JPH0337393A - Variable capacity type vane compressor - Google Patents
Variable capacity type vane compressorInfo
- Publication number
- JPH0337393A JPH0337393A JP17277689A JP17277689A JPH0337393A JP H0337393 A JPH0337393 A JP H0337393A JP 17277689 A JP17277689 A JP 17277689A JP 17277689 A JP17277689 A JP 17277689A JP H0337393 A JPH0337393 A JP H0337393A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- control member
- receiving part
- pressure receiving
- discharge amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007423 decrease Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 description 17
- 230000006835 compression Effects 0.000 description 14
- 238000007906 compression Methods 0.000 description 14
- 230000003247 decreasing effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002679 ablation Methods 0.000 description 1
- 235000020289 caffè mocha Nutrition 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Rotary Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、一側面に一対の受圧部を有し且つ熱負荷に応
じて正逆回動して吐出量を制御する制御部材を備えた可
変容量式ベーン型圧縮機に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention comprises a control member that has a pair of pressure receiving parts on one side and that rotates forward and backward depending on the heat load to control the discharge amount. This invention relates to a variable capacity vane compressor.
(従来の技術)
従来、このような制御部材を備えた可変容量式ベーン型
圧縮機としては、例えば実開昭63−99005号公報
の技術がある。(Prior Art) Conventionally, as a variable capacity vane compressor equipped with such a control member, there is, for example, a technique disclosed in Japanese Utility Model Application Publication No. 63-99005.
すなわち、この従来技術は、両側端がサイドブロックで
閉塞されたシリンダと、該シリンダ内で回転するロータ
と、一側のサイドブロックのロータ側端面内に同動0往
に設けられた11〆1n部材とを備え、該制御部材の反
ロータ側側面上のほぼ対称な位置には一対の受圧部Il
l、112(第11図を参照)が形成されており、該制
御部材は、各受圧部111,112の一側にある低圧室
113内に夫々導入される低圧である吸入圧Psとコイ
ルばね114の付勢力の合力と、各受圧部Ill。That is, this prior art includes a cylinder whose both ends are closed by side blocks, a rotor rotating within the cylinder, and an 11〆1n provided in the end surface of the rotor side of one side block so as to move together. A pair of pressure receiving portions Il are provided at substantially symmetrical positions on the anti-rotor side surface of the control member.
1, 112 (see FIG. 11) are formed, and the control member controls the suction pressure Ps, which is a low pressure, introduced into the low pressure chamber 113 on one side of each pressure receiving part 111, 112, and the coil spring. The resultant force of the urging forces of 114 and each pressure receiving part Ill.
112の他側にある高圧室!15内に高圧である吐出圧
1)dがオリフィス116を介し導入されて形成される
制御圧Pcとの差により、吐llj量が最小となる1を
稼動位置と吐出量が最大となる全稼動位置との間で正逆
回動可能である。そして、一方の高圧室115と131
人室とを連通ずる通路中に介装された開閉J「機構目7
が、熱負荷に応じた吸入圧Psの変化に応じて開閉して
前記制御圧Pcを変化させ、該変化する制御圧P cと
^;1記合力との差により111制御部材が吐出量減方
向又は増方向に回動して吐11+J歌がl!ill W
される。Hyperbaric chamber on the other side of 112! Due to the difference between the high discharge pressure 1) d and the control pressure Pc formed by introducing the high pressure into the 1) through the orifice 116, the operating position is set to 1 where the discharge amount is the minimum, and the full operation position is where the discharge amount is the maximum. It can be rotated forward and backward between positions. And one high pressure chamber 115 and 131
Opening/closing J "mechanism 7" installed in the passageway communicating with the passenger room
The control member 111 changes the control pressure Pc by opening and closing in response to changes in the suction pressure Ps depending on the thermal load, and the difference between the changing control pressure Pc and the resultant force causes the control member 111 to reduce the discharge amount. Rotate in the direction or increase direction and emit 11 + J song l! ill W
be done.
(発明が解決しようとする課題)
ところで、一般に上記の如き従来の可変容量式ベーン型
圧縮機では、起動時のショックを軽減するために、吐出
量が最小である半稼動位置で起動するようにしである。(Problem to be Solved by the Invention) Generally, in the conventional variable capacity vane compressor as described above, in order to reduce the shock at startup, it is started at a half-operating position where the discharge amount is minimum. It is.
しかしながら、上記従来技術では、制御部材を半稼動位
置側に付勢するコイルばねを設けてあり、該ばねのプリ
セット力は制御部材の回動抵抗に打ち勝つ程度の大きさ
であるので、起動後に吐出量を増加させる場合に、制御
部材の回動抵抗とコイルばねの付勢力との和以上の力を
制御部材に与える必要がある。ところが、起動時には圧
縮比が小さくて吐出圧Pdがあまり上昇せず、従って^
:j記制御圧[)cもあまり上昇しないので、起動時に
制御部材が吐出量増方向にスムーズに回動しにくく、起
動性があまり良くないという問題点がある。However, in the above-mentioned conventional technology, a coil spring is provided that biases the control member toward the half-operated position, and the preset force of the spring is large enough to overcome the rotational resistance of the control member. In order to increase the amount, it is necessary to apply a force to the control member that is greater than the sum of the rotational resistance of the control member and the biasing force of the coil spring. However, at startup, the compression ratio is small and the discharge pressure Pd does not rise much, so ^
:j The control pressure [)c also does not increase very much, so there is a problem that the control member is difficult to smoothly rotate in the direction of increasing the discharge amount at the time of startup, and the startup performance is not very good.
本発明は、このような従来の問題点に着目して為された
もので、制御部材を付勢するばね部材をなくすことによ
り、起動性及び制御性の向上を図った可変容量式ベーン
型圧縮機を堤供することを目的としている。The present invention was made by focusing on such conventional problems, and is a variable capacity vane type compression system that improves starting performance and controllability by eliminating the spring member that biases the control member. The purpose is to provide equipment.
(課題を解決するための手段)
上記目的を達成するために、本発明に係る可変容量式ベ
ーン型圧縮機は、両側端がサイドブロックで閉塞された
シリンダと、該シリンダ内で回転するロータと、一側の
サイドブロックのロータ側端面内に回動自在に設けられ
且つ反ロータ側側面に一対の受圧部を右する制御部材と
を備え、該制御部材は熱負尚に応じて正逆回動して吐出
量を制御する可変容爪式ベーン型圧縮機において、前記
各受圧部の一側にある各第1圧力室は低圧側に連通して
いると共に、81j記各受圧部の他側にある各第2圧力
室を熱負荷の変化に応じて高圧側又は低圧側に交互に連
通させる制御弁が設けてあり、一方の受圧部の他側にあ
る第2圧力室が高圧側に連通したときに該一方の受圧部
側で発生するトルクにより制御部材が吐出量減方向に、
他方の受圧部の他側にある第2圧力室が高圧側に連通し
たときに該他方の受圧部側で発生するトルクにより制御
部材が吐出量増方向に夫々回動するように、前記2つの
第1圧力室及び2つの第2圧力室が配回されている。(Means for Solving the Problems) In order to achieve the above object, a variable capacity vane compressor according to the present invention includes a cylinder whose both ends are closed with side blocks, and a rotor rotating within the cylinder. , a control member rotatably provided in the rotor-side end face of one side block and having a pair of pressure-receiving parts on the side face opposite to the rotor, and the control member rotates in forward and reverse directions according to heat and negative conditions. In the variable displacement claw type vane type compressor that controls the discharge amount by moving, each first pressure chamber on one side of each pressure receiving part communicates with the low pressure side, and the other side of each pressure receiving part described in 81j. A control valve is provided to alternately communicate the second pressure chambers on the high pressure side or the low pressure side depending on changes in heat load, and the second pressure chamber on the other side of one pressure receiving part communicates with the high pressure side. When this happens, the torque generated on the one pressure receiving part causes the control member to decrease the discharge amount.
The two pressure chambers are arranged such that when the second pressure chamber on the other side of the other pressure receiving part communicates with the high pressure side, the control member is rotated in the direction of increasing the discharge amount by the torque generated on the other pressure receiving part side. A first pressure chamber and two second pressure chambers are arranged.
また、上記目的を達成するために、前記各受圧部の一側
にある各m 1 jE力室は低圧側に連通しており、一
方の受圧部の他側にある第2圧力室内に中間圧が形成さ
れており、且つ他方の受圧部の他側にある第2圧力室内
には、熱負荷に応じて高圧から低jEまで変化する制御
圧が形成されており、前記)I111部材が、前記一方
の受圧部側で発生するほぼ一定のトルクにより吐出量減
方向に、 nsI記旭方の受圧ml側で発生し且つ61
j記制御川に応じて変化するトルクにより吐出量増方向
に夫々回動するように構成されていることが奸ましい。In addition, in order to achieve the above object, each m 1 jE force chamber on one side of each pressure receiving part communicates with the low pressure side, and an intermediate pressure chamber is provided in a second pressure chamber on the other side of one pressure receiving part. is formed, and a control pressure that changes from high pressure to low jE according to the heat load is formed in the second pressure chamber on the other side of the other pressure receiving part, and the above I111 member Due to the almost constant torque generated on one pressure receiving part side, the discharge amount is reduced, and the nsI is generated on the rising pressure receiving part side and 61
Preferably, the pumps are configured to be rotated in the direction of increasing the discharge amount by a torque that changes depending on the control value.
また、上記目的を達成するために、前記両受圧部の一方
はその他方より受圧面積を小さくしてあり、前記各受圧
部の一側にある各第1圧力室は低圧側に連通しており、
前記一方の受圧部の他側にある第2注力室は高圧側に連
通しており、且つ前記他方の受圧部の他側にある第2圧
力室内には、熱負荷に応じて高圧から低圧まで変化する
制御圧が形成されており、1);i記制御部材が、前記
一方の受圧部側で発生するほぼ一定のトルクにより吐出
量減方向に、前記他方の受圧部側で51!生し0.っ前
記制御圧に応じて変化するトルクにより吐出量増方向に
夫々回動するようにtM成されていることが奸ましい。Furthermore, in order to achieve the above object, one of the pressure receiving parts has a smaller pressure receiving area than the other, and each first pressure chamber on one side of each pressure receiving part communicates with the low pressure side. ,
The second focusing chamber on the other side of the one pressure receiving part communicates with the high pressure side, and the second pressure chamber on the other side of the other pressure receiving part has a pressure ranging from high pressure to low pressure depending on the heat load. A changing control pressure is formed, and 1); the control member i is moved in the direction of reducing the discharge amount by the almost constant torque generated on the one pressure receiving part side, and 51! on the other pressure receiving part side. Raw 0. Preferably, the tM is configured to rotate in the direction of increasing the discharge amount by a torque that changes according to the control pressure.
(作用)
そして、各第2注力室を熱負荷に応じて高圧側又は低圧
側に交互に連通させる制御弁が設けである上記ベーン型
圧縮機では、一方の受圧部の第2圧力室が高圧側に連通
したときに該一方の受圧部側でトルクが発生し、このト
ルクにより制御部材が吐出量減方向に回動し、他方の受
圧部の第2E力室が高圧側に連通したときに該他方の受
圧部側でトルクが発生し、このトルクにより制御部材が
吐出量増方向に回動する。(Function) In the vane type compressor described above, which is provided with a control valve that alternately communicates each second focusing chamber with the high pressure side or the low pressure side depending on the heat load, the second pressure chamber of one pressure receiving part is connected to the high pressure side. When the second E force chamber of the other pressure receiving part communicates with the high pressure side, torque is generated on the one pressure receiving part side, and this torque causes the control member to rotate in the direction of reducing the discharge amount. Torque is generated on the other pressure receiving part side, and this torque rotates the control member in the direction of increasing the discharge amount.
また、一方の受圧部の第2圧力室内に中間圧が形成され
ている上記ベーン型圧縮機では、一方の受圧部側で中間
圧と低圧との差によりほぼ一定のトルクが発生し、この
トルクが制御圧に応じて変化する他方の受圧部側でのト
ルクより大きい場合には、制御部材は吐出量減方向に回
動し、その逆の場合には、制御部材は吐出量増方向に回
動する。In addition, in the vane type compressor described above in which intermediate pressure is formed in the second pressure chamber of one pressure receiving part, an almost constant torque is generated on the one pressure receiving part side due to the difference between the intermediate pressure and the low pressure, and this torque If the torque on the other pressure receiving part side changes according to the control pressure, the control member rotates in the direction of decreasing the discharge amount, and in the opposite case, the control member rotates in the direction of increasing the discharge amount. move.
そして、このベーン型圧縮機では、制m部材が最大吐出
量の全稼動位置まで回動しても、一方の受圧部側には中
間圧が作用しているので、該一方の受圧部側において、
制御部材がそのロータ側側面に作用している圧縮室の圧
力で即されて傾くのが防止される。In this vane type compressor, even if the control member rotates to the full operating position of the maximum discharge amount, intermediate pressure acts on one pressure receiving part side. ,
The control member is prevented from tilting due to the pressure of the compression chamber acting on its rotor-side side surface.
また、受圧部の一方はその他方より受圧面積を小さくし
である」1記ベーン型圧縮機では、受圧面積の小さい一
方の受圧部側で、高圧及び低圧の圧力差と受圧面積との
稍であるほぼ一定のトルクが発生し、このトルクが制御
圧に応じて変化する他方の受圧部側でのトルクより大き
い場合には、制御部材は吐出量減方向に回動し、その逆
の場合には、制御部材は吐出量増方向に回動する。そし
て、このベーン型圧縮機においても、制御部材が最大吐
出量の全稼動位置まで回動しても、一方の受圧部側には
高IJ:、が作用しているので、該一方の受圧部側にお
いて、制御部材がそのロータ側側面に作用している圧縮
室の圧力で押されて頷くのが防I卜される。In addition, one of the pressure receiving parts has a smaller pressure receiving area than the other. 1. In a vane type compressor, the difference between the pressure difference between the high pressure and low pressure and the pressure receiving area on the side of the pressure receiving part with the smaller pressure receiving area. When a certain approximately constant torque is generated and this torque is larger than the torque on the other pressure receiving part side which changes according to the control pressure, the control member rotates in the direction of reducing the discharge amount, and vice versa. In this case, the control member rotates in the direction of increasing the discharge amount. Also in this vane type compressor, even if the control member rotates to the full operating position of the maximum discharge amount, high IJ is acting on one pressure receiving part side. On the side, the control member is prevented from being pushed under the pressure of the compression chamber acting on its rotor-side side.
(実施例)
以下、木邦明の各実施例を添イ;1図面に基づき説明す
る。なお、各実施例の説明において同様の部位には同一
の符号を11して重複した説明を省略する。(Example) Each example of Kuniaki Kuniaki will be described below based on the accompanying drawings. In addition, in the description of each embodiment, the same parts are designated by the same reference numerals 11 and redundant description will be omitted.
第1図乃至第6図は木兆明の第1実施例に係る可変容量
式ベーン型圧縮機を示しており、第1図はこのベーン型
圧縮機内に設けられた吐出量制御機構部を示す概xm成
図、第4図はこのベーン型圧縮機の縦断面図である。Figures 1 to 6 show a variable capacity vane type compressor according to the first embodiment of Kochomei, and Figure 1 shows the discharge amount control mechanism provided in this vane type compressor. The approximate xm diagram and FIG. 4 are longitudinal cross-sectional views of this vane type compressor.
第4図に示すように、可変容量式ベーン型圧縮機は、路
楕円形の内周面1aを有するカムリング1と、該カムリ
ング1内に回転自在に収納された111筒状のロータ2
と、カムリング!の両側端を閉塞する如く該両側端に夫
々固定されたフロントサイドブロック3及びリヤサイド
ブロック4と、該両サイドブロック3.4の外側端に夫
々固定されたフロントヘッド5.リヤヘッド6と、ロー
タ2の同転軸7とを主要構成要素としており、回転柚7
はttji記両サイドブロック3,4に夫々設けた軸受
8,9に回転可能に支持されている。As shown in FIG. 4, the variable displacement vane type compressor includes a cam ring 1 having an elliptical inner circumferential surface 1a, and a cylindrical rotor 2 rotatably housed within the cam ring 1.
And cam ring! A front side block 3 and a rear side block 4 are respectively fixed to both side ends so as to close both sides of the block, and a front head 5 is fixed to the outer ends of both side blocks 3.4, respectively. The rear head 6 and the co-rotating shaft 7 of the rotor 2 are the main components, and the rotation axis 7
is rotatably supported by bearings 8 and 9 provided on both side blocks 3 and 4, respectively.
フロントヘッド5の上面には熱媒体である冷媒ガスの吐
出Lj 5 Aが、リヤヘッド6の上面には冷媒ガスの
吸入]」6aが夫々形成されている。吐出1」5aはフ
ロントヘッド5とフロントサイドブロック3とにより画
成される吐出室10に、吸入口6aはリヤヘッド6とリ
ヤサイドブロック4と↓こより画成される吸入室11に
夫々連通している。A discharge port Lj 5A for refrigerant gas, which is a heat medium, is formed on the upper surface of the front head 5, and a refrigerant gas suction port 6a is formed on the upper surface of the rear head 6. The discharge port 1'' 5a communicates with a discharge chamber 10 defined by the front head 5 and the front side block 3, and the suction port 6a communicates with a suction chamber 11 defined by the rear head 6 and the rear side block 4. .
カムリング1の内周面raとロータ2の外周面との間に
、周方1fiJに180度偏位した略対称な位置に2つ
の圧縮室12が画成されている。ロータ10にはその径
方向に沿うベーン溝13が周方向に等間隔を存して複数
設けられており、これらのベーン溝13内にベーン14
がそれぞれ放射方向に沿って出没口7r:に嵌装されて
いる。Two compression chambers 12 are defined between the inner peripheral surface ra of the cam ring 1 and the outer peripheral surface of the rotor 2 at substantially symmetrical positions offset by 180 degrees in the circumferential direction 1fiJ. The rotor 10 is provided with a plurality of vane grooves 13 along its radial direction at equal intervals in the circumferential direction, and vanes 14 are installed in these vane grooves 13.
are respectively fitted into the recessed and recessed openings 7r along the radial direction.
リヤサイドブロック4には、第4図及び第6図に示すよ
うに、周方向に180度偏位した略対称な位置に吸入ボ
ー115.15が設けられている(第4図では片方の吸
入ボート15のみが見えている)。各吸入ボートI5は
リヤサイドブロック4の厚さ方向に貫通しており、各吸
入ボー1−15を介して吸入室IIと圧縮室12とが夫
々連通されている。As shown in FIGS. 4 and 6, the rear side block 4 is provided with suction bows 115.15 at approximately symmetrical positions offset by 180 degrees in the circumferential direction (in FIG. 4, one suction boat Only 15 is visible). Each suction boat I5 passes through the rear side block 4 in the thickness direction, and the suction chamber II and the compression chamber 12 are communicated with each other via each suction boat 1-15.
カムリングlの外周壁には、周方向に1801.&偏位
した略対称な位置に2v4ずつ吐出ボート16゜16が
穿設されている(第4図では片方の吐出ボートI6のみ
が見えている)。該吐出ボート16のあるカムリング1
の外周壁には、弁止め部17a。The outer peripheral wall of the cam ring l has 1801 mm in the circumferential direction. & 2v4 discharge boats 16°16 are bored at approximately symmetrical positions (only one discharge boat I6 is visible in FIG. 4). Cam ring 1 with the discharge boat 16
A valve stop portion 17a is provided on the outer peripheral wall of the valve.
17aを有する吐出弁カバー17がボルト18により固
定されている。カムリングlの外周壁と弁止め部17a
との間には、吐出弁カバー17側に保持された吐出弁1
9.19が介装され、該各吐出弁19は吐出圧を受けた
ときに開弁じて各吐出ボートI6を夫々間【」するよう
になっている。さらに、カムリング1には吐出弁19の
開弁時に吐出ボート16と連通ずる連通路20が、フロ
ントサイドブロック3には該連通路20と連通した連通
路21が夫々形成され、各吐出弁IOが開弁して芥吐出
ボート16を開1」シたとき、圧縮室12内の正縮され
た冷媒ガスが吐出ボート16、連通路20,21、吐出
室IO及び吐出115aを順次介して吐出されるように
なっている。A discharge valve cover 17 having a diameter 17a is fixed with bolts 18. The outer peripheral wall of the cam ring l and the valve stop portion 17a
A discharge valve 1 held on the discharge valve cover 17 side is provided between
9.19 is interposed, and each discharge valve 19 opens when receiving discharge pressure to separate the respective discharge boats I6. Further, the cam ring 1 is formed with a communication passage 20 that communicates with the discharge boat 16 when the discharge valve 19 is opened, and the front side block 3 is formed with a communication passage 21 that communicates with the communication passage 20. When the valve is opened and the waste discharge boat 16 is opened 1", the compressed refrigerant gas in the compression chamber 12 is sequentially discharged through the discharge boat 16, the communication passages 20 and 21, the discharge chamber IO and the discharge 115a. It has become so.
第4図及び第6図に示すように、リヤサイドブロック4
には、そのロータ側端面4aに環状凹部40が設けられ
ており、該環状凹部40内には第5図に示すリング状の
制御部材50が回動自在に1医装されている。As shown in FIGS. 4 and 6, the rear side block 4
is provided with an annular recess 40 on its rotor-side end surface 4a, and a ring-shaped control member 50 shown in FIG. 5 is rotatably mounted within the annular recess 40.
環状四部40内には、ロータ側端面4aから浅い位置に
ある平坦面41.42が一方の吸入ボー)15の両側に
形成されていると共に、該端面4aから深い位置にある
圧力作動室43.44が他方の吸入ボート15の両側に
形成されている。Inside the annular portion 40, flat surfaces 41.42 are formed on both sides of one suction bow 15 at a shallow position from the rotor side end surface 4a, and pressure working chambers 43.42 are formed at a deep position from the end surface 4a. 44 are formed on both sides of the other suction boat 15.
第5図に示すように、制御部材50の外周縁には、その
周方向に180度偏位した略対称な位置に切欠部51,
52が設けられている。また、制m部材50の反ロータ
側側面には、第1図に示すように前記圧力作動室43.
44内に夫々スライド可能に嵌装される一対の受圧部5
3,54が切欠部51の両側に設けられていると共に、
前記平坦面41.42に夫々摺接するテール部55.5
6が切欠部52の両側に設けられている6各受圧部53
.54の周縁には、l1IIIf/lシ一ル部材S、及
び樹脂シール部材S、が第1図に示すように嵌装される
シール構53a、54aが形成されており、1);j記
各テール部55.56にもシール部材S++S、が嵌装
されるシール溝55a、56aが形成されている。As shown in FIG. 5, the outer peripheral edge of the control member 50 has notches 51 at approximately symmetrical positions offset by 180 degrees in the circumferential direction.
52 are provided. Further, on the side surface of the m-control member 50 on the side opposite to the rotor, as shown in FIG.
A pair of pressure receiving parts 5 each slidably fitted into 44.
3 and 54 are provided on both sides of the notch 51,
Tail portions 55.5 slidingly contact the flat surfaces 41, 42, respectively.
6 each pressure receiving part 53 provided on both sides of the notch 52
.. Seal structures 53a and 54a are formed around the periphery of 54, into which the l1IIIf/l seal member S and the resin seal member S are fitted as shown in FIG. Seal grooves 55a and 56a into which seal members S++S are fitted are also formed in the tail portions 55 and 56.
前記各圧力作動室43.44内は、第1図に示すように
、各受圧部53.54によりその一側にある第1圧力室
43.、/14.とその他側にある第2圧力室43..
44.とに2分されている。各第1圧力室43..44
.は各吸入ボート15を介して低圧側である吸入室11
と連通し、該各第1圧力室43.,44.内には低圧で
ある吸入圧Psが導入される。As shown in FIG. 1, each pressure working chamber 43,44 has a first pressure chamber 43,44 located on one side thereof by each pressure receiving part 53,54. , /14. and a second pressure chamber 43 on the other side. ..
44. It is divided into two parts. Each first pressure chamber 43. .. 44
.. is the suction chamber 11 on the low pressure side via each suction boat 15.
in communication with each first pressure chamber 43. ,44. A low suction pressure Ps is introduced into the chamber.
一方、第2圧力室43..44.は、熱負荷の変化に応
じたスプール弁(制御弁)60の変位によって低JE側
である吸入室11又は高圧側である吐出室10に交互に
連通ずるようになっている。すなわち、スブールブ「6
0は、第2図に示す第1位置と第3図に示す第2位置と
の間で、リヤサイドブロック4に設けた穴61内を摺動
変位可能である。また、このスプール弁60は、ばね6
2により第1位置側に、吸入室ti内に設けたベローズ
63により第2位置側に夫々付勢されている(なお、こ
のスプール弁60、ベローズ63等は第4図で図示を省
略しである)。このベローズ63は、熱負荷が小さくな
って吸入圧P sが所定(直重下になると、ばね62の
付勢力に抗して伸張し、熱負荷が大きくなって吸入圧P
sが所定(11より大きくなると、収縮するように設
定されている。従って、スプール弁60は、ベローズ6
3が収縮するとばね62の付勢力により第1位置側に変
位し、ベローズ63が伸張するとばね62の付勢力に抗
して第2位置側に変位するようになっている。そして、
スプール弁60が第1位置に変位したとき(第1図及び
第2図に示す状態のとき)には、一方の第2圧力室43
.が連通路64、スブールブr60の第1ボート60a
、及び低圧通路65を介して吸入室11に連通ずると共
に、他方の第2圧力室44、が連通路66、スプール弁
60の第2ボート60b、及び高1王通路67を介して
吐出室10に連通ずるようになっている。このとき、第
2圧力室44.内の圧力1’c、が高圧になり且つ第2
1王力室431内の注力Pc、が低圧になるので、受1
工部54側で高圧Pc、と低圧Psとの圧力差によって
トルクが発生し、このトルクにより制御部材50が吐出
量増方向く第1図の反時n1方向)に回動するようにな
っている。また、スプール弁60が第2位置に変位した
とき(第3図に示す状態のとき)には、一方の第2圧力
室43.が連通路64、第1ボート60a、及び高圧通
路67を介して吐出室10に連通ずると共に、他方の第
2圧ノノ室44オが連通路66、第2ボート60b、及
び低圧通路68を介して吸入室11に連通ずるようにな
っている。このとき、第2圧力室431内の圧力Pc。On the other hand, the second pressure chamber 43. .. 44. is alternately communicated with the suction chamber 11 on the low JE side or the discharge chamber 10 on the high pressure side by displacing the spool valve (control valve) 60 in response to changes in heat load. In other words, Suburb “6
0 can be slid in a hole 61 provided in the rear side block 4 between a first position shown in FIG. 2 and a second position shown in FIG. 3. Further, this spool valve 60 is equipped with a spring 6
2 toward the first position, and a bellows 63 provided in the suction chamber ti toward the second position (note that the spool valve 60, bellows 63, etc. are not shown in FIG. 4). be). This bellows 63 expands against the biasing force of the spring 62 when the thermal load becomes small and the suction pressure Ps reaches a predetermined level (under direct weight), and the thermal load increases and the suction pressure Ps
When s becomes larger than a predetermined value (11), the spool valve 60 is set to contract.
When the bellows 3 contracts, it is displaced toward the first position by the biasing force of the spring 62, and when the bellows 63 expands, it is displaced toward the second position against the biasing force of the spring 62. and,
When the spool valve 60 is displaced to the first position (in the state shown in FIGS. 1 and 2), one of the second pressure chambers 43
.. is the communication path 64 and the first boat 60a of Sbourble r 60
, and the suction chamber 11 via the low pressure passage 65, and the other second pressure chamber 44 communicates with the discharge chamber 10 via the communication passage 66, the second boat 60b of the spool valve 60, and the high first king passage 67. It is designed to communicate with At this time, the second pressure chamber 44. The pressure inside 1'c becomes high pressure and the second
Since the focus Pc in the 1st power chamber 431 becomes low pressure, Uke 1
Torque is generated on the working part 54 side by the pressure difference between the high pressure Pc and the low pressure Ps, and this torque causes the control member 50 to rotate in the direction of increasing the discharge amount (counterclockwise n1 direction in FIG. 1). There is. Further, when the spool valve 60 is displaced to the second position (in the state shown in FIG. 3), one of the second pressure chambers 43. communicates with the discharge chamber 10 via the communication passage 64, the first boat 60a, and the high pressure passage 67, and the other second pressure chamber 44o communicates with the discharge chamber 10 via the communication passage 66, the second boat 60b, and the low pressure passage 68. It communicates with the suction chamber 11. At this time, the pressure inside the second pressure chamber 431 is Pc.
が高圧になり且つ第2圧力室44.内の圧力Pc。becomes high pressure and the second pressure chamber 44. The pressure inside Pc.
が低)I:、になるので、受圧部53側で高圧Pc、と
低1工Psとの圧力差によってトルクが発生し、このト
ルクにより制御部材50が吐出量減方向(141図の時
削力向)に回動するようになっている。is low) I:, so torque is generated on the pressure receiving part 53 side due to the pressure difference between the high pressure Pc and the low pressure Ps, and this torque causes the control member 50 to move in the direction of reducing the discharge amount (in Fig. It is designed to rotate in the direction of force.
以ド、上記第1実施例の作用を説明する。Hereinafter, the operation of the first embodiment will be explained.
いま、圧縮機が起動され、この起動時に制御部材50が
例えば第1図に示すように全稼動位置に近い位置にある
ものとする。この起動時において通常熱負荷が大きく、
吸入II P sが所定1直より大きいので、ベローズ
63が収縮し、スブールブr60はばね62のイリ勢力
により第1図及び第2図に示す第1拉置側に変位する。It is now assumed that the compressor is started, and at the time of starting, the control member 50 is at a position close to the full operating position, as shown in FIG. 1, for example. During this start-up, the heat load is usually large;
Since the suction II P s is larger than the predetermined 1 shift, the bellows 63 contracts, and the Sbourble r 60 is displaced to the first ablation side shown in FIGS. 1 and 2 by the force of the spring 62.
スプール弁60が第1位置に変位すると、一方の第2圧
力室43.が吸入室11に連通ずると共に他方の第2圧
力室44゜が吐出室10に連通する。これによって、他
方の第2圧力室44.内の圧ノ)Pc、が高圧になるの
で、受圧部54側で高圧Pc、と低圧Psとの圧力差に
よってトルクが発生し、このトルクにより制御部材50
が第1図に示す起動時の位置からさらに叶出徹増方向に
回動し、圧縮機のljl出量が増大する。111制御部
材50が吐出量増方向に最大限にlli+動した位置が
全稼動位置で、この位置では吐出量が最大となる。When the spool valve 60 is displaced to the first position, one of the second pressure chambers 43. communicates with the suction chamber 11, and the other second pressure chamber 44° communicates with the discharge chamber 10. As a result, the other second pressure chamber 44. Since the internal pressure Pc becomes high, torque is generated on the pressure receiving part 54 side due to the pressure difference between the high pressure Pc and the low pressure Ps, and this torque causes the control member 50 to
is further rotated in the direction of increasing the output from the starting position shown in FIG. 1, and the ljl output of the compressor increases. The position where the 111 control member 50 moves to the maximum lli+ in the direction of increasing the discharge amount is the full operation position, and at this position the discharge amount is maximum.
また、起動時に熱負荷が小さく、吸入圧P sが所定値
以下のときには、ベローズ63はばね62の付勢力に抗
して伸張し、スプール弁6oが第3図に示す第2位置側
に変位する。スブールブ「6゜が第2位置に変位すると
、一方の第21F、力室438が吐出室10に連通する
と共に他方の第2Jモカ室441が吸入室11に連通ず
る。これによって、一方の第2圧力室43.内の圧力P
c、が高圧になるので、受圧部53側で高圧Pc、と低
圧Psとの圧力差によってトルクが発生し、このトルク
により制御部材50が第1図に示す起動時の位置から吐
出量減方向に回動し、圧縮機の吐出量が減少する。制御
部材50が吐出量減方向に最大限に回動した(3/置が
半稼動位置で、この位置では吐出量が最小となるに
のように、圧縮機の起動時において、制御部材50は、
受圧部53又は54側で高圧Pc、又は1)c、と低圧
Psとの圧力差によって発生するトルクにより吐出量減
方向又は増方向に回動し、■つ制御部材50には上記従
来技術のようにコイルばねのイζ1勢力が作用していな
いので、制御部材50は起動時の位置からスムーズに回
動でき、起動性が良い。Furthermore, when the thermal load is small at startup and the suction pressure Ps is below a predetermined value, the bellows 63 expands against the biasing force of the spring 62, and the spool valve 6o is displaced to the second position shown in FIG. do. When Sbourbe 6° is displaced to the second position, one 21F power chamber 438 communicates with the discharge chamber 10, and the other 2J mocha chamber 441 communicates with the suction chamber 11. Pressure P inside pressure chamber 43.
c, becomes high pressure, a torque is generated on the pressure receiving part 53 side due to the pressure difference between the high pressure Pc and the low pressure Ps, and this torque causes the control member 50 to move in the direction of decreasing the discharge amount from the starting position shown in FIG. The discharge amount of the compressor decreases. When the compressor is started, the control member 50 rotates to the maximum in the direction of reducing the discharge amount (the 3/ position is the half-operation position, and the discharge amount is at its minimum in this position). ,
The control member 50 is rotated in the direction of decreasing or increasing the discharge amount by the torque generated by the pressure difference between the high pressure Pc or 1) c and the low pressure Ps on the pressure receiving part 53 or 54 side. Since the force of the coil spring ζ1 is not acting, the control member 50 can smoothly rotate from the starting position, and has good starting performance.
また、起動後においては、熱負荷に応じた吸入圧Psの
変化に応じてベローズ63が伸縮し、この伸縮によりス
プール弁60が前記第1位置と第2位置との間で振動す
る。この振動により一方の第2圧力室43.内の圧力P
c、と他方の圧力室44、内の圧力Pc、とがデユーテ
ィ比制御される。Further, after startup, the bellows 63 expands and contracts in response to changes in the suction pressure Ps depending on the thermal load, and this expansion and contraction causes the spool valve 60 to vibrate between the first position and the second position. This vibration causes one of the second pressure chambers 43. internal pressure P
c, and the pressure Pc in the other pressure chamber 44 are controlled by duty ratio.
すなわち、スプール弁60が第1位置にある時間が第2
<1’l置にある時間より長ければ、圧力Pc。That is, the time the spool valve 60 is in the first position is the second
<If the time is longer than 1'l, the pressure Pc.
が托力1)C1より高くなり、受圧部54側で発生する
トルクが受圧部53側で発生する]・ルクより大きくな
るので、+I、II 111部材50が吐出量増方向に
回動する。これとは逆に、スプール弁60が第2位置に
ある時間が第1位置にある時間より長ければ、圧力Pc
、がjモカ1)clより高くなり、受圧部53側で発生
するトルクが受11:、部54側で発生するトルクより
大きくなるので、制御部材50が吐出量減方向に回動す
る。The force 1) becomes higher than C1, and the torque generated on the pressure receiving part 54 side becomes larger than the torque generated on the pressure receiving part 53 side, so +I, II 111 member 50 rotates in the direction of increasing the discharge amount. Conversely, if the time that the spool valve 60 is in the second position is longer than the time that it is in the first position, the pressure Pc
becomes higher than jmocha1)cl, and the torque generated on the pressure receiving part 53 side becomes larger than the torque generated on the receiver 11:, part 54 side, so the control member 50 rotates in the direction of decreasing the discharge amount.
このように、圧縮機の稼動中において、制御部材50は
熱負荷の変化に応じた受圧部53側でのトルクと受圧部
54側でのトルクの差によって正逆回動し、1.つ制t
i11部材50には上記従来技術のようにコイルばねの
付勢力が作用していないので、制御部材50は熱負荷の
変化に応じてスムーズに同動でき、制御性が良い。In this way, during operation of the compressor, the control member 50 rotates forward and backward depending on the difference between the torque on the pressure receiving part 53 side and the torque on the pressure receiving part 54 side in response to changes in thermal load. System t
Since the biasing force of the coil spring does not act on the i11 member 50 as in the above-mentioned prior art, the control member 50 can move smoothly in response to changes in thermal load, providing good controllability.
また、圧縮機を停止すると、受圧部53側でのトルク及
び受圧部54側でのトルクがなくなるので、制御部材5
0はその停止時の位置で止まる。Furthermore, when the compressor is stopped, the torque on the pressure receiving part 53 side and the torque on the pressure receiving part 54 side disappear, so the control member 5
0 will stop at the position at which it stopped.
なお、上記第1実施例において、前記ベローズ63に代
えて、電磁弁を用い、この電磁弁によってスプール弁6
0を前記第2位置側に変位させるように構成することも
できる。In the first embodiment, a solenoid valve is used in place of the bellows 63, and the spool valve 6 is opened by this solenoid valve.
0 can also be configured to be displaced toward the second position.
次に、本発明の第2実施例を第7図を参照して説明する
。Next, a second embodiment of the present invention will be described with reference to FIG.
この第2実施例は、前記各第1圧力室43.。In this second embodiment, each of the first pressure chambers 43. .
44、内に低圧である吸入圧Psが導入されている点で
一ヒ記第1実施例と同じである。しかし、前記一方の第
2圧力室43.内に中間圧Pcオを形成すると共に、前
記他力の第2圧力室44.内に熱負荷に応じて高圧から
低圧まで変化する制御圧Pc。This is the same as the first embodiment described above in that a low suction pressure Ps is introduced into the second embodiment. However, the one second pressure chamber 43. An intermediate pressure Pc is formed within the second pressure chamber 44. Control pressure Pc changes from high pressure to low pressure depending on the heat load.
を形成することにより、前記制御部材50が、−方の受
圧部53側で発生するほぼ一定のトルクにより吐出量減
力向に、他方の受圧部54側で発生し且つ前記制御圧P
c、に応じて変化するトルクにより吐出量増方向に夫々
回動するように構成されている点で、この第2実施例は
」二記第1実施例と異なる。その他の構成については、
第2実施例と上記第!実施例とは同じである。By forming the control member 50, the control pressure P is generated on the other pressure receiving part 54 side in the direction of discharge amount reduction due to the almost constant torque generated on the negative pressure receiving part 53 side, and
The second embodiment differs from the first embodiment described in ``2'' in that it is configured to rotate in the direction of increasing the discharge amount by a torque that changes according to c. For other configurations,
Second example and the above! This is the same as the example.
具体的には、一方の第2LE力室43.は、オリフィス
70及び71を介して吸入室11及び吐出室10に同時
に連通している。Specifically, one second LE force chamber 43. simultaneously communicates with the suction chamber 11 and the discharge chamber 10 via orifices 70 and 71.
他方の第2圧力室44.は、オリフィス72を介して吐
出室lOに連通していると共に、連通路73を介して吸
入室11に連通可能である。該連通路73には、熱負荷
に応じて変化する吸入圧Psに応じて連通路73を開閉
して第2圧力室44゜内の制御圧Pc、を制御する開閉
Jr機tl180が介装されている。この開閉ブ「Il
構80は、吸入室1■内に設けられ、吸入圧P sに応
じて伸縮するベローズ81と、この伸縮により連通路7
3を開閉するボール弁体82と、該11体82を閉弁方
向にイτ1勢するばね83とから成る。そして、この開
閉弁機4M80は、吸入圧Psが所定俯以fのときには
、ベローズ81が伸張して連通路73を開くことにより
制御圧Pc、を低下させ、吸入圧P sが所定値より大
きくなったときには、ベローズ81が収縮して連通路7
3を閉じることによりit制御圧Pcを上昇させるよう
になっている。The other second pressure chamber 44. is in communication with the discharge chamber IO via the orifice 72, and can also communicate with the suction chamber 11 via the communication path 73. The communication passage 73 is interposed with an opening/closing Jr. machine TL180 that opens and closes the communication passage 73 according to the suction pressure Ps that changes depending on the heat load to control the control pressure Pc within the second pressure chamber 44°. ing. This opening/closing block “Il”
The structure 80 includes a bellows 81 that is provided in the suction chamber 1 and that expands and contracts according to the suction pressure Ps, and a bellows 81 that expands and contracts according to the suction pressure Ps, and a communication path 7 that is opened and closed by this expansion and contraction.
It consists of a ball valve body 82 that opens and closes the valve body 82, and a spring 83 that biases the valve body 82 in the valve closing direction by τ1. When the suction pressure Ps is below a predetermined elevation f, the on-off valve device 4M80 lowers the control pressure Pc by expanding the bellows 81 and opening the communication passage 73, so that the suction pressure Ps becomes larger than the predetermined value. When this happens, the bellows 81 contracts and the communication path 7
3, the IT control pressure Pc is increased.
以下、上記第2実施例の作用を説明する。The operation of the second embodiment will be explained below.
圧縮機の稼動中において、一方の受圧部53側で、前記
中同圧Pc、と吸入圧Psとの差によって+I11 f
it部材50を吐出量減方向に回動させるほぼ一定のト
ルクが発生していると共に、他15の受圧部54側で、
前記制御1JTEPc、と吸入圧Psとの差によって制
御f fTB材50を吐出量増方向に回動させるトルク
が発生している。During operation of the compressor, +I11 f is generated on one pressure receiving part 53 side due to the difference between the same pressure Pc and the suction pressure Ps.
A substantially constant torque is generated to rotate the IT member 50 in the direction of reducing the discharge amount, and at the same time, on the other 15 pressure receiving parts 54 side,
The difference between the control 1JTEPc and the suction pressure Ps generates a torque that rotates the control fTB material 50 in the direction of increasing the discharge amount.
いま、熱負荷が小さくなり、吸入圧Psが所定値以下と
なって制御圧1)c、が低下していき、Ω;I記はぼ一
定の]・ルクが受1工部54側で発生するトルクより大
きくなると、制御部材50が吐出量減方向に回動して吐
出量が減少する。Now, as the heat load becomes smaller and the suction pressure Ps becomes less than the predetermined value, the control pressure 1)c decreases, and Ω;I is almost constant]・Ruk is generated on the receiving part 54 side. When the torque becomes larger than that, the control member 50 rotates in the direction of decreasing the discharge amount, and the discharge amount decreases.
これとは逆に、熱負荷が大きくなり、吸入圧Psが所定
値より大きくなって制御圧Pc、が上昇していき、前記
はぼ一定のトルクが受圧部54側で発生するトルクより
小さくなると、制御部材50が吐出量増方向に回動して
吐出量が増加する。On the contrary, when the thermal load increases, the suction pressure Ps becomes larger than the predetermined value, and the control pressure Pc increases, and the above-mentioned almost constant torque becomes smaller than the torque generated on the pressure receiving part 54 side. , the control member 50 rotates in the direction of increasing the discharge amount, and the discharge amount increases.
圧縮機を停止すると、受圧部53側でのトルク及び受圧
部54側でのトルクがなくなるので、制御部材50はそ
の停止に時の位置で止まる。When the compressor is stopped, the torque on the pressure receiving part 53 side and the torque on the pressure receiving part 54 side disappear, so the control member 50 stops at its stop position.
上記第2実施例によれば、圧縮機の起動時及び稼動中に
おいて、制御部材50は、受圧部53側でのトルクと受
圧部54側でのトルクとの差によって吐出量減方向又は
増方向に回動する構成であり、rl、つ制御部材50に
は上記従来技術のようにコイルばねのイτ1勢力が作用
していないので、」−1記第1実施例と同様に起動性及
び制御性が良い。According to the second embodiment, when the compressor is started up and is in operation, the control member 50 operates in the direction of decreasing or increasing the discharge amount depending on the difference between the torque on the pressure receiving section 53 side and the torque on the pressure receiving section 54 side. Since the force of the coil spring τ1 does not act on the control member 50 as in the above-mentioned prior art, the startability and control are the same as in the first embodiment described in Section 1. Good sex.
また、上記第2実施例によれば、制御部材50が第7図
において反時i1t/j向に11il記全稼動位置まで
最大限に回動した場合、fli’J御部材50のロータ
(ltIl側面50a(第4図を参照)には前記圧縮室
12内の高圧が作用するが、071記第2圧力室44.
内の制御圧Pc、は高圧となっており且つ前記第2圧力
室43.内の圧力Pc、は低圧にならずに常に中間圧と
なっているので、制御部材50が圧縮室12内の高圧に
負けて反ロータ方向く第4図の右方向)に移動しない、
即ち一方の受圧部53側で制御部材50は傾かない。従
って、全稼動位置においても、前記ロータ2と両サイド
ブロック3゜4との間が所定の隙間に保たれ、気密不良
が防止されて、性能の低下が防止されるという利点があ
る。この点で、第2実施例のものは上記第1実施例のも
のより実用上鏝れている。Further, according to the second embodiment, when the control member 50 rotates to the maximum extent in the counterclockwise i1t/j direction in FIG. Although the high pressure within the compression chamber 12 acts on the side surface 50a (see FIG. 4), the second pressure chamber 44.071.
The control pressure Pc in the second pressure chamber 43. Since the internal pressure Pc does not become a low pressure and is always at an intermediate pressure, the control member 50 does not succumb to the high pressure within the compression chamber 12 and move in the direction opposite to the rotor (rightward in FIG. 4).
That is, the control member 50 does not tilt on the one pressure receiving part 53 side. Therefore, even in the full operating position, a predetermined gap is maintained between the rotor 2 and both side blocks 3 and 4, preventing airtightness and deterioration of performance. In this respect, the second embodiment is more practical than the first embodiment.
次に、本発明の第3実施例を第8図乃至第10図を用い
て説明する。Next, a third embodiment of the present invention will be described using FIGS. 8 to 10.
このff13f施例は、」1記第2実施例とは異なる方
法によって的記一方の受圧部53(この第3実施例では
受圧部53′)側にほぼ一定のトルクを発生させるよう
にしたもので、その他の構成は」1記第2実施例と同じ
である。This ff13f embodiment generates a substantially constant torque on one pressure receiving part 53 (in this third embodiment, the pressure receiving part 53') using a method different from the second embodiment described in 1. The other configurations are the same as in the second embodiment described in section 1.
具体的には、第8図及び第9図に示す一方の受圧部53
′の高さを他力の受B部54より低くして受圧部53′
の受圧面1真を受圧部54より小さくしであると共に、
一方の受圧部53′の第2圧力室43.内には吐出室I
O内の吐出圧Pdが連通路84を介して導入されている
。これによって、一方の受圧部53′では、吐出圧Pd
及び低圧Psの「力差と該受圧部53′の受圧面積との
積であるほぼ一定のトルクが発生しており、このトルク
により制御部材50が吐出量減方向に回動するようにな
っている。なお、一方の受圧部53′の高さを他方の受
JTE部54より低くしたことにr1!い、f510図
に示すリヤサイドブロック4の一方の圧力作動室43′
の深さを、他方の圧力作動室44より浅くしである。Specifically, one pressure receiving part 53 shown in FIGS. 8 and 9
The pressure receiving part 53' is made lower than the external force receiving part B 54.
The pressure receiving surface 1 is smaller than the pressure receiving portion 54, and
The second pressure chamber 43 of one pressure receiving part 53'. There is a discharge chamber I inside.
A discharge pressure Pd in O is introduced via a communication path 84. As a result, in one pressure receiving part 53', the discharge pressure Pd
A substantially constant torque is generated, which is the product of the force difference between the low pressure Ps and the pressure receiving area of the pressure receiving portion 53', and this torque causes the control member 50 to rotate in the direction of reducing the discharge amount. In addition, it is r1! that the height of one pressure receiving part 53' is lower than the other receiving JTE part 54, and one pressure working chamber 43' of the rear side block 4 shown in Fig.
The depth of the pressure working chamber 44 is made shallower than that of the other pressure working chamber 44.
一力、受圧部53′より受圧部1ffの大きい受圧部5
4側では、」1記第2実施例と同様に、熱負荷に応じて
変化する前記制御圧Pc、及び吸入圧Psの圧力差と該
受圧部54の受圧面積との積であるトルクが発生してお
り、このトルクにより制御部材50が吐出量減方向に回
動するようになっている。First, the pressure receiving part 5 has a larger pressure receiving part 1ff than the pressure receiving part 53'.
On the 4 side, as in the second embodiment described in 1., a torque is generated which is the product of the pressure difference between the control pressure Pc and the suction pressure Ps, which changes according to the heat load, and the pressure receiving area of the pressure receiving portion 54. This torque causes the control member 50 to rotate in the direction of decreasing the discharge amount.
従って、この第3実施例は、上記第2実施例と同様に作
用する。すなわち、熱負荷が小さくなり、吸入圧P s
が所定値以下となって制御圧PC,が低下していき、前
記はぼ一定のトルクが受圧部54側で発生するトルクよ
り大きくなると、制御11部材50が吐出量減方向に回
動して吐出量が減少する。Therefore, this third embodiment operates in the same manner as the second embodiment described above. In other words, the heat load becomes smaller and the suction pressure P s
becomes less than a predetermined value and the control pressure PC decreases, and when the almost constant torque becomes larger than the torque generated on the pressure receiving part 54 side, the control 11 member 50 rotates in the direction of reducing the discharge amount. Discharge amount decreases.
これとは逆に、熱負荷が大きくなり、吸入圧P sが所
定値より大きくなって制御圧Pc、が上昇していき、前
記はぼ一定のトルクが受圧部54側で発生するトルクよ
り小さくなると、制御部材50が吐出量増方向に回動し
て吐出量が増加する。On the contrary, as the heat load increases, the suction pressure Ps becomes larger than the predetermined value, and the control pressure Pc increases, and the above-mentioned almost constant torque becomes smaller than the torque generated on the pressure receiving part 54 side. Then, the control member 50 rotates in the direction of increasing the discharge amount, and the discharge amount increases.
上記第3実施例によれば、上記第2実施例の場合と同様
に起動性及び制御性が良い。According to the third embodiment, the startability and controllability are good as in the case of the second embodiment.
また、上記第2実施例によれば、制御部材50が011
記全稼動位置にある場合、制御部材5oのロータ側側面
50aには前記圧縮室12内の高圧が作用するが、第2
圧力室441内の制御圧Pc は高圧となっており且つ
第2圧力室433内は常に高圧(吐出圧1)d)となっ
ているので、制御部材50が圧縮室12内の高圧に負け
て反ロータカ向に移動しない、即ち一方の受圧部53′
側で制御部材50は傾かない。従って、全稼動位置にお
いても、上記第2実施例と同様に、前記ロータ2と両サ
イドブロック3,4との間が所定の隙間に保たれ、気密
不良がl!/j +l−されて、性能の低下が防止され
るという利点がある。この点で、第3実施例のものは上
記第1実施例のものより実用上源れている。Further, according to the second embodiment, the control member 50 is 011
When the control member 5o is in the fully operating position, the high pressure in the compression chamber 12 acts on the rotor-side side surface 50a of the control member 5o.
Since the control pressure Pc in the pressure chamber 441 is high and the pressure in the second pressure chamber 433 is always high (discharge pressure 1) d), the control member 50 is succumbed to the high pressure in the compression chamber 12. It does not move in the anti-rotor direction, that is, one pressure receiving part 53'
On the side, the control member 50 does not tilt. Therefore, even in the full operating position, a predetermined gap is maintained between the rotor 2 and both side blocks 3 and 4, as in the second embodiment, and there is no airtightness. /j +l-, which has the advantage of preventing performance deterioration. In this respect, the third embodiment is more practical than the first embodiment.
〈発明の効果)
以」二詳述したように、本発明に係る可変容量式ベーン
型圧縮機によれば、各受圧部の一側にある各第11工力
室は低圧側に連通していると共に、各受圧部の他側にあ
る各第2圧力室を熱負荷の変化に応じて高圧側又は低圧
側に交互に連通させる制御ブrが設けてあり、一方の受
圧部の他側にある第2圧力室が高圧側に連通したときに
該一方の受圧部側で発生するトルクにより制御部材が吐
出量減方向に、他方の受圧部の他側にある第2圧力室が
高圧側に連通したときに該他方の受圧部側で発生するト
ルクにより制御部材が吐出量増方向に夫々同動するよう
に、前記2つの第1圧力室及び2つの第2圧力室が配置
されている構成により、一方の受匝部の第2圧力室が高
圧側に連通したときに該−・力の受圧部側でトルクが発
生し、このトルクにより制御部材・が吐出量減方向に回
動し、他方の受圧部の第2圧力室が高圧側に連通したと
きに該他方の受圧部側でトルクが発生し、このトルクに
より制御部材が吐出量増方向に回動する。従って、圧縮
機の起動時において、制御部材は、一方又は他方の受圧
部側で発生するトルクにより吐出量減方向又は増方向に
回動し、且つ制御部材には上記従来技術のようにコイル
ばねの付勢力が作用していないので、制御部材は起動時
の位置からスムーズに回動でき、起動性が良い。また、
圧縮機の稼動中においても、g1m部材は熱負荷の変化
に応じて一方又は他方の受圧部側で発生するトルクによ
り吐出量減方向又は増方向に回動し、且つ制御部材には
上記従来技術のようにコイルばねのト1°勢力が作川し
ていないので、制御部材は熱負荷の変化に応じてスムー
ズに回動でき、制御1f’lが良い。<Effects of the Invention> As described in detail below, according to the variable capacity vane compressor according to the present invention, each of the eleventh power chambers on one side of each pressure receiving part communicates with the low pressure side. At the same time, a control brake r is provided that alternately connects the second pressure chambers on the other side of each pressure receiving part to the high pressure side or the low pressure side according to changes in heat load, and When a certain second pressure chamber communicates with the high pressure side, the control member is caused to decrease the discharge amount due to the torque generated on the one pressure receiving part side, and the second pressure chamber on the other side of the other pressure receiving part is directed to the high pressure side. The two first pressure chambers and the two second pressure chambers are arranged so that the control members move together in the direction of increasing the discharge amount due to the torque generated on the other pressure receiving part side when communicating with each other. As a result, when the second pressure chamber of one of the receiving fittings communicates with the high pressure side, torque is generated on the pressure receiving part side of the force, and this torque causes the control member to rotate in the direction of reducing the discharge amount. When the second pressure chamber of the other pressure receiving part communicates with the high pressure side, torque is generated on the other pressure receiving part side, and this torque rotates the control member in the direction of increasing the discharge amount. Therefore, when the compressor is started, the control member is rotated in the direction of decreasing or increasing the discharge amount by the torque generated on one or the other pressure receiving part side, and the control member is equipped with a coil spring as in the above-mentioned prior art. Since no biasing force is applied, the control member can smoothly rotate from the starting position, resulting in good starting performance. Also,
Even during operation of the compressor, the g1m member rotates in the direction of decreasing or increasing the discharge amount due to the torque generated on one side or the other side of the pressure receiving section in response to changes in thermal load, and the control member has the above-mentioned conventional technology. Since the coil spring's 1° force is not generated as shown in FIG.
また、各受圧部の一側にある各第1圧力室は低圧側に連
通しており、一方の受圧部の他側にある第2圧力室内に
中間圧が形成されており、nつ他方の受圧部の他側にあ
る第2圧力室内には、熱負首に応じて高圧から低圧まで
変化する制御圧が形成されており、前記制御部材が、前
記一方の受圧部側で発生ずるほぼ一定のトルクにより吐
出量減方向に、前記他方の受圧部側で発生し且つ前記制
御圧に応じて変化するトルクにより吐出量増方向に夫々
101動するように構成されていることにより、一方の
受圧部側で中間圧と低圧との差によりほぼ一定のトルク
が発生し、このトルクが制御圧に応じて変化する他方の
受圧部側でのトルクより大きい場合には、制御11部材
は吐出ffi滅方内方向動し、その逆の場合には、制御
部材は吐出量増方向に回動する。従って、制御部材は起
動時の位置からスムーズに回動でき、起動性が良いと共
に、稼動中において制御部材は熱負荷の変化に応じてス
ムーズに同動でき、制uv rlが良い。また、制御部
材が最大吐出量の全稼動位置まで回動しても、一方の受
圧部側には中間圧が作川しているので、該一方の受注部
側において、1li11a11部材がそのロータ側側面
に作用している圧縮室の圧力で押されて傾くのが防止さ
れる。従って、全稼動位置においても、ロータと両サイ
ドブロックとの間が所定の隙間に保たれ、気密不良とな
るのが防止されて、性能の低下が防止される。Furthermore, each first pressure chamber on one side of each pressure receiving part communicates with the low pressure side, and an intermediate pressure is formed in a second pressure chamber on the other side of one pressure receiving part. In the second pressure chamber on the other side of the pressure receiving part, a control pressure that changes from a high pressure to a low pressure according to the heat negative neck is formed, and the control member controls the pressure generated on the one pressure receiving part side to be almost constant. One pressure receiving section is configured to move in the direction of decreasing the discharge amount due to the torque of the other pressure receiving section, and in the direction of increasing the discharge amount due to the torque generated on the other pressure receiving section side and changing according to the control pressure. If a substantially constant torque is generated on the pressure receiving part side due to the difference between the intermediate pressure and the low pressure, and this torque is larger than the torque on the other pressure receiving part side which changes depending on the control pressure, the control 11 member will cause the discharge ffi to stop. In the case of inward movement and vice versa, the control member rotates in the direction of increasing the discharge amount. Therefore, the control member can rotate smoothly from the starting position, and has good starting performance. During operation, the control member can also smoothly move in response to changes in thermal load, and the control uv rl is good. In addition, even if the control member rotates to the full operating position of the maximum discharge amount, intermediate pressure is generated on one pressure receiving part side, so in the one order receiving part side, the 1li11a11 member is on the rotor side. The pressure of the compression chamber acting on the sides prevents it from tilting. Therefore, even in the full operating position, a predetermined gap is maintained between the rotor and both side blocks, preventing poor airtightness and reducing performance.
また、両受圧部の一方はその他方より受圧面積を小さく
してあり、各受圧部の一側にある各第1圧力室は低圧側
に連通しており、0;j記一方の受圧部の他側にある第
2圧力室は高圧側に連通しており、nつ0;i記他力の
受圧部の他側にある第2圧力室内には、熱負荷に応じて
高J、Eから低圧まで変化する;I11御庄が形成され
ており、制御部材が、前記一方の受りI部側で発?トす
るほぼ一定のトルクにより吐出量減方向に、Il’l
nt la方の受圧部側で発生し丁1つ1);j記聞n
j1:、に応じて変化するトルクにより吐出量増方向に
夫々回動するように構成されていることにより、受圧面
積の小さい一方の受IE部側で、高圧及び低圧の圧力差
と受JIE面稍との積であるほぼ一定のトルクが発生し
、このトルクが制御圧に応じて変化する他方の受圧部側
でのトルクより大きい場合には、制御部材は吐出量減方
向に回動し、その逆の場合には、制御部材は吐出量増方
向に回動する。従って、制御部材は起動時の位置からス
ムーズに回動でき、起動性が良いと共に、稼動中におい
て制御部材は熱負荷の変化に応じてスムーズに回動でき
、制御性が良い。また、制m rot材が最大吐出量の
全稼動位置まで回動しても、一方の受圧部側には高圧が
作用しているので、該一方の受JE部側において、制御
部材がそのロータ側側面に作用している圧縮室の11三
力でI’l+されて領くのが防止される。従って、全稼
動位置においても、ロータと両サイドブロックとの間が
所定の隙間に保たれ、気密不良となるのが防11−され
て、性能の低Fが防1卜される。In addition, one of the two pressure receiving parts has a smaller pressure receiving area than the other, and each first pressure chamber on one side of each pressure receiving part communicates with the low pressure side. The second pressure chamber on the other side communicates with the high pressure side, and the second pressure chamber on the other side of the pressure receiving part of the other force has a high The pressure changes to low; I11 pressure is formed, and the control member is generated on the one receiver I side. Due to the almost constant torque generated by the
It occurred on the pressure receiving part side on the nt la side.
j1: By being configured to rotate in the direction of increasing the discharge amount by a torque that changes according to , the pressure difference between high pressure and low pressure and the receiving JIE surface are When a nearly constant torque is generated, which is the product of the control pressure, and this torque is larger than the torque at the other pressure receiving part that changes depending on the control pressure, the control member rotates in the direction of reducing the discharge amount, In the opposite case, the control member rotates in the direction of increasing the discharge amount. Therefore, the control member can be smoothly rotated from the starting position and has good starting performance, and during operation, the control member can be smoothly rotated in response to changes in thermal load, providing good controllability. In addition, even if the control rotor material rotates to the full operating position of the maximum discharge amount, high pressure is still acting on one pressure receiving part side, so the control member on the one pressure receiving part side The force of the compression chamber acting on the side surface prevents it from becoming I'l+ and expanding. Therefore, even in the full operating position, a predetermined gap is maintained between the rotor and both side blocks, and poor airtightness is prevented, thereby preventing poor performance.
第1図乃至第6図は本発明の第1実施例を示しており、
第1図は可変容量式ベーン型圧縮(幾内に設けられた吐
出量1+NJ御機構部を示す概略構成図、第2図は第1
図のスプール弁が第1位置にある状態を示す説明図、第
3図はこのスプール弁が第2付置にある状態を示す説明
図、第4図は可変容量式ベーン型圧縮機を示す縦断面図
、第5図は制御部材を反ロータ側から見た平面図、第6
図はりャサイドブロックをロータ側から見た平面図、第
7図は本発明の第2実施例に係る可変容量式ベーン型圧
縮機の吐出量制御機構部を示す概略構成図、第8図乃至
第10図は本発明の第3実施例を示し、第8図は吐出量
制御機構部を示す概略構成図、第9図は制御部材を反ロ
ータ側から見た平面図、第10図はりャサイドブロック
をロータ側から見た平面図、第1t図は従来の可変容量
式ベーン型圧縮機内に設けられた吐出量制御機構部を示
す概略構成図である。
!・・・カムリング(シリンダ)、2・・・ロータ、3
゜4・・・サイドブロック、43..44.・・・第1
圧力室、43□441・・第21’JF、力室、50・
・・制御部材、60・・・スブールブf’(制御弁)。1 to 6 show a first embodiment of the present invention,
Figure 1 is a schematic configuration diagram showing the variable capacity vane type compression (discharge amount 1 + NJ control mechanism provided in the
Figure 3 is an explanatory diagram showing the spool valve in the first position, Figure 4 is an explanatory diagram showing the spool valve in the second position, and Figure 4 is a longitudinal section showing the variable displacement vane compressor. Figure 5 is a plan view of the control member viewed from the side opposite to the rotor;
Figure 7 is a plan view of the rear side block viewed from the rotor side, Figure 7 is a schematic configuration diagram showing the discharge amount control mechanism of a variable displacement vane type compressor according to a second embodiment of the present invention, and Figures 8 to 8. FIG. 10 shows a third embodiment of the present invention, FIG. 8 is a schematic configuration diagram showing the discharge amount control mechanism, FIG. 9 is a plan view of the control member viewed from the side opposite to the rotor, and FIG. FIG. 1t, which is a plan view of the side block viewed from the rotor side, is a schematic configuration diagram showing a discharge amount control mechanism provided in a conventional variable capacity vane type compressor. ! ...Cam ring (cylinder), 2...Rotor, 3
゜4...Side block, 43. .. 44. ...First
Pressure chamber, 43□441...21'JF, force chamber, 50.
... Control member, 60... Suburb f' (control valve).
Claims (1)
該シリンダ内で回転するロータと、一側のサイドブロッ
クのロータ側端面内に回動自在に設けられ且つ反ロータ
側側面に一対の受圧部を有する制御部材とを備え、該制
御部材は熱負荷に応じて正逆回動して吐出量を制御する
可変容量式ベーン型圧縮機において、前記各受圧部の一
側にある各第1圧力室は低圧側に連通していると共に、
前記各受圧部の他側にある各第2圧力室を熱負荷の変化
に応じて高圧側又は低圧側に交互に連通させる制御弁が
設けてあり、一方の受圧部の他側にある第2圧力室が高
圧側に連通したときに該一方の受圧部側で発生するトル
クにより制御部材が吐出量減方向に、他力の受圧部の他
側にある第2圧力室が高圧側に連通したときに該他方の
受圧部側で発生するトルクにより制御部材が吐出量増方
向に夫々回動するように、前記2つの第1圧力室及び2
つの第2圧力室が配置されていることを特徴とする可変
容量式ベーン型圧縮機。 2、両側端がサイドブロックで閉塞されたシリンダと、
該シリンダ内で回転するロータと、一側のサイドブロッ
クのロータ側端面内に回動自在に設けられ且つ反ロータ
側側面に一対の受圧部を有する制御部材とを備え、該制
御部材は熱負荷に応じて正逆回動して吐出量を制御する
可変容量式ベーン型圧縮機において、前記各受圧部の一
側にある各第1圧力室は低圧側に連通しており、一方の
受圧部の他側にある第2圧力室内に中間圧が形成されて
おり、且つ他方の受圧部の他側にある第2圧力室内には
、熱負荷に応じて高圧から低圧まで変化する制御圧が形
成されており、前記制御部材が、前記一方の受圧部側で
発生するほぼ一定のトルクにより吐出量減方向に、前記
他方の受圧部側で発生し且つ前記制御圧に応じて変化す
るトルクにより吐出量増方向に夫々回動するように構成
されていることを特徴とする可変容量式ベーン型圧縮機
。 3、両側端がサイドブロックで閉塞されたシリンダと、
該シリンダ内で回転するロータと、一側のサイドブロッ
クのロータ側端面内に回動自在に設けられ且つ反ロータ
側側面に一対の受圧部を有する制御部材とを備え、該制
御部材は熱負荷に応じて正逆回動して吐出量を制御する
可変容量式ベーン型圧縮機において、前記両受圧部の一
方はその他方より受圧面積を小さくしてあり、前記各受
圧部の一側にある各第1圧力室は低圧側に連通しており
、前記一方の受圧部の他側にある第2圧力室は高圧側に
連通しており、且つ前記他方の受圧部の他側にある第2
圧力室内には、熱負荷に応じて高圧から低圧まで変化す
る制御圧が形成されており、前記制御部材が、前記一方
の受圧部側で発生するほぼ一定のトルクにより吐出量減
方向に、前記他方の受圧部側で発生し且つ前記制御圧に
応じて変化するトルクにより吐出量増方向に夫々回動す
るように構成されていることを特徴とする可変容量式ベ
ーン型圧縮機。[Claims] 1. A cylinder whose both ends are closed with side blocks;
The control member includes a rotor that rotates within the cylinder, and a control member that is rotatably provided within the rotor-side end surface of one side block and has a pair of pressure-receiving portions on the side surface opposite to the rotor, and the control member is configured to handle thermal loads. In a variable capacity vane type compressor that controls the discharge amount by rotating forward or backward according to
A control valve is provided to alternately communicate the second pressure chambers on the other side of each of the pressure receiving parts with the high pressure side or the low pressure side according to changes in heat load, and the second pressure chamber on the other side of one of the pressure receiving parts When the pressure chamber communicates with the high pressure side, the control member decreases the discharge amount due to the torque generated on the side of one pressure receiving part, and the second pressure chamber on the other side of the other pressure receiving part communicates with the high pressure side. The two first pressure chambers and the two
A variable capacity vane type compressor characterized in that two second pressure chambers are arranged. 2. A cylinder whose both ends are closed with side blocks,
The control member includes a rotor that rotates within the cylinder, and a control member that is rotatably provided within the rotor-side end surface of one side block and has a pair of pressure-receiving portions on the side surface opposite to the rotor, and the control member is configured to handle thermal loads. In a variable capacity vane type compressor that rotates forward and backward depending on the pressure, the discharge amount is controlled, each first pressure chamber on one side of each pressure receiving section communicates with the low pressure side, and one pressure receiving section An intermediate pressure is formed in the second pressure chamber on the other side, and a control pressure that changes from high pressure to low pressure depending on the heat load is formed in the second pressure chamber on the other side of the other pressure receiving part. The control member is configured to reduce the discharge amount by a substantially constant torque generated on the one pressure receiving part side, and to reduce the discharge amount by a torque generated on the other pressure receiving part side and varying according to the control pressure. A variable capacity vane type compressor, characterized in that it is configured to rotate in the direction of increasing volume. 3. A cylinder whose both ends are closed with side blocks,
The control member includes a rotor that rotates within the cylinder, and a control member that is rotatably provided within the rotor-side end surface of one side block and has a pair of pressure-receiving portions on the side surface opposite to the rotor, and the control member is configured to handle thermal loads. In a variable capacity vane type compressor that controls the discharge amount by rotating forward or backward according to Each first pressure chamber communicates with the low pressure side, a second pressure chamber on the other side of the one pressure receiving part communicates with the high pressure side, and a second pressure chamber on the other side of the other pressure receiving part communicates with the second pressure chamber on the other side of the other pressure receiving part.
A control pressure that changes from a high pressure to a low pressure depending on the heat load is formed in the pressure chamber, and the control member controls the discharge amount in the direction of reducing the discharge amount by a substantially constant torque generated on the one pressure receiving part side. A variable capacity vane type compressor, characterized in that it is configured to rotate in a direction to increase the discharge amount by a torque generated on the other pressure receiving part side and varying according to the control pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17277689A JPH0337393A (en) | 1989-07-04 | 1989-07-04 | Variable capacity type vane compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17277689A JPH0337393A (en) | 1989-07-04 | 1989-07-04 | Variable capacity type vane compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0337393A true JPH0337393A (en) | 1991-02-18 |
Family
ID=15948136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17277689A Pending JPH0337393A (en) | 1989-07-04 | 1989-07-04 | Variable capacity type vane compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0337393A (en) |
-
1989
- 1989-07-04 JP JP17277689A patent/JPH0337393A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6155797A (en) | Variable displacement pump | |
EP0174516A1 (en) | Rotary variable-delivery compressor | |
KR890001685B1 (en) | Variable capacity vane compressor | |
JPH0581759B2 (en) | ||
JPH0337393A (en) | Variable capacity type vane compressor | |
JPS63205493A (en) | Vane type compressor | |
JPS63186982A (en) | Vane type compressor | |
JP2003097454A (en) | Vane pump | |
KR930006368B1 (en) | Variable capacity type compressor | |
JPH06241176A (en) | Variable displacement type pump | |
JP2002098060A (en) | Variable displacement pump | |
JP2000104670A (en) | Variable displacement vane pump | |
JP3133515B2 (en) | Variable displacement pump | |
JP3571109B2 (en) | Power steering device | |
JPH0357896A (en) | Variable capacity type and vane type compressor | |
JPH01267387A (en) | Variable displacement type compressor | |
JPS6346761Y2 (en) | ||
JP2754400B2 (en) | Variable displacement compressor | |
JPH0712711Y2 (en) | Variable capacity compressor | |
JPS62265491A (en) | Vane type compressor | |
JPS6176782A (en) | Capacity control mechanism for scroll type compressor | |
JPH01285693A (en) | Variable capacity compressor | |
JPH0426711Y2 (en) | ||
JPH06241175A (en) | Variable displacement type pump | |
JP2000145666A (en) | Variable displacement pump |