JPH0337173A - Improvement of ir ray transmittance of zinc sulfide - Google Patents

Improvement of ir ray transmittance of zinc sulfide

Info

Publication number
JPH0337173A
JPH0337173A JP1172005A JP17200589A JPH0337173A JP H0337173 A JPH0337173 A JP H0337173A JP 1172005 A JP1172005 A JP 1172005A JP 17200589 A JP17200589 A JP 17200589A JP H0337173 A JPH0337173 A JP H0337173A
Authority
JP
Japan
Prior art keywords
zns
vapor
zinc
ray transmittance
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172005A
Other languages
Japanese (ja)
Inventor
Akira Komoto
弘本 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1172005A priority Critical patent/JPH0337173A/en
Publication of JPH0337173A publication Critical patent/JPH0337173A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply prepare a ZnS having relatively excellent IR ray transmittance in good productivity without requiring any large installation by heating and holding the zinc sulfide in zinc vapor. CONSTITUTION:Zinc sulfide is heated and held in zinc vapor to improve the IR ray transmittance thereof. The load of the zinc vapor relaxes the remained stress of the ZnS polycrystalline substance, namely the strain of the crystal lattice thereof, prepared with a hot press while keeping the stoichiometry thereof, thereby improving the IR transmittance. One of the reasons for improving the IR ray transmittance of the ZnS by the load of the ZnS vapor is estimated to be the relaxation of the remained stress, namely the strain of the crystal lattice, caused by the load of a large pressing pressure when the sample of the ZnS is made by a hot press.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は赤外線利用機器の窓材やレンズ材として使用さ
れる硫化亜鉛の赤外線透過率を改善する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving the infrared transmittance of zinc sulfide used as a window material or lens material for infrared-based equipment.

〔従来の技術〕[Conventional technology]

硫化亜鉛(ZnS )は1〜10μm程度の波長の赤外
線に対して良好な透過率を保持していることから、赤外
線利用機器の窓材やレンズ材として実用化されている。
Zinc sulfide (ZnS) has good transmittance for infrared rays with wavelengths of about 1 to 10 μm, and is therefore put into practical use as window and lens materials for devices that use infrared rays.

しかしながら、ZnSの赤外線透過率はその製造法によ
り理論値の約75%よう著しく低いものしか得られない
場合が多い。
However, the infrared transmittance of ZnS is often only extremely low, about 75% of the theoretical value, depending on its manufacturing method.

例えばホットプレス法ではプレス圧2 Ton /al
l”程度、焼結温度900 ’c程度、ZnSの粉末(
純度5 N : 99.999%)粒径5 pm程度の
条件で製造したものでも、通常赤外線透過率が理論値の
70%程度のものしか得られないのが現状である。
For example, in the hot press method, the press pressure is 2 Ton/al.
1", sintering temperature about 900'c, ZnS powder (
Even if the particles are manufactured under the conditions of particle size of about 5 pm (purity 5 N: 99.999%), the current situation is that the infrared transmittance is usually only about 70% of the theoretical value.

これ1で、ZnSの赤外線透過率を理論値近くまで改善
するためには、ホットプレス後HIP(p!p!間静水
圧プレス)処理をすることが有効であるとされている。
According to this 1, in order to improve the infrared transmittance of ZnS to near the theoretical value, it is said that it is effective to perform HIP (p! p! hydrostatic press) treatment after hot pressing.

筐た一方、最近はZn蒸気とH,Sとを反応させてZn
Sを成長させる手法(Cvr)法:化学蒸着法)を用い
て高品質のZnSも得られているが、この場合でも最後
にHIP処理することにょシ理論値の約75%を達成し
ているのが現状である。
On the other hand, recently, Zn is produced by reacting Zn vapor with H and S.
High-quality ZnS has also been obtained using a method of growing S (Cvr) method (chemical vapor deposition method), but even in this case, approximately 75% of the theoretical value was achieved by performing HIP treatment at the end. is the current situation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述した赤外線透過率の優れたZnSの製造法として知
られている従来技術には以下の欠点ないしは問題点がち
る。
The prior art known as a method for producing ZnS having excellent infrared transmittance as described above has the following drawbacks or problems.

即ち、ホットプレス法のみでは、前述したように赤外線
透過率としては理論値のものを得ることは難しく、更に
HIP処理を施すことによって理論値に近いものを得る
ことはできるが設備的に大がかシになると云う欠点があ
る。
In other words, as mentioned above, it is difficult to obtain the theoretical value of infrared transmittance using only the hot press method, and although it is possible to obtain a value close to the theoretical value by applying HIP treatment, it requires a large amount of equipment. There is a drawback that it becomes expensive.

また、CVD法では比較的理論値に近いものが得られる
が、znSの成長速度が数10μm / Hと著しく低
く、厚内のものを製造する手法としては生産上課題があ
る。更にCVD後HIP処理を施すことにより略理論値
のものを得ることができるが、この場合前述の例と同様
設備的に大がかりになると云う欠点がある。そこで、本
発明は生産性が良好で、しかも設備が余り犬がかシにな
らず比較的赤外線透過率の優れたZnSを簡単に得る方
法を提供しようとするものである。
In addition, although the CVD method can obtain a product relatively close to the theoretical value, the growth rate of znS is extremely low at several tens of μm/H, and there are problems in production as a method for manufacturing a product with a small thickness. Further, by performing HIP treatment after CVD, it is possible to obtain approximately the theoretical value, but in this case, there is a drawback that the equipment becomes large-scale, as in the above-mentioned example. Therefore, the present invention aims to provide a method for easily obtaining ZnS with relatively excellent infrared transmittance, which has good productivity and does not require too much equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は硫化亜鉛を亜鉛蒸気中で加熱保持することを特
徴とする硫化亜鉛の赤外線透過率改善法である。
The present invention is a method for improving the infrared transmittance of zinc sulfide, which is characterized by heating and holding zinc sulfide in zinc vapor.

〔作用〕[Effect]

Zn蒸気を負荷することによシ、ストイキオメトリを維
持しつ覧ホットプレスで製作したZn8多結晶体に残留
する応力、即ち結晶格子歪が緩和され、赤外線透過率が
改善される。
By loading Zn vapor, the stress remaining in the Zn8 polycrystalline body produced by hot pressing while maintaining the stoichiometry, that is, the crystal lattice strain, is alleviated, and the infrared transmittance is improved.

〔実施例〕〔Example〕

先ず、ホットプレスにより、30瓢φ×2頷tのZnS
多結晶体を製作した。その条件は、ZnS粉末純度5 
N (99,999%)、粉末粒径0.5μm1プレヌ
圧0.8 Ton / tx 2、焼結温度800°C
1真空雰囲気(10Torr程度)である。
First, ZnS of 30 gourd φ x 2 nods was made by hot pressing.
A polycrystalline material was produced. The conditions are ZnS powder purity 5
N (99,999%), powder particle size 0.5 μm 1 plain pressure 0.8 Ton/tx 2, sintering temperature 800 °C
1 vacuum atmosphere (approximately 10 Torr).

製作後、光学研磨を施し、ダブルモノクロメータ分光光
度計にて赤外線透過率を測定した。その結果、例えば2
.5μmの赤外線に対し透過率は60%であった。
After manufacturing, it was optically polished and its infrared transmittance was measured using a double monochromator spectrophotometer. As a result, for example 2
.. The transmittance for infrared rays of 5 μm was 60%.

次に、このホットプレスにより製作したZnSサンプル
を用いて亜鉛蒸気負荷試験を行った。
Next, a zinc vapor load test was conducted using the ZnS sample produced by this hot pressing.

試験要領は次の通うである。The test procedure is as follows.

第1図に示すように、石英管1のZnS支持用石英管2
内にZnSサンプIVsを、また石英管1の下部にZn
粉末4を真空封入した。封入後、ZnSサンプlv3を
一定温度(727°C)に加熱した状態で、Zn粉末4
をZ 4 Torrから86TOrr (はぼZnSサ
ンプルの加熱温度)の範囲で加熱してZnの蒸気を8時
間負荷した。その後、赤外線透過率を測定した。
As shown in FIG. 1, the quartz tube 2 for supporting ZnS of the quartz tube 1
ZnS sump IVs is placed inside the quartz tube 1, and Zn is placed at the bottom of the quartz tube 1.
Powder 4 was vacuum sealed. After encapsulation, Zn powder 4 was heated to a constant temperature (727°C) while ZnS sample lv3 was heated to a constant temperature (727°C).
was heated in the range of Z 4 Torr to 86 Torr (the heating temperature of the Habo ZnS sample), and Zn vapor was loaded for 8 hours. Thereafter, infrared transmittance was measured.

第2図に、このZn蒸気負荷後のZnSサンプルに関し
て2.5μmの赤外線透過率を示すが、これよシZn蒸
気を負荷′することにより赤外線透過率が改善されるこ
とが判る。第2図に釦いて、点線は亜鉛蒸気負荷前のZ
nSサンプルの赤外線透過率、○印は亜鉛蒸気負荷後の
赤外線透過率を示す。なか、Znの蒸気を負荷せずに、
即ち真空中で727°Cに加熱保持した場合は、赤外線
透過率はホットプレス後のサンプルに比べ赤外線透過率
は逆に10%程度劣下した。
FIG. 2 shows the infrared transmittance at 2.5 μm for the ZnS sample after loading with Zn vapor, and it can be seen that the infrared transmittance is improved by loading with Zn vapor. In Figure 2, the dotted line is Z before zinc steam loading.
The infrared transmittance of the nS sample, the circle mark indicates the infrared transmittance after loading with zinc vapor. Inside, without loading Zn vapor,
That is, when the sample was heated and maintained at 727°C in a vacuum, the infrared transmittance was decreased by about 10% compared to the sample after hot pressing.

以上のことより、Znの蒸気を負荷することによりZn
Sの赤外線透過率が改善される理由の1つとして、Zn
Sサンプルをホットプレスで作成する時に大きなプレス
圧を負荷するために発生する残留応力、即ち結晶格子の
歪が本手法によう緩和されることが考えられる。但し、
真空中の加熱保持では特性は逆に劣下するため、Zn蒸
気を負荷することは必須であり、この点からは残留応力
の除去だけがその理由でないことは明うかであ、9、Z
nSの謂ゆるストイキオメトリに関係した現象も関与し
ていると考えられる。
From the above, by loading Zn vapor, Zn
One of the reasons why the infrared transmittance of S is improved is that Zn
It is conceivable that the residual stress, that is, the distortion of the crystal lattice, which occurs due to the application of large press pressure when creating the S sample by hot pressing, is alleviated by this method. however,
Since the properties deteriorate when heated and maintained in a vacuum, it is essential to load Zn vapor, and from this point of view, it is clear that the removal of residual stress is not the only reason for this.
It is thought that a phenomenon related to the so-called stoichiometry of nS is also involved.

な’ip、ZnSサンプルの加熱温度としては、727
°Cより高温化すると改善の程度は若干域じるものの(
理由としては、高温での空孔子息の生成量の増大が考え
られる)、同様の効果が認められた。但し、ZnSは1
.020°Cに結晶変態点をもつ、即ち、これ以上では
六方晶、これ以下では立方晶が安定な結晶構造であるた
め、1000°C以上に光学材料としてのZnSサンプ
ルを加熱することは望しくないことは云う!でもない。
The heating temperature for the ZnS sample is 727
Although the degree of improvement is somewhat limited when the temperature is raised above °C (
The reason is thought to be an increase in the amount of vacancy sons produced at high temperatures), and a similar effect was observed. However, ZnS is 1
.. It is desirable to heat a ZnS sample as an optical material to 1000°C or higher because it has a crystal transformation point at 020°C, that is, above this temperature, it is hexagonal, and below this temperature, it is cubic. I say no! not.

この効果は、CVD法で作成されたZnSについても期
待できることは云う迄もない。
Needless to say, this effect can also be expected for ZnS produced by the CVD method.

〔発明の効果〕〔Effect of the invention〕

本発明によシ、ZnSの赤外線透過率を改善でき、従来
技術で示したように装置が大がかうになることもなく生
産性に優れた赤外線透過率のよいZnSを得ることがで
きる。
According to the present invention, the infrared transmittance of ZnS can be improved, and ZnS with excellent infrared transmittance and excellent productivity can be obtained without increasing the size of the equipment as shown in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、第2図は本発明の効果
を立証する図表である。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is a diagram proving the effects of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  硫化亜鉛を亜鉛蒸気中で加熱保持することを特徴とす
る硫化亜鉛の赤外線透過率改善法。
A method for improving the infrared transmittance of zinc sulfide, which is characterized by heating and holding zinc sulfide in zinc vapor.
JP1172005A 1989-07-05 1989-07-05 Improvement of ir ray transmittance of zinc sulfide Pending JPH0337173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172005A JPH0337173A (en) 1989-07-05 1989-07-05 Improvement of ir ray transmittance of zinc sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172005A JPH0337173A (en) 1989-07-05 1989-07-05 Improvement of ir ray transmittance of zinc sulfide

Publications (1)

Publication Number Publication Date
JPH0337173A true JPH0337173A (en) 1991-02-18

Family

ID=15933755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172005A Pending JPH0337173A (en) 1989-07-05 1989-07-05 Improvement of ir ray transmittance of zinc sulfide

Country Status (1)

Country Link
JP (1) JPH0337173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237744A (en) * 2011-04-14 2012-12-06 Rohm & Haas Co Improved-quality multi-spectral zinc sulfide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012237744A (en) * 2011-04-14 2012-12-06 Rohm & Haas Co Improved-quality multi-spectral zinc sulfide
JP2017128506A (en) * 2011-04-14 2017-07-27 ローム アンド ハース カンパニーRohm And Haas Company Improved quality multi-spectral zinc sulfide
US10392261B2 (en) 2011-04-14 2019-08-27 Jitendra S. Goela Quality multi-spectral zinc sulfide

Similar Documents

Publication Publication Date Title
US4519966A (en) Low-contamination AlN crucible for monocrystal pulling and method
US4846926A (en) HcCdTe epitaxially grown on crystalline support
CN104032278A (en) Method for preparing vanadium dioxide film
CN114150375B (en) Method for preparing Fe-Sn-Se-Te quaternary film by magnetron co-sputtering
JP6355622B2 (en) Polycrystalline chalcogenide ceramic material
CN102958834A (en) Silicon carbide powder and method for producing silicon carbide powder
JPH0337173A (en) Improvement of ir ray transmittance of zinc sulfide
Yashina Preparation and properties of polycrystalline ZnS for IR applications
CN108002426A (en) A kind of method for improving hot-press vulcanization zinc transmitance
US5502015A (en) Infrared transmitting barium fluoride sintered body
US7537659B2 (en) Method of obtaining a CdTe or CdZnTe single crystal and the single crystal thus obtained
US4655848A (en) HgCdTe epitaxially grown on crystalline support
JPS61205659A (en) Manufacture of polycrystal zinc sulfide
Ramavath et al. Hot isostatic pressing of ZnS powder and CVD ZnS ceramics: comparative evaluation of physico-chemical, microstructural and transmission properties
US4487813A (en) Composition control of CSVPE HgCdTe
JPH0226826A (en) Heat-treatment of zinc sulfide
Ochi Fresnoite crystal structure in glass-ceramics
WO2019153335A1 (en) Plastic semiconductor material and preparation method thereof
CN1924113A (en) Autoclave synthesis method of sulfur group compound
EA008276B1 (en) Method of forming a single crystalline structure and oh and h resistant silicon material
CN103498191B (en) High purity corynebacterium crystallization FeWO 4the preparation method of/FeS nanometer nuclear shell nano-structure
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
US4743310A (en) HGCDTE epitaxially grown on crystalline support
JPS6016391B2 (en) Manufacturing method of high purity, high strength ZnSe sintered body by hot forging method