JPH0337322B2 - - Google Patents

Info

Publication number
JPH0337322B2
JPH0337322B2 JP60139286A JP13928685A JPH0337322B2 JP H0337322 B2 JPH0337322 B2 JP H0337322B2 JP 60139286 A JP60139286 A JP 60139286A JP 13928685 A JP13928685 A JP 13928685A JP H0337322 B2 JPH0337322 B2 JP H0337322B2
Authority
JP
Japan
Prior art keywords
mode
circular
cavity resonator
circular cavity
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60139286A
Other languages
Japanese (ja)
Other versions
JPS62103A (en
Inventor
Akira Shigihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP13928685A priority Critical patent/JPS62103A/en
Publication of JPS62103A publication Critical patent/JPS62103A/en
Publication of JPH0337322B2 publication Critical patent/JPH0337322B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は円形空胴共振器に係り、特に、不要な
共振モードの影響を除去するのに有効な円形空胴
共振器の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a circular cavity resonator, and particularly to a structure of a circular cavity resonator that is effective in eliminating the influence of unnecessary resonance modes.

〔従来の技術〕[Conventional technology]

第3図Aは一般的な円形空胴共振器の横断面図
であり、第3図Bは同じく縦断面図であつて、円
形導波管1を所望の共振周波数の管内波長λgに
合わせて、n・λg/2(n=1、2、3、…)の
間隔で両端を短絡板2,3で仕切つた構造になさ
れている。
FIG. 3A is a cross-sectional view of a general circular cavity resonator, and FIG. 3B is a longitudinal cross-sectional view of a general circular cavity resonator. , n·λg/2 (n=1, 2, 3, . . . ), and both ends are partitioned by shorting plates 2 and 3.

円形空胴共振器の共振モードは共振器内の電磁
界の分布によつてTEモードとTMモードに分類
される。TEモードは更にTElmnモード(l、
m、n=1、2、3、…)に分けられ、また同様
にTMモードもTMlmnモードに分けられ、それ
ぞれ各モードに対して固有の共振周波数がある。
つまり、一個の円形空胴共振器には多くの共振モ
ードが共存しており、それぞれの共振モードに対
して共振周波数が存在する。
The resonance mode of a circular cavity resonator is classified into TE mode and TM mode depending on the electromagnetic field distribution inside the resonator. TE mode is further divided into TElmn mode (l,
m, n=1, 2, 3,...), and the TM mode is similarly divided into TMlmn modes, each of which has its own unique resonance frequency.
In other words, many resonance modes coexist in one circular cavity resonator, and each resonance mode has a resonance frequency.

さて、共振器では高いQが要求される。前記各
モードのうちTE01nモードは、第3図A,Bに示
す様に電界分布4が円形導波管1と同心円状であ
るため、壁面電流が流れることなく壁面電流によ
る損失はない。このため104以上の高いQが容易
に得られることから、共振器には一般にTE01nモ
ードが利用される。
Now, a high Q is required for a resonator. Among the above modes, in the TE 01 n mode, the electric field distribution 4 is concentric with the circular waveguide 1 as shown in FIGS. 3A and 3B, so that no wall current flows and there is no loss due to the wall current. For this reason, the TE 01 n mode is generally used in the resonator because a high Q of 10 4 or more can be easily obtained.

TE01nモードのしや断波長λcは円形導波管1の
内径をDとするとλc=0.82Dで表わされるが、
TM11nモードのしや断波長もこれに等しく、両
モードは縮退している。このため、円形空胴共振
器を励振すると、TE01nモードとTM11nモードが
共に励振されてしまう。第4図A,BはTM11n
モードの電界分布を示すものであつて、第4図A
は第4図Bのf−f断面における電界分布であ
る。TM11nモードの電界分布TE01nモードの電界
分布とは異なり、短絡板2,3の内面のa−a線
上で、かつ円形導波管1の中心軸からD/4(D
は円形導波管内径)離れた2点b、cに電気力線
が集中している。そして円形導波管1の内面と短
絡板2の内面に壁面電流7,8が流れ、壁面損失
や円形導波管1と短絡板2との境界での接触抵抗
による損失がある。このためTM11nモードの共
振周波数はTE01nモードの共振周波数に対してわ
ずかにずれが生じ、共振点が接近して2つ生じ
る。
TE 01 The shear cutoff wavelength λc of the n mode is expressed as λc = 0.82D, where D is the inner diameter of the circular waveguide 1.
The shearing wavelength of the TM 11 n mode is also equal to this, and both modes are degenerate. Therefore, when the circular cavity resonator is excited, both the TE 01 n mode and the TM 11 n mode are excited. Figure 4 A and B are TM 11 n
Figure 4A shows the electric field distribution of the mode.
is the electric field distribution in the ff section of FIG. 4B. TM 11 n-mode electric field distribution TE 01 Unlike the n-mode electric field distribution, on the a-a line of the inner surface of the shorting plates 2 and 3 and from the center axis of the circular waveguide 1 to D/4 (D
is the inner diameter of the circular waveguide) The electric lines of force are concentrated at two distant points b and c. Wall currents 7 and 8 flow on the inner surface of the circular waveguide 1 and the inner surface of the shorting plate 2, and there is loss due to wall surface loss and contact resistance at the boundary between the circular waveguide 1 and the shorting plate 2. Therefore, the resonance frequency of the TM 11 n mode is slightly shifted from the resonance frequency of the TE 01 n mode, and two resonance points are generated close to each other.

そこでTM11nモードの共振がTE01nモードの共
振に影響を与えないようにしてTE01nモードの共
振のみを利用する方法が種々試みられており、従
来この種の円形空胴共振器においては、TM11n
モードの共振周波数をずらず方法が用いられてい
る。その一つとして第5図に縦断面で示す構造の
円形空胴共振器がある。図中1は円形導波管であ
り、右方の一端は導波管1と一体に形成された短
絡板3で仕切られており、左方の一端は短絡板2
で仕切られている。これら円形導波管1および短
絡板2,3は線膨張係数が極めて小さな金属、た
とえばインバーで形成され、温度による寸法の変
化を極力小さくして共振周波数の変化が小さく抑
えられている。第6図は第5図に示した円形空胴
共振器のe−e断面図であつて、9は円形導波管
1の円筒面に設けられた穴であり、この穴から外
部回路と接続するための結合ループ10が引出さ
れている。また、短絡板2の内面には第4図Aに
示す2点b、cに誘電体11,11が設けられて
いる。誘電体には一例としてポリスチロールが用
いられ、その直径は円形導波管内径の1/6から1/8
程度であり、その高さは管内波長の1/10程度であ
る。この様な円形空胴共振器では誘電体11を設
けることによつて、TM11nモードでは等価的に
電気力線が長くなり、従つて共振周波数が低下し
TE01nモードの共振周波数から離れるので、
TE01nモードへの影響を小さくすることが可能で
ある。
Therefore, various methods have been tried to prevent the TM 11 n-mode resonance from affecting the TE 01 n-mode resonance and utilize only the TE 01 n-mode resonance. is TM 11n
A method is used in which the resonance frequency of the mode is not shifted. One of them is a circular cavity resonator having a structure shown in longitudinal section in FIG. In the figure, 1 is a circular waveguide, one end on the right is partitioned by a shorting plate 3 formed integrally with the waveguide 1, and one end on the left is a shorting plate 2.
It is separated by These circular waveguide 1 and short-circuit plates 2 and 3 are made of a metal having an extremely small coefficient of linear expansion, such as invar, to minimize changes in dimensions due to temperature and to suppress changes in resonance frequency. FIG. 6 is a cross-sectional view of the circular cavity resonator shown in FIG. A connecting loop 10 is drawn out for the purpose of this. Furthermore, dielectrics 11 and 11 are provided on the inner surface of the shorting plate 2 at two points b and c shown in FIG. 4A. For example, polystyrene is used as the dielectric material, and its diameter is 1/6 to 1/8 of the inner diameter of the circular waveguide.
Its height is about 1/10 of the wavelength within the tube. In such a circular cavity resonator, by providing the dielectric 11, the lines of electric force become equivalently longer in the TM 11 n mode, and therefore the resonant frequency decreases.
TE 01 Since it is away from the n-mode resonance frequency,
It is possible to reduce the influence on the TE 01 n mode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、かかる構造の円形空胴共振器において
は、前記誘電体11は短絡板2とは別部材であ
り、短絡板2に接着剤等を用いて正確な位置に取
付けることが要求され、その位置からずれると
TM11nモードの電磁界分布が変化してしまい、
その結果として不必要な他のモードを励振してし
まう可能性がある。また、TM11nモードの除去
効果を高める目的で誘電体11の寸法を大きくす
るとTE01nモードの電磁界分布にも影響を与え、
TE01nモードの共振周波数が設計値からずれたり
Qが低下する原因になる。更に、誘電体11の線
膨張係数は、円形導波管1及び短絡板2,3の金
属材料の線膨張係数と比較して10倍程度大きい。
従つてTE01nモードの共振周波数に対するTM11n
モードの共振周波数の差が温度によつて変化する
などの各種の問題点がある。
However, in a circular cavity resonator having such a structure, the dielectric 11 is a separate member from the shorting plate 2, and is required to be attached to the shorting plate 2 at an accurate position using an adhesive or the like. If it deviates from
TM 11 The electromagnetic field distribution of n mode changes,
As a result, other unnecessary modes may be excited. Furthermore, if the dimensions of the dielectric 11 are increased in order to enhance the removal effect of the TM 11 n mode, it will also affect the electromagnetic field distribution of the TE 01 n mode.
TE 01 This may cause the n-mode resonance frequency to deviate from the design value or cause Q to decrease. Furthermore, the linear expansion coefficient of the dielectric 11 is about 10 times larger than that of the metal materials of the circular waveguide 1 and the short circuit plates 2 and 3.
Therefore, TM 11 n for the resonant frequency of TE 01 n mode
There are various problems such as the difference in the resonance frequency of the modes changing depending on the temperature.

本発明の目的は、上記の従来技術の問題点を取
り除き、TE01nモードに影響を与えない範囲に
TM11nモードの共振周波数をずらせた円形空胴
共振器を得ることにある。
The purpose of the present invention is to eliminate the above-mentioned problems of the prior art and to solve the problem within a range that does not affect the TE 01 n mode.
TM 11 The objective is to obtain a circular cavity resonator in which the n-mode resonance frequency is shifted.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的達成のため、本発明による円形空胴
共振器は、円形導波管の両端を短絡板で仕切り円
筒面に設けた穴から外部回路に接続する結合ルー
プを引き出した構造の円形空胴共振器において、
短絡板の内面であつてかつ円形導波管の軸方向か
ら見て結合ループの側および結合ループの反対側
にそれぞれ設けられ、円弧部を円形導波管の内面
円周に一致させて配置された弓形の凹部を備えて
いる。
In order to achieve the above object, a circular cavity resonator according to the present invention has a structure in which both ends of a circular waveguide are partitioned by shorting plates and a coupling loop connected to an external circuit is drawn out from a hole provided in the cylindrical surface. In the resonator,
They are provided on the inner surface of the short-circuiting plate and on the side of the coupling loop and the opposite side of the coupling loop when viewed from the axial direction of the circular waveguide, and are arranged so that the arc portion matches the inner circumference of the circular waveguide. It has an arch-shaped recess.

〔作用〕[Effect]

円形空胴共振器の短絡板内面に共振器を成す円
形導波管に接する凹部を設けたので、TM11nモ
ードの共振において短絡板及び円形導波管に流れ
る壁面電流は、その凹部を経由して流れることに
なり、径路が長くなる。従つて、TM11nモード
の共振においては共振波長がより長いものとな
り、TE01nモードの共振波長とは十分に異なつた
共振波長にすることが出来る。
Since a recess is provided on the inner surface of the shorting plate of the circular cavity resonator in contact with the circular waveguide forming the resonator, the wall current flowing through the shorting plate and the circular waveguide during TM 11 n-mode resonance passes through the recess. Therefore, the path becomes longer. Therefore, in the resonance of the TM 11 n mode, the resonance wavelength becomes longer and can be made to be sufficiently different from the resonance wavelength of the TE 01 n mode.

〔実施例〕〔Example〕

本発明を第1図及び第2図の実施例に基づいて
説明する。第1図は本発明による円形空胴共振器
の縦断面図であり、第2図は第1図d−d断面図
である。なお第1図、第2図に示す円形空胴共振
器において、第5図、第6図に示す従来例の円形
空胴共振器と同一の部材には同一の符号を付けて
重複する説明を省略する。
The present invention will be explained based on the embodiments shown in FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view of a circular cavity resonator according to the present invention, and FIG. 2 is a sectional view taken along line dd in FIG. In the circular cavity resonator shown in FIGS. 1 and 2, the same members as those in the conventional circular cavity resonator shown in FIGS. Omitted.

図中12は短絡板であつて、その内面に弓形を
した2個の凹部13,14が設けられている。い
ずれの凹部13,14もその円弧部分が円形導波
管1の内面円周に一致するように形成されてお
り、一方の凹部13は円形導波管1に設けられた
結合ループ10の側に位置し、もう一つの凹部1
4は結合ループ10とは反対側に位置している。
In the figure, reference numeral 12 denotes a short circuit plate, and two arch-shaped recesses 13 and 14 are provided on its inner surface. Both of the recesses 13 and 14 are formed so that their arc portions match the inner circumference of the circular waveguide 1, and one recess 13 is located on the side of the coupling loop 10 provided in the circular waveguide 1. located another recess 1
4 is located on the opposite side from the coupling loop 10.

これらの凹部13,14の深さはTM11nモー
ドの共振周波数をどの位ずらすかによつて決めら
れ、深さを増せば凹部13,14の表面を径て円
形導波管に流れる壁面電流の径路が長くなる結
果、TM11nモードの共振周波数は低くなる。
The depth of these recesses 13 and 14 is determined by how much the resonant frequency of the TM 11 n mode is shifted, and as the depth increases, the wall current flowing through the surface of the recesses 13 and 14 into the circular waveguide increases. As a result of the longer path, the resonant frequency of the TM 11 n mode becomes lower.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明によれば円形空胴共
振器の短絡板12の内面に凹部13,14を設け
た構造にしたので、TM11nモードの共振周波数
をTE01nモードの共振周波数に影響しない範囲に
ずらすことができて、TE01nモードのみを有効に
利用することが出来る。凹部13,14は
TM11nモードだけに作用しTE01nモードに対して
は影響がないので、TE01nモードにおけるQや外
部回路との結合度は低下しない。また、円形空胴
共振器内に異種の材料を用いる必要がないので、
円形導波管1及び短絡板12の材料には線膨張係
数が十分に小さい材料を使用することが出来、共
振周波数の温度に対する変化を小さくすることが
出来る。更に凹部13,14は短絡板12に設け
られたものであり別部材を用いないため、円形空
胴共振器の組立作業性を著しく向上させることが
出来る。
As explained above, according to the present invention, since the recesses 13 and 14 are provided on the inner surface of the shorting plate 12 of the circular cavity resonator, the resonant frequency of the TM 11 n mode is changed from the resonant frequency of the TE 01 n mode. TE 01 n mode can be used effectively. The recesses 13 and 14 are
Since it acts only on the TM 11 n mode and has no effect on the TE 01 n mode, the Q in the TE 01 n mode and the degree of coupling with external circuits do not decrease. Also, since there is no need to use different materials inside the circular cavity resonator,
Materials having a sufficiently small coefficient of linear expansion can be used for the circular waveguide 1 and the short circuit plate 12, so that changes in the resonant frequency with respect to temperature can be made small. Further, since the recesses 13 and 14 are provided in the shorting plate 12 and no separate members are used, the efficiency of assembling the circular cavity resonator can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す円形空胴共振
器の縦断面図、第2図は第1図のd−d断面図、
第3図A,BはTE01nモードの電界分布図、第4
図A,BはTM11nモードの電界分布図、第5図
は従来における円形空胴共振器の縦断面図、第6
図は第5図のe−e断面図である。 1……円形導波管、9……穴、10……結合ル
ープ、12……短絡板、13,14……凹部。
FIG. 1 is a longitudinal cross-sectional view of a circular cavity resonator showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line dd in FIG. 1,
Figures 3A and B are electric field distribution diagrams of TE 01 n mode, Figure 4
Figures A and B are electric field distribution diagrams of TM 11 n mode, Figure 5 is a longitudinal cross-sectional view of a conventional circular cavity resonator, and Figure 6 is a longitudinal cross-sectional view of a conventional circular cavity resonator.
The figure is a sectional view taken along line ee in FIG. 1... Circular waveguide, 9... Hole, 10... Coupling loop, 12... Short circuit plate, 13, 14... Recess.

Claims (1)

【特許請求の範囲】[Claims] 1 円形導波管の両端を短絡板で仕切り、円筒面
に設けた穴から外部回路に接続する結合ループを
引き出した構造の円形空胴共振器において、前記
短絡板の内面であつてかつ前記円形導波管の軸方
向から見て前記結合ループの側および結合ループ
の反対側にそれぞれ設けられ、円弧部を前記円形
導波管の内面円周に一致させて配置された弓形の
凹部を備えたことを特徴とする円形空胴共振器。
1. In a circular cavity resonator having a structure in which both ends of a circular waveguide are partitioned by a shorting plate and a coupling loop connected to an external circuit is drawn out from a hole provided in the cylindrical surface, the inner surface of the shorting plate and the circular An arcuate recess is provided on the side of the coupling loop and on the opposite side of the coupling loop when viewed from the axial direction of the waveguide, and the arcuate portion is arranged to match the inner circumference of the circular waveguide. A circular cavity resonator characterized by:
JP13928685A 1985-06-26 1985-06-26 Circular cavity resonator Granted JPS62103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13928685A JPS62103A (en) 1985-06-26 1985-06-26 Circular cavity resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13928685A JPS62103A (en) 1985-06-26 1985-06-26 Circular cavity resonator

Publications (2)

Publication Number Publication Date
JPS62103A JPS62103A (en) 1987-01-06
JPH0337322B2 true JPH0337322B2 (en) 1991-06-05

Family

ID=15241741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13928685A Granted JPS62103A (en) 1985-06-26 1985-06-26 Circular cavity resonator

Country Status (1)

Country Link
JP (1) JPS62103A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039703A (en) * 2006-08-09 2008-02-21 Sumitomo Bakelite Co Ltd Electromagnetic characteristic measuring tool and measuring method
WO2010125806A1 (en) * 2009-04-28 2010-11-04 日本電気株式会社 Waveguide filter and communication access device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122149A (en) * 1974-03-13 1975-09-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122149A (en) * 1974-03-13 1975-09-25

Also Published As

Publication number Publication date
JPS62103A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US5859574A (en) Dielectric resonator, and microwave filter provided therewith
US3594667A (en) Microwave window having dielectric variations for tuning of resonances
US5049842A (en) Dielectric resonator having a cutout portion for receiving an unitary tuning element conforming to the cutout shape
EP0657954B1 (en) Improved multi-cavity dielectric filter
EP3583656B1 (en) A microwave resonator, a microwave filter and a microwave multiplexer
JP2897117B2 (en) Variable frequency dielectric resonator
JPH0361361B2 (en)
JPS6123881B2 (en)
US3137828A (en) Wave guide filter having resonant cavities made of joined parts
US4237402A (en) Slow-wave circuit for traveling-wave tubes
JPH0337322B2 (en)
JP2009278346A (en) Cavity resonator, and high frequency filter
US4409518A (en) TWT Interaction circuit with broad ladder rungs
JPS6330801B2 (en)
US4714859A (en) Magnetrons
US4912366A (en) Coaxial traveling wave tube amplifier
US7274273B2 (en) Dielectric resonator device, dielectric filter, duplexer, and high-frequency communication apparatus
US4851736A (en) Helical waveguide to rectangular waveguide coupler
US4866343A (en) Re-entrant double-staggered ladder circuit
JP2924476B2 (en) Multi-cavity klystron
JP3508224B2 (en) Dielectric resonator device
US4765056A (en) Method of manufacture of helical waveguide structure for traveling wave tubes
JPS62295336A (en) Large power klystron
JPH0124836Y2 (en)
JPS633219Y2 (en)