JPH0337413A - Bearing device and manufacture thereof - Google Patents

Bearing device and manufacture thereof

Info

Publication number
JPH0337413A
JPH0337413A JP17137489A JP17137489A JPH0337413A JP H0337413 A JPH0337413 A JP H0337413A JP 17137489 A JP17137489 A JP 17137489A JP 17137489 A JP17137489 A JP 17137489A JP H0337413 A JPH0337413 A JP H0337413A
Authority
JP
Japan
Prior art keywords
center
bearing device
groove
mold
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17137489A
Other languages
Japanese (ja)
Inventor
Takashi Osanawa
尚 長縄
Yuji Yoshitomi
吉富 雄二
Akiomi Kono
顕臣 河野
Takao Terayama
孝男 寺山
Kazuo Sakai
和夫 酒井
Katsutoshi Arai
新居 勝敏
Juichi Morikawa
森川 寿一
Kuniaki Hirayama
平山 国明
Jun Matsubayashi
純 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17137489A priority Critical patent/JPH0337413A/en
Publication of JPH0337413A publication Critical patent/JPH0337413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To shorten processing time and improve mass productivity by forming a bearing having a plurality of channels radially curved from the slide surface center and having widths narrowed toward the center and uniform depths formed thereon by plastic working by use of a metal mold having a protruding part having an outer shape to which the channels are transferred and a determined height. CONSTITUTION:The slide surface 1a of a thrust bearing 1 having a spiral dynam ic pressure generating channel 2 formed thereon and the end surface 3a of the shaft 3 are disposed through a fluid film 4 such as oil in such a manner that the both are faced to each other. When the shaft 3 is rotated in the direc tion A, a fluid charged in the channel 2 generates a pressure by pumping effect as the channel 2 has a spiral form and a width reduced toward the rotating direction, and a large fluid pressure is generated in the shaft center part. Hence, a large support load capacity can be obtained. A metal mold 5 for forming the channel has a protruding part 5a having a shape to which the channel is transferred and a determined height, and the protruding part 5a is pressed to the slide surface 1a of the bearing 1 to form the channel 2. Thus, the mass production is facilitated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、動圧型流体軸受装置に係り、特に磁気記録再
生装置(以下VTRと称す)等のシリンダ軸受に好適な
動圧発生溝付きの軸受装置とその製法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a hydrodynamic bearing device, and in particular to a hydrodynamic bearing device with hydrodynamic pressure generating grooves suitable for cylinder bearings of magnetic recording/reproducing devices (hereinafter referred to as VTRs) and the like. Concerning bearing devices and their manufacturing methods.

〔従来の技術〕[Conventional technology]

従来の動圧スラスト軸受として使用される軸受装置にお
いては、日本機械学会誌第89巻、第812号(昭61
年)第58頁から第63頁に記載のように、すべり面に
スパイラル状の動圧発生溝を設けていた。
Regarding bearing devices used as conventional hydrodynamic thrust bearings,
As described on pages 58 to 63 of 2010, spiral dynamic pressure generating grooves were provided on the sliding surface.

一方、前記動圧発生溝は、特公昭62−4.9352号
公報に記載のようにフォトエツチング法によって成形し
ていた。
On the other hand, the dynamic pressure generating grooves were formed by photo-etching as described in Japanese Patent Publication No. 62-4.9352.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の軸受装置にあっては、スラスト軸受の動圧発生溝
はフォトエツチング法で成形しており、量産が困難であ
り加工時間に長時間を要するなどの理由から、製造コス
トが高価になる問題があった。
In conventional bearing devices, the dynamic pressure generating groove of the thrust bearing is formed using a photoetching method, which is difficult to mass produce and requires a long processing time, resulting in high manufacturing costs. was there.

本発明の目的は、動圧発生溝を量産が容易で、かつ加工
時間が短い方法で加工することにより、前記した従来技
術の問題点を解決した軸受装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a bearing device that solves the problems of the prior art by processing dynamic pressure generating grooves using a method that is easy to mass-produce and takes a short processing time.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため、本発明に係る軸受装置は、
回転部材と静止部材とを流体膜を介して対向しその対向
したすべり面に、すべり面の中心から放射状に外周にめ
ぐる#1線状の形状でかつ中心に向けて次第に狭くなる
幅とほぼ均一の深さとを有する複数の溝を形成した軸受
装置において、それぞれの溝は、それぞれの溝を転写し
た外形と所定の高さとからなる凸部を有する金型を、い
ずれか一方のすべり面に押圧して塑性加工により形成さ
れてなるように構成されている。
In order to achieve the above object, the bearing device according to the present invention has the following features:
A rotating member and a stationary member are opposed to each other via a fluid film, and the opposing sliding surfaces have a #1 linear shape that extends radially from the center of the sliding surface to the outer periphery, and has a width that is approximately uniform and gradually narrows toward the center. In a bearing device in which a plurality of grooves are formed with a depth of It is configured to be formed by plastic working.

そして回転部材と静止部材とを流体膜を介して対向しそ
の対向したすべり面に、すべり面の中心から放射状に外
周にめぐる曲線状の形状でかつ中心に向けて次第に狭く
なる幅とほぼ均一の深さとを有する複数の溝を形成した
軸受装置の製法においては、それぞれの溝を転写した外
形と所定の高さとからなる凸部を有する金型を、いずれ
か一方−今一 のすべり面に押圧して塑性加工によりそれぞれの溝を形
成するように構成されている。
The rotating member and the stationary member are opposed to each other via a fluid film, and the opposing sliding surfaces have a curved shape that goes radially from the center of the sliding surface to the outer periphery, and has a width that gradually becomes narrower toward the center and a substantially uniform width. In the manufacturing method of a bearing device in which a plurality of grooves with a certain depth are formed, a mold having a convex portion having an outer shape of each groove and a predetermined height is pressed onto one of the sliding surfaces. The grooves are formed by plastic working.

また金型の凸部の高さは、中央部を高くかつ外周部を低
く形成されてなる構成とし、金型は、縦弾性係数の異な
る材料を選択することにより、中央部と外周部の凸部の
高さの割合が変えられてなる構成でも良い。
In addition, the height of the convex part of the mold is such that the center part is high and the outer peripheral part is low.The mold is made of materials with different longitudinal elastic modulus. A structure in which the proportion of the heights of the parts can be changed may also be used.

さらに円形状の端面の中心から放射状に外周にめぐる曲
線状の形状でかつ中心に向けて次第に狭くなる幅とほぼ
均一の深さとを有する複数の溝を形成する軸受装置のす
べり面の塑性加工法においては、それぞれの溝を転写し
た外形と所定の高さとからなる凸部を有する金型を、端
面に押圧し溝加工する構成である。
Furthermore, a plastic working method for the sliding surface of a bearing device in which a plurality of grooves are formed in a curved shape extending radially from the center of the circular end face to the outer periphery and having a width that gradually narrows toward the center and a substantially uniform depth. In this method, a mold having a convex portion having an outer shape and a predetermined height, which is a transfer of each groove, is pressed against the end surface to form the groove.

そして磁気ヘッドを有する回転部と、回転部を支える固
定部とを備え、回転部に磁気テープを巻き付けて記録再
生する磁気記録再生装置においては、固定部の中心に設
けたシャフトの上端面に対向して配設され、回転部とと
もに回転し流体膜を介して回転部を浮上支持させるスラ
スト軸受は、請求項1記載の軸受装置である構成とする
In a magnetic recording and reproducing device that includes a rotating part having a magnetic head and a fixed part that supports the rotating part, and records and reproduces data by winding a magnetic tape around the rotating part, the magnetic tape is arranged opposite to the upper end surface of a shaft provided at the center of the fixed part. The thrust bearing which is disposed as such, rotates together with the rotating part, and floats and supports the rotating part via a fluid film is configured to be a bearing device according to claim 1.

また多面鏡を有する回転部と、回転部を支える固定部と
を備え、回転部の多面鏡によりレーザ光を光射させて感
光ドラム上に記録を行うレーザビムプリンタにおいて、
回転部の中心に設けられて回転部とともに回転するシャ
フトの下端面に対向して配設され、固定部に固定されて
流体膜を介してシャフトを浮上支持するスラスト軸受は
、請求項1記載の軸受装置である構成とする。
Further, in a laser beam printer, which includes a rotating part having a polygon mirror and a fixed part supporting the rotating part, the polygon mirror of the rotating part emits laser light to record on a photosensitive drum.
A thrust bearing according to claim 1, which is disposed at the center of a rotating part so as to face the lower end surface of a shaft that rotates together with the rotating part, is fixed to a fixed part, and supports the shaft by floating through a fluid film. The structure is a bearing device.

〔作用〕[Effect]

本発明によれば、軸受装置のすべり面に金型を押圧し、
スラスト軸受のすべり面に設けたスパイラム状動圧発生
溝の幅を、軸の回転方向並びに中心方向に向けて連続的
に狭くすることにより、溝の断面積は回転方向に向は減
少する。従って、幅とスラスト軸受の間に配設した油等
の潤滑剤は、軸の回転に伴うポンプ作用が助長され、大
きな圧力を発生して流体膜を形成し、大きな支持荷重容
量が得られる。また、同様にして軸受装置における支持
部材の軸方向浮上量は大きくなる。
According to the present invention, the mold is pressed against the sliding surface of the bearing device,
By continuously narrowing the width of the spiral dynamic pressure generating groove provided on the sliding surface of the thrust bearing in the direction of rotation and toward the center of the shaft, the cross-sectional area of the groove decreases in the direction of rotation. Therefore, the lubricant, such as oil, disposed between the width and the thrust bearing is encouraged to pump as the shaft rotates, generating a large pressure and forming a fluid film, resulting in a large supported load capacity. Similarly, the axial flying height of the support member in the bearing device increases.

一 一方、動圧発生溝を、凸部の周辺部が低く、中心方向に
対して連続的に高くなる形状を有した金型を、スラスト
軸受のすべり面に押し付けて成形することにより、金型
は弾性変形により凸部の全域において均一な高さになる
。これによって、溝の深さは中心部及び周辺部共にほぼ
均一になる。
On the other hand, the dynamic pressure generating grooves are formed by pressing a mold with a shape in which the periphery of the convex part is low and continuously rises in the direction of the center against the sliding surface of the thrust bearing. The mold becomes uniform in height over the entire area of the convex portion due to elastic deformation. This makes the depth of the groove substantially uniform in both the center and the periphery.

〔実施例〕〔Example〕

本発明の一実施例を第↓図及び第2図を参照しながら説
明する。
An embodiment of the present invention will be described with reference to FIGS.

第1図及び第2図に示されるように、軸(回転部材)3
とスラスト軸受(静止部材)1とからなる軸受装置30
の一方のスラスト軸受1のすべり面1aに、すべり面1
aの中心から放射状に外周にめぐる曲線状(スパイラル
状)の動圧発生溝(溝)2を設けている。動圧発生溝2
は、同一形状の多数の溝を規則正しく配置し、それぞれ
の溝の@bはすべり面1aに対向する軸の回転方向Aに
向けて連続的に狭くなっている。また、第工図に示され
るように溝の断面は矩形状であり、溝深さdは全域にわ
たりほぼ均一になっている。
As shown in FIGS. 1 and 2, the shaft (rotating member) 3
and a thrust bearing (stationary member) 1.
The sliding surface 1a of one of the thrust bearings 1 is
A curved (spiral) dynamic pressure generating groove (groove) 2 is provided radially from the center of a to the outer circumference. Dynamic pressure generating groove 2
In this example, a large number of grooves having the same shape are regularly arranged, and the grooves @b of each groove are continuously narrowed in the direction of rotation A of the shaft facing the sliding surface 1a. Further, as shown in the construction drawing, the cross section of the groove is rectangular, and the groove depth d is substantially uniform over the entire area.

本実施例におけるスラスト軸受1の基体(円板)の厚さ
は1.8mm、直径は15mmであり、本実施例はこの
ように極薄のスラスト軸受への適用において特に効を奏
する。それぞれの溝2の最大幅Cは↓、 8 m mで
あり、中心のくぼみ部2aに開口する溝2の部分の@e
は0.2〜0.3mmである。また、くぼみ部2aの直
径は0.5mmである。
The thickness of the base body (disc) of the thrust bearing 1 in this example is 1.8 mm and the diameter is 15 mm, and this example is particularly effective when applied to such an extremely thin thrust bearing. The maximum width C of each groove 2 is ↓, 8 mm, and the part of the groove 2 that opens into the central recess 2a is @e
is 0.2 to 0.3 mm. Further, the diameter of the recessed portion 2a is 0.5 mm.

一方、本実施例の溝2の深さdは3μmである。On the other hand, the depth d of the groove 2 in this example is 3 μm.

次に本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第3図に示されるようにスパイラル状の動圧発生溝2を
形成したスラスト軸受1のすべり面1aに、軸3の端面
3aが対向するように両者を油等の流体膜4を介して配
置する。本実施例では粘性40スト一クス前後の油を用
いる。このような状態で軸3をA方向に回転させること
により、動圧発生溝2に満たされている流体は、溝2が
スパイラル状で、かつ幅が回転方向に向けて、次第に小
さくなっているため、溝のポンプ作用により圧力を発生
する。このため、第3図に併記されるように軸の中央部
近傍で大きな流体圧が発生する。これにより、スラスト
軸受1は大きな支持荷重容量が得られるとともに、軸3
等の軸方向浮上量も大きくなる。
As shown in FIG. 3, the thrust bearing 1 is arranged with a fluid film 4 such as oil in between so that the end surface 3a of the shaft 3 faces the sliding surface 1a of the thrust bearing 1 in which a spiral dynamic pressure generating groove 2 is formed. do. In this embodiment, oil having a viscosity of about 40 Stix is used. By rotating the shaft 3 in the direction A in this state, the fluid filling the dynamic pressure generating groove 2 is formed so that the groove 2 has a spiral shape and the width gradually becomes smaller in the direction of rotation. Therefore, pressure is generated by the pumping action of the groove. Therefore, as shown in FIG. 3, a large fluid pressure is generated near the center of the shaft. As a result, the thrust bearing 1 can obtain a large supporting load capacity, and the shaft 3
The axial flying height also increases.

前記したような動圧発生溝は、第4図に示されるような
方法で容易しこ形成することができる。同図において、
金型5は、スラスト軸受に形成する動圧発生溝を転写し
た形状と所定の高さからなる凸部5aを有している。し
たがって、この金型5の凸部5aをスラスト軸受lのす
べり面1aに押圧して、このすべり面↓aに動圧発生溝
2を形成する。なお、第5図に示されるように、金型5
の凸部5aの高さhは、内周部が高く、外周部が低く加
工されている。
The dynamic pressure generating groove as described above can be easily formed by the method shown in FIG. In the same figure,
The mold 5 has a convex portion 5a having a shape that is a transcription of the dynamic pressure generating groove formed in the thrust bearing and a predetermined height. Therefore, the convex portion 5a of this mold 5 is pressed against the sliding surface 1a of the thrust bearing 1, and the dynamic pressure generating groove 2 is formed on this sliding surface ↓a. In addition, as shown in FIG.
The height h of the convex portion 5a is high at the inner circumference and low at the outer circumference.

前記のような状態でスラスト軸受の動圧発生溝を圧印加
工した場合、金型の面圧分布は第6図に示されるように
内周部の凸部5aの幅が狭く断面積が小さいため、内周
部が外周部より高くなる。
When the dynamic pressure generating groove of the thrust bearing is coined in the above-mentioned condition, the surface pressure distribution of the mold is as shown in Fig. 6, because the width of the convex portion 5a on the inner circumference is narrow and the cross-sectional area is small. , the inner circumference is higher than the outer circumference.

これにともなって、金型の凸部5aの高さ方向の弾性変
形は、第7図に示されるように内周部が外周部より大き
くなる。そのため、金型の凸部5aの高さは全域にわた
ってほぼ均一になり、第1図に示されるように溝深さが
ほぼ均一になる動圧発生溝をスラスト軸受に形成できる
Accordingly, the elastic deformation of the convex portion 5a of the mold in the height direction becomes larger at the inner circumference than at the outer circumference, as shown in FIG. Therefore, the height of the convex portion 5a of the mold becomes substantially uniform over the entire area, and a dynamic pressure generating groove having a substantially uniform groove depth can be formed in the thrust bearing as shown in FIG.

前記のように凸部の高さが連続的に変化する金型を用い
た場合、金型の高さ方向の弾性変形により溝深さがほぼ
均一の動圧発生溝を容易に形成することができる。
When using a mold in which the height of the convex part changes continuously as described above, it is possible to easily form dynamic pressure generating grooves with a substantially uniform groove depth due to elastic deformation in the height direction of the mold. can.

本実施例では、溝深さを全域において均一に形成するよ
うに、金型の凸部の高さを連続的に変えているが、前記
凸部の高さを部分的に変えることにより、任意の溝深さ
の動圧発生溝を形成することもできる。
In this example, the height of the convex part of the mold is continuously changed so that the groove depth is uniform over the entire area, but by partially changing the height of the convex part, it is possible to It is also possible to form dynamic pressure generating grooves with a groove depth of .

また、金型の材料として縦弾性係数の異なる種々の材質
を選定することにより、前記金型の弾性変形量が異なり
、外周部と内周部の溝深さの割合が異なる動圧発生溝を
形成することができる。
In addition, by selecting various materials with different longitudinal elastic modulus as the material for the mold, it is possible to create dynamic pressure generating grooves with different amounts of elastic deformation of the mold and different groove depth ratios between the outer circumference and the inner circumference. can be formed.

本実施例によれば、動圧発生溝の幅を軸の回転方向に向
けて狭くなるようにしているため、前記溝のポンプ作用
が助長され、大きな支持荷重容量及び軸方向浮上量を得
ることができる。また、前1− 記したような動圧発生溝は、溝形状を転写した外形と所
定の高さとからなる凸部を有する金型をスラスト軸受の
すべり面又は軸のすへり面のいずれか一方に押圧するこ
とにより容易に形成できるので、フォトエツチングに比
べて加工時間を大幅に短縮できる。さらに本実施例のス
ラスト軸受をVTRのシリンダ部や、レーザビームプリ
ンタのポリゴンミラー軸受部に用いると、大きな支持荷
重容量及び軸方向浮上量を得ることができるため、回転
負荷トルクを小さくすることができる。
According to this embodiment, since the width of the dynamic pressure generating groove is made narrower in the direction of rotation of the shaft, the pumping action of the groove is promoted, and a large supporting load capacity and axial flying height can be obtained. I can do it. In addition, for the dynamic pressure generating groove as described in 1. above, a mold having a convex portion having an outer shape and a predetermined height, which is a transfer of the groove shape, is placed on either the sliding surface of the thrust bearing or the sliding surface of the shaft. Since it can be easily formed by pressing, the processing time can be significantly reduced compared to photoetching. Furthermore, if the thrust bearing of this example is used in the cylinder part of a VTR or the polygon mirror bearing part of a laser beam printer, a large supporting load capacity and axial flying height can be obtained, so it is possible to reduce the rotational load torque. can.

以上の実施例では溝を形成したスラスト軸受を静止部材
としたが対応部材とは相対的な関係で同作用を奏するか
ら回転部材に適用しても差し支えない。
In the embodiments described above, the grooved thrust bearing is used as a stationary member, but it can also be applied to a rotating member since it has the same effect relative to the corresponding member.

第8図は本発明の他の実施例となる磁気記録再生装置7
の斜視図であり、図では部分的に外箱を透明にしてシリ
ンダ8が示される。このシリンダ8を例示したものが第
9図である。
FIG. 8 shows a magnetic recording/reproducing device 7 according to another embodiment of the present invention.
FIG. 2 is a perspective view of the cylinder 8, in which the outer box is partially transparent and the cylinder 8 is shown. FIG. 9 shows an example of this cylinder 8.

第9図の実施例では溝加工を施こしたスラスト軸受を回
転部材に適用している。この図において、すべり面に動
圧発生溝を形成したスラスト軸受1は、そのすべり面が
軸3に対向するように上シリンダ10に固定されている
。このような状態でモータ9の駆動力で上シリンダ10
を回転させることにより、スラスト軸受1も回転するか
ら、これに伴って溝面も回転し、動圧発生溝のポンプ作
用により流体圧を発生し、上シリンダ10を軸方向に浮
上支持する。
In the embodiment shown in FIG. 9, a grooved thrust bearing is applied to the rotating member. In this figure, a thrust bearing 1 having dynamic pressure generating grooves formed on its sliding surface is fixed to an upper cylinder 10 such that its sliding surface faces a shaft 3. In this state, the upper cylinder 10 is moved by the driving force of the motor 9.
By rotating the thrust bearing 1, the thrust bearing 1 also rotates, and accordingly, the groove surface also rotates, and fluid pressure is generated by the pumping action of the dynamic pressure generating groove, thereby floating and supporting the upper cylinder 10 in the axial direction.

また、第10図は、本発明の他の実施例となるレーザビ
ームプリンタの構成国であり、感光ドラム12、補正レ
ンズ13.シリンドリカルレンズ14、コリメーターレ
ンズ15、半導体レーザ16、レーザスキャナエフがそ
れぞれ図示される。
Further, FIG. 10 shows the constituent countries of a laser beam printer according to another embodiment of the present invention, including a photosensitive drum 12, a correction lens 13. A cylindrical lens 14, a collimator lens 15, a semiconductor laser 16, and a laser scanner F are each illustrated.

このレーザスキャナ17を例示したものが第11図であ
る。
FIG. 11 shows an example of this laser scanner 17.

第11図の実施例では溝加工を施したスラスト軸受を固
定部材に適用している。この図においてモータ9、ラジ
アル軸受18、ポリゴンミラー19、ハウジング20が
それぞれ図示される。すべり面に動圧発生溝を形成した
スラスト軸受lは、そのすべり面が軸3に対向するよう
にハウジングに固定されている。このような状態でモー
タ9の駆動力でポリゴンミラー19を回転させることに
よりポリゴンミラー19に嵌合されている軸3も回転す
るから、溝加工したスラスト軸受1との間に相対的なす
べりを生じ、動圧発生溝のポンプ作用により流体圧を発
生し、ポリゴンミラー19を軸方向に浮上支持する。
In the embodiment shown in FIG. 11, a grooved thrust bearing is applied to the fixed member. In this figure, a motor 9, a radial bearing 18, a polygon mirror 19, and a housing 20 are shown, respectively. A thrust bearing 1 having a dynamic pressure generating groove formed on its sliding surface is fixed to a housing such that its sliding surface faces the shaft 3. In this state, by rotating the polygon mirror 19 with the driving force of the motor 9, the shaft 3 fitted to the polygon mirror 19 also rotates, so that relative slippage between the shaft 3 and the grooved thrust bearing 1 is prevented. The fluid pressure is generated by the pumping action of the dynamic pressure generating groove, and the polygon mirror 19 is floated and supported in the axial direction.

前記のように本発明を適用したスラスト軸受は、大きな
浮上量を得ることができるため、回転負荷トルクの小さ
いVTRシリンダユニットや、レーザビームプリンタの
ポリゴンミラーユニットを実現できる。
As described above, since the thrust bearing to which the present invention is applied can obtain a large flying height, it is possible to realize a VTR cylinder unit with small rotational load torque and a polygon mirror unit of a laser beam printer.

第12図に静止部材と回転部材との関係において本発明
における溝の形成をどのようにするかが模式的に示され
る。第12図はスラスト軸受の場合の回転方向による溝
幅の関係を示したものである。図が示されるように回転
と静止とは相対的な関係である。また本発明において回
転方向に向けて狭い(広い)という関係は第12図によ
って定義される。
FIG. 12 schematically shows how the grooves are formed in the present invention in relation to the stationary member and the rotating member. FIG. 12 shows the relationship between the groove width and the direction of rotation in the case of a thrust bearing. As shown in the figure, rotation and rest are relative. Further, in the present invention, the relationship of being narrow (wide) in the rotation direction is defined by FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸受装置のすべり面に金型を押圧して
複数の溝(動圧発生溝)を形成したため、軸受支持荷重
が大きく、安定した支持をすることのできる軸受装置を
実現できる。
According to the present invention, a mold is pressed against the sliding surface of the bearing device to form a plurality of grooves (dynamic pressure generating grooves), so it is possible to realize a bearing device that has a large bearing support load and can provide stable support. .

更に本発明によれば、動圧発生溝のポンプ作用が助長さ
れ、大きな支持荷重容量及び軸方向浮上量が得られるス
ラスト軸受を提供できる。このため、スラスト軸受のす
べり面での損失トルクが少なく、摩耗量も大幅に減少す
る効果がある。
Further, according to the present invention, it is possible to provide a thrust bearing in which the pumping action of the dynamic pressure generating groove is promoted and a large supporting load capacity and axial flying height are obtained. Therefore, there is less torque loss on the sliding surface of the thrust bearing, and the amount of wear is also significantly reduced.

また、動圧発生溝は、塑性加工法で容易に形成できるた
め、加工時間が短縮され、製造コストも安価になり、量
産性が著しく向上する効果がある。
In addition, since the dynamic pressure generating groove can be easily formed by a plastic working method, processing time is shortened, manufacturing cost is reduced, and mass productivity is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るスラスト軸受の断面図
、第2図は第1図のスラスト軸受の正面図、第3図は第
1図のスラスト軸受面の圧力分布を示す図、第4図は第
1図のスラスト軸受の金型を示す断面図、第5図は金型
の断面図、第6図は金型を押圧時の面圧を示す断面図、
第7図は金型の弾性変形を示す断面図、第8図は本発明
の他の実施例の斜視図、第9図は第8図のVTRシリン
ダユニットの断面図、第10図は本発明の他の実施例を
示す構成図、第11図は第10図のポリゴンミラーユニ
ットの断面図、第12図は本発明をスラスト軸受に適用
した場合の溝の幅方向を定義する平面図である。 1・・・スラスト軸受(静止部材)、 2・・・動圧発生溝、     3・・軸(回転部材)
、4・・・流体膜、      4・・金型、30・・
・軸受装置。
FIG. 1 is a sectional view of a thrust bearing according to an embodiment of the present invention, FIG. 2 is a front view of the thrust bearing of FIG. 1, and FIG. 3 is a diagram showing the pressure distribution on the thrust bearing surface of FIG. 1. FIG. 4 is a sectional view showing the mold of the thrust bearing in FIG. 1, FIG. 5 is a sectional view of the mold, and FIG. 6 is a sectional view showing the surface pressure when pressing the mold.
Fig. 7 is a sectional view showing elastic deformation of the mold, Fig. 8 is a perspective view of another embodiment of the present invention, Fig. 9 is a sectional view of the VTR cylinder unit of Fig. 8, and Fig. 10 is a sectional view of the present invention. FIG. 11 is a cross-sectional view of the polygon mirror unit shown in FIG. 10, and FIG. 12 is a plan view defining the width direction of the groove when the present invention is applied to a thrust bearing. . 1... Thrust bearing (stationary member), 2... Dynamic pressure generating groove, 3... Shaft (rotating member)
, 4...Fluid film, 4...Mold, 30...
・Bearing device.

Claims (1)

【特許請求の範囲】 1、回転部材と静止部材とを流体膜を介して対向しその
対向したすべり面に、該すべり面の中心から放射状に外
周にめぐる曲線状の形状でかつ中心に向けて次第に狭く
なる幅とほぼ均一の深さとを有する複数の溝を形成した
軸受装置において、それぞれの溝は、それぞれの溝を転
写した外形と所定の高さとからなる凸部を有する金型を
、いずれか一方の前記すべり面に押圧して塑性加工によ
り形成されてなることを特徴とする軸受装置。 2、回転部材と静止部材とを流体膜を介して対向しその
対向したすべり面に、該すべり面の中心から放射状に外
周にめぐる曲線状の形状でかつ中心に向けて次第に狭く
なる幅とほぼ均一の深さとを有する複数の溝を形成した
軸受装置の製法において、それぞれの溝を転写した外形
と所定の高さとからなる凸部を有する金型を、いずれか
一方の前記すべり面に押圧して塑性加工によりそれぞれ
の溝を形成することを特徴とする軸受装置の製法。 3、金型の凸部の高さは、中央部を高くかつ外周部を低
く形成されてなることを特徴とする請求項2記載の軸受
装置の製法。 4、金型は、縦弾性係数の異なる材料が選択されて中央
部と外周部の凸部の高さの割合が変えられてなることを
特徴とする請求項2又は3記載の軸受装置の製法。 5、円形状の端面の中心から放射状に外周にめぐる曲線
状の形状でかつ中心に向けて次第に狭くなる幅とほぼ均
一の深さとを有する複数の溝を形成する軸受装置のすべ
り面の塑性加工法において、それぞれの溝を転写した外
形と所定の高さとからなる凸部を有する金型を、前記端
面に押圧し溝加工することを特徴とする軸受装置のすべ
り面の粗性加工法。 6、磁気ヘッドを有する回転部と、該回転部を支える固
定部とを備え、前記回転部に磁気テープを巻き付けて記
録再生する磁気記録再生装置において、前記固定部の中
心に設けたシャフトの上端面に対向して配設され、前記
回転部とともに回転し流体膜を介して該回転部を浮上支
持させるスラスト軸受は、請求項1記載の軸受装置であ
ることを特徴とする磁気記録再生装置。 7、多面鏡を有する回転部と、該回転部を支える固定部
とを備え、前記回転部の多面鏡によりレーザ光を光射さ
せて感光ドラム上に記録を行うレーザビームプリンタに
おいて、前記回転部の中心に設けられて該回転部ととも
に回転するシャフトの下端面に対向して配設され、前記
固定部に固定されて流体膜を介して前記シャフトを浮上
支持するスラスト軸受は、請求項1記載の軸受装置であ
ることを特徴とするレーザビームプリンタ。
[Claims] 1. A rotating member and a stationary member are opposed to each other via a fluid film, and the opposing sliding surfaces have a curved shape extending radially from the center of the sliding surface to the outer periphery and facing the center. In a bearing device in which a plurality of grooves are formed with gradually narrowing widths and approximately uniform depths, each groove is formed into a mold having a convex portion having an outer shape and a predetermined height that are transcribed from each groove. A bearing device characterized in that it is formed by pressing onto one of the sliding surfaces and performing plastic working. 2. A rotating member and a stationary member are opposed to each other via a fluid film, and the opposing sliding surfaces have a curved shape that extends radially from the center of the sliding surface to the outer periphery, and has a width that gradually becomes narrower toward the center. In a method for manufacturing a bearing device in which a plurality of grooves having a uniform depth are formed, a mold having a convex portion having an outer shape of each groove and a predetermined height is pressed against one of the sliding surfaces. A method for manufacturing a bearing device, characterized in that each groove is formed by plastic working. 3. The method for manufacturing a bearing device according to claim 2, wherein the height of the convex portion of the mold is set higher at the center and lower at the outer periphery. 4. The method for manufacturing a bearing device according to claim 2 or 3, wherein the mold is made of materials having different moduli of longitudinal elasticity, and the ratio of the heights of the convex parts in the central part and the outer peripheral part is changed. . 5. Plastic processing of the sliding surface of a bearing device to form a plurality of grooves having a curved shape extending radially from the center of the circular end face to the outer periphery and having a width that gradually narrows toward the center and a substantially uniform depth. 1. A method for roughening a sliding surface of a bearing device, characterized in that a mold having a convex portion having an outer shape and a predetermined height on which each groove is transferred is pressed onto the end surface to form the groove. 6. In a magnetic recording and reproducing apparatus that includes a rotating part having a magnetic head and a fixed part that supports the rotating part, and records and reproduces data by winding a magnetic tape around the rotating part, a shaft provided at the center of the fixed part is provided. 2. A magnetic recording and reproducing apparatus, wherein the thrust bearing, which is disposed facing the end face, rotates together with the rotating section, and floats and supports the rotating section via a fluid film is the bearing device according to claim 1. 7. A laser beam printer comprising a rotating part having a polygon mirror and a fixed part supporting the rotating part, and recording on a photosensitive drum by emitting laser light from the polygon mirror of the rotating part, wherein the rotating part 2. A thrust bearing according to claim 1, wherein the thrust bearing is provided at the center of the shaft and is disposed opposite to the lower end surface of the shaft that rotates together with the rotating section, and is fixed to the fixed section and supports the shaft floatingly via a fluid film. A laser beam printer characterized by being a bearing device.
JP17137489A 1989-07-03 1989-07-03 Bearing device and manufacture thereof Pending JPH0337413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17137489A JPH0337413A (en) 1989-07-03 1989-07-03 Bearing device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17137489A JPH0337413A (en) 1989-07-03 1989-07-03 Bearing device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0337413A true JPH0337413A (en) 1991-02-18

Family

ID=15922000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17137489A Pending JPH0337413A (en) 1989-07-03 1989-07-03 Bearing device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0337413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838795B2 (en) * 2002-05-01 2005-01-04 Seagate Technology Llc Low velocity, high pressure thrust pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838795B2 (en) * 2002-05-01 2005-01-04 Seagate Technology Llc Low velocity, high pressure thrust pump

Similar Documents

Publication Publication Date Title
US20050031237A1 (en) Hydrodynamic bearing device and a recording disk drive equipped with it
US20060153478A1 (en) Spindle motor
JPH1047342A (en) Conical fluid bearing, head drum provided with conical fluid bearing, and spindle motor
US5114245A (en) Dynamic pressure bearing device
KR100709101B1 (en) Hydrodynamic bearing unit
US20010036327A1 (en) Dynamic pressure bearing device and method of manufacturing the same
US7622837B2 (en) Hydrodynamic bearing device and spindle motor having the bearing device, and recording and/or reproducing apparatus using the spindle motor
US20070110348A1 (en) Fluid dynamic bearing unit
US7063463B2 (en) Conical hydrodynamic bearing device and a recording disk drive equipped with it, and a method of manufacturing a conical hydrodynamic bearing device
JPH10141362A (en) Dynamic pressure type fluid bearing device having uniform dynamic pressure distribution
JPH0337413A (en) Bearing device and manufacture thereof
JPH08235544A (en) Head drum assembly for videocassette recorder
JP2997499B2 (en) Bearing device and its manufacturing method
JP3983435B2 (en) Hydrodynamic bearing unit
CN1073673C (en) Hemispheric bearing apparatus for preventing deformation of hemisphere
JP2781573B2 (en) Manufacturing method of bearing device
JP2001317545A (en) Dynamic pressure bearing device and method for manufacturing thereof
JPS60234120A (en) Dynamic pressure thrust bearing
US20030205943A1 (en) Low velocity, high pressure thrust pump
JPH074428A (en) Bearing device
JP3537006B2 (en) Spindle motor
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JPH0874841A (en) Spindle unit, its manufacture and magnetic disc device
JPH02186117A (en) Bearing device and manufacture thereof
KR100459875B1 (en) Hydrodynamic air bearings