apparatus and method | |
JPH02120988A (en) | Data processing pipeline apparatus | |
JPH0337783A (en) | Image normalizing system | |
KR940020246A (en) | Area Division Method of Document Recognition Device | |
JPH04178892A (en) | Image normalizing system | |
JPH05150930A (en) | Method and apparatus for displaying overlapped window | |
JP2918606B2 (en) | Image normalization method | |
JP3294249B2 (en) | Image processing device | |
JP2524393Y2 (en) | Image processing device | |
JP2899356B2 (en) | Character recognition device | |
KR940003623B1 (en) | Method of taking out the part of korean characters | |
JP2829932B2 (en) | Image forming device | |
JP2003204430A (en) | Method of reducing and converting image, image processor, and program for reducing and converting image | |
JPS60140488A (en) | Character feature extraction system | |
JPH0816777A (en) | Method and device for processing image | |
JP2002133430A (en) | Plotting processing device | |
JPH05128305A (en) | Area dividing method | |
JP2002032713A (en) | Character recognition processing method | |
JPH04156694A (en) | Character recognition system | |
JPH02254575A (en) | Automatic time chart reader | |
JPS62171380A (en) | Image processing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |