JPH033712B2 - - Google Patents

Info

Publication number
JPH033712B2
JPH033712B2 JP58008179A JP817983A JPH033712B2 JP H033712 B2 JPH033712 B2 JP H033712B2 JP 58008179 A JP58008179 A JP 58008179A JP 817983 A JP817983 A JP 817983A JP H033712 B2 JPH033712 B2 JP H033712B2
Authority
JP
Japan
Prior art keywords
meth
group
weight
monomer
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58008179A
Other languages
Japanese (ja)
Other versions
JPS59135266A (en
Inventor
Kazuo Kishida
Isao Sasaki
Kenji Kushi
Nobuhiro Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP58008179A priority Critical patent/JPS59135266A/en
Publication of JPS59135266A publication Critical patent/JPS59135266A/en
Publication of JPH033712B2 publication Critical patent/JPH033712B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐摩耗性に優れた艷消し性被覆材組成
物に関する。 ポリメチルメタクリレート樹脂,ポリカーボネ
ート樹脂,ABS樹脂,ナイロン樹脂,PET樹脂
などの熱可塑性樹脂の成形品は一般に艷があり、
それが用途によつては重要な特性とされるが,一
方ではこの様な艷がない方が好まれる用途も多
く,また一方近年では全光線透過率などの光学的
特性を損なうことなく,反射光線を散乱させ艷を
無くするマツト板,ノングレア板等の用途も多く
なつてきた。 従来、このような成形品の艷消しを達する方法
としてはシリカ,酸化チタン,酸化アルミ等の微
粒子を塗料に加えて塗装するか,あるいは樹脂に
配合し成形時に何らかの方法によつて表面にこれ
らのものを浮きだたせ艷を無くする方法,あるい
はすでに微細な凹凸面を持つた金型で成形する
か,あるいは微細な凹凸を持つたセルでキヤスト
重合するかして製造していた。しかるにシリカ,
酸化チタン,酸化アルミ等を単に配合した塗料で
は,その塗料を貯蔵すると経時的に分散安定性が
不良となり再分散が困難な固い沈降を生じたり,
あるいは艷消しの程度が変化したりする。また金
型とかセルキヤスト転写によつて艷消し成形品を
得る方法では,全型,セルの保守,管理に細心の
注意を払う必要がある。しかしながら、いずれに
してもこのような方法では一時的には艷消し成形
品が得られても、表面の耐摩耗性,耐擦傷性に劣
つているため容易に傷がつき艷消し面を損なつて
しまう。 これらの欠点を改良するために本発明者らは鋭
意検討をつづけた結果,特定の多官能アクリレー
トと有機溶剤の存在下,特定のスルホン酸モノマ
ー,スルホン酸塩モノマーまたはカルボン酸系モ
ノマーおよびラジカル重合しうるビニル単量体な
らびに無機微粒子を添加した重合系中で重合を行
なつたところ,該無機微粒子とビニル単量体の重
合体が強固に合一した複合体が均一に分散した被
覆剤組成物が得られた。これを艷消し性被覆材組
成としてプラスチツク成形品に塗布し,硬化した
ところ,耐摩耗性,耐擦傷性に優れた艷消し成形
品が得られることを見い出し,本発明を完成し
た。 すなわち本発明の要旨とするところは (a) 1分子中に少なくとも3個の(メタ)アクリ
ロイルオキシ基を有する化合物30重量%以上と
1分子中に1〜2個のα,β−エチレン系不飽
和結合を有する化合物70重量%以下とからなる
単量体混合物(A), (b) 該単量体混合物(A)100重量部に対して次の一
般式 (式中,R1はH,炭素数1〜20のアルキル
基,フエニル基およびその誘導体またはハロゲ
ン原子,Xは−CONH−,
The present invention relates to an erasable coating material composition with excellent wear resistance. Molded products made of thermoplastic resins such as polymethyl methacrylate resin, polycarbonate resin, ABS resin, nylon resin, and PET resin generally have ridges.
Although this is considered an important characteristic depending on the application, there are also many applications where the absence of such a bar is preferred, and on the other hand, in recent years, it has become possible to improve the reflection without sacrificing optical properties such as total light transmittance. The use of pine boards and non-glare boards, which scatter light and eliminate rays, is also increasing. Conventionally, the methods for achieving such fade-proofing of molded products include adding fine particles of silica, titanium oxide, aluminum oxide, etc. to paint and painting them, or mixing them with resin and applying these particles to the surface during molding by some method. They were manufactured by raising the material to eliminate the burrs, by molding it in a mold that already had a finely textured surface, or by using cast polymerization in a cell that had a finely textured surface. However, silica
When paints that simply contain titanium oxide, aluminum oxide, etc. are stored, their dispersion stability deteriorates over time, resulting in hard sedimentation that is difficult to redisperse.
Or the degree of erasure may change. Furthermore, in the method of obtaining a matted molded product using a mold or cell cast transfer, it is necessary to pay close attention to the maintenance and management of the entire mold and cells. However, in any case, even if a matte molded product can be obtained temporarily with this method, the surface has poor abrasion resistance and scratch resistance, so it is easily scratched and the matte surface is damaged. It ends up. In order to improve these shortcomings, the present inventors continued intensive studies and found that in the presence of specific polyfunctional acrylates and organic solvents, specific sulfonic acid monomers, sulfonate monomers, or carboxylic acid monomers, and radical polymerization. When polymerization was carried out in a polymerization system to which vinyl monomer and inorganic fine particles were added, a coating composition was obtained in which a composite in which the inorganic fine particles and the vinyl monomer polymer were firmly united was uniformly dispersed. I got something. When this was applied as an erasable coating composition to a plastic molded article and cured, it was discovered that an erasable molded article with excellent wear resistance and scratch resistance could be obtained, and the present invention was completed. That is, the gist of the present invention is that (a) 30% by weight or more of a compound having at least 3 (meth)acryloyloxy groups in one molecule and 1 to 2 α,β-ethylenic groups in one molecule; A monomer mixture (A) consisting of 70% by weight or less of a compound having a saturated bond, (b) the following general formula for 100 parts by weight of the monomer mixture (A): (In the formula, R 1 is H, an alkyl group having 1 to 20 carbon atoms, a phenyl group and its derivatives, or a halogen atom, X is -CONH-,

【式】−COO(CH2n−,ま たは.(CH2o−であり,R2,R3はそれぞれH
または炭素数1〜15のアルキル基,R4は炭素
数1〜15のアルキレン基,mは1〜20の整数,
nは0〜20の整数,YはH,NH4またはアル
カリ金属原子を示す) 次の一般式 (式中,R1はH,炭素数1〜15のアルキル
基,COOY,ハロゲン原子またはフエニル基
およびその誘導体,R2はH,炭素数1〜15の
アルキル基,COOZ,ハロゲン原子またはフエ
ニル基およびその誘導体,R3はH,炭素数1
〜15のアルキル基,ハロゲン原子またはフエニ
ル基およびその誘導体,X,Y,Zはそれぞれ
H,NH4またはアルカリ金属原子を示す) または次の一般式 (式中,R4,R5はそれぞれH,炭素数1〜
15のアルキル基,ハロゲン原子またはフエニル
基およびその誘導体を示す) で表わされるスルホン酸モノマー,スルホン酸
塩モノマーまたはカルボン酸系モノマーよりな
る群から選ばれた少なくとも1種のモノマー,
無機微粒子および少なくとも1種のラジカル重
合しうるビニル単量体の混合物(B)0.01〜20重量
部、および (c) 該単量体混合物(A)100重量部に対して有機溶
剤(C)100〜2000重量部を混合してなる重合系
{(A)+(B)+(C)}を重合せしせた組成物(D)に,少
なくとも1種の光増感剤(E)を該単量体混合物(A)
100重量部に対して0.01〜6.0重量部配合してな
る耐摩耗性に優れた艷消し性被覆材組成物にあ
る。 本発明における1分子中に少なくとも3個の
(メタ)アクリロイルオキシ基を有する化合物は
被覆剤組成物の耐擦傷性,耐摩耗性を改善するた
めには必須であり,より優れた耐摩耗性,耐擦傷
性を得るためにはこれらの3官能以上の化合物
が,単量体混合物(A)の30重量%以上を占め,かつ
3官能以上の化合物と1分子中に1〜2個のα,
β−エチレン系不飽和結合を有する単量体混合物
(A)中の重合性不飽和基1個当りの平均分子量が
300以下であることが必要である。1分子中に3
個以上の(メタ)アクリロイルオキシ基を有する
化合物の含有量が30重量%未満の場合,あるいは
これらの化合物が30重量%以上でも単量体混合物
(A)の重合性不飽和基1個当りの平均分子量が300
を越える場合は十分な耐摩耗性,耐擦傷性が得ら
れない場合がある。 1分子中に3個以上の(メタ)アクリロイルオ
キシ基を有する化合物としてはトリメチロールプ
ロパントリ(メタ)アクリレート,トリメチロー
ルエタントリ(メタ)アクリレート,ペンタグリ
セロールトリ(メタ)アクリレート,ペンタエリ
スリトールトリ(メタ)アクリレート,ペンタエ
リスリトールテトラ(メタ)アクリレート,グリ
セリントリ(メタ)アクリレート,ジペンタエリ
スリトールトリ(メタ)アクリレート,ジペンタ
エリスリトールテトラ(メタ)アクリレート,ジ
ペンタエリスリトールペンタ(メタ)アクリレー
ト,ジペンタエリスリトールヘキサ(メタ)アク
リレート,トリペンタエリスリトールテトラ(メ
タ)アクリレート,トリペンタエリスリトールペ
ンタ(メタ)アクリレート,トリペンタエリスリ
トールヘキサ(メタ)アクリレート,トリペンタ
エリスリトールヘペタ(メタ)アクリレート等の
多価アルコールのポリ(メタ)アクリレート;マ
ロン酸/トリメチロールエタン/(メタ)アクリ
ル酸/トリメチロールプロパン/(メタ)アクリ
ル酸,マロン酸/グリセリン/(メタ)アクリル
酸,マロン酸/ペンタエリスリトール/(メタ)
アクリル酸,コハク酸/トリメチロールエタン/
(メタ)アクリル酸,コハク酸/トリメチロール
プロパン/(メタ)アクリル酸,コハク酸/グリ
セリン/(メタ)アクリル酸,コハク酸/ペンタ
エリスリトール/(メタ)アクリル酸,アジピン
酸/トリメチロールエタン/(メタ)アクリル
酸,アジピン酸/トリメチロールプロパン/(メ
タ)アクリル酸,アジピン酸/ペンタエリスリト
ール/(メタ)アクリル酸,アジピン酸/グリセ
リン/(メタ)アクリル酸,グルタル酸/トリメ
チロールエタン/(メタ)アクリル酸,グルタル
酸/トリメチロールプロパン/(メタ)アクリル
酸,グルタル酸/グリセリン/(メタ)アクリル
酸,グルタル酸/ペンタエリスリトール/(メ
タ)アクリル酸,セバシン酸/トリメチロールエ
タン/(メタ)アクリル酸,セバシン酸/トリメ
チロールプロパン/(メタ)アクリル酸,セバシ
ン酸/グリセリン/(メタ)アクリル酸,セバシ
ン酸/ペンタエリスリトール/(メタ)アクリル
酸,フマル酸/トリメチロールエタン/(メタ)
アクリル酸,フマル酸/トリメチロールプロパ
ン/(メタ)アクリル酸,フマル酸/グリセリ
ン/(メタ)アクリル酸,フマル酸/ペンタエリ
スリトール/(メタ)アクリル酸,イタコン酸/
トリメチロールエタン/(メタ)アクリル酸,イ
タコン酸/トリメチロールプロパン/(メタ)ア
クリル酸,イタコン酸/ペンタエリスリトール/
(メタ)アクリル酸,無水マレイン酸/トリメチ
ロールエタン/(メタ)アクリル酸,無水マレイ
ン酸/グリセリン/(メタ)アクリル酸等の化合
物の組み合わせによる飽和または不飽和ポリエス
テルポリ(メタ)アクリレート;トリメチロール
プロパントルイレンジイソシアネート,あるいは
次の一般式 (式中,Rはヘキサメチレンジイソシアネー
ト,トリレンジイソシアネート,ジフエニルメタ
ンジイソシアネート,キシリレンジイソシアネー
ト,4,4′−メチレンビス(シクロヘキシルイソ
シアネート),イソホロンジイソシアネート,ト
リメチルヘキサメチレンジイソシアネートのイソ
シアネート残基を表わす)等で示されるポリイソ
シアネートと活性水素を有するアクリルモノマ
ー,例えば2−ヒドロキシエチル(メタ)アクリ
レート,2−ヒドロキシプロピル(メタ)アクリ
レート,2−ヒドロキシ−3−メトキシプロピル
(メタ)アクリレート,N−メチロール(メタ)
アクリルアミド,N−ヒドロキシ(メタ)アクリ
ルアミド等をイソシアネート1分子当り3個以上
を常法により反応させて得られるウレタンアクリ
レート;トリス−(2−ヒドロキシエチル−)イソシ
アヌル酸のトリ(メタ)アクリレート等を挙げる
ことが出来る。 1分子中に1〜2個のα,β−エチレン系不飽
和結合を有する化合物としては、ラジカル重合活
性のある通常の単量体ならばどれでも用いること
ができるが,その重合性不飽和基が(メタ)アク
リロイルオキシ基を有する化合物である方が紫外
線による重合活性が優れているので好ましい。こ
れらの化合物の具体例としては,1分子中に2個
の(メタ)アクリロイルオキシ基を有する化合物
としてエチレングリコールジ(メタ)アクリレー
ト,ジエチレングリコールジ(メタ)アクリレー
ト,トリエチレングリコールジ(メタ)アクリレ
ート,テトラエチレングリコールジ(メタ)アク
リレート,ポリエチレングリコールジ(メタ)ア
クリレート,1,4−ブタンジオールジ(メタ)
アクリレート,1,6−ヘキサンジオールジ(メ
タ)アクリレート,ネオペンチルグリコールジ
(メタ)アクリレート,プロピレングリコールジ
(メタ)アクリレート,ジプロピレングリコール
ジ(メタ)アクリレート;トリレンジイソシアネ
ート,キシレンジイソシアネート,ナフタレンジ
イソシアネート,ヘキサメチレンジイソシアネー
ト,テトラメチレンジイソシアネート,リジンジ
イソシアネート,4,4′−ジフエニルメタンジイ
ソシアネート等のジイソシアネートと活性水素を
有するアクリルモノマー,例えば2−ヒドロキシ
エチル(メタ)アクリレート,2−ヒドロキシプ
ロピル(メタ)アクリレート,2−ヒドロキシ−
3−メトキシプロピル(メタ)アクリレート,N
−メチロール(メタ)アクリルアミド,N−ヒド
ロキシ(メタ)アクリルアミド等をイソシアネー
ト1分子当り2個を常法により反応させて得られ
るウレタンアクリレート;あるいは次の一般式 (式中,R1は水素またはメチル基,X1,X2
Xnは炭素数6以下の同じもしくは異なるアルキ
レン基またはその水素原子1個が水酸基で置換さ
れた構造のものであり,nは0〜5の整数であ
る)で示される,例えば2,2−ビス−(4アクリ
ロキシフエニル−)プロパン,2,2−ビス−(4メ
タクリロキシフエニル−)プロパン,2,2−ビス
−(4アクリロキシエトキシフエニル−)プロパン,
2,2−ビス−(4メタクリロキシエトキシフエニ
ル−)プロパン,2,2−ビス−(4アクリロキシジ
エトキシフエニル−)プロパン,2,2−ビス−(4
メタクリロキシジエトキシフエニル−)プロパン,
2,2−ビス−(4アクリロキシプロポキシフエニ
ル−)プロパン,2,2−ビス−(4メタクリロキシ
プロポキシフエニル−)プロパン,2,2−ビス−〔
4アクリロキシ(2ヒドロキシプロポキシ)フエ
ニル−〕プロパン,2,2−ビス−〔4メタクリロキ
シ(2ヒドロキシプロポキシ)フエニル−〕プロパ
ン,2,2−ビス−〔4アクリロキシ(2ヒドロキ
シプロポキシエトキシ)フエニル−〕プロパン,
2,2−ビス−〔4メタクリロキシ(2ヒドロキシ
プロポキシエトキシ)フエニル−〕プロパン等を挙
げることができる。 また1分子中に1個の(メタ)アクリロイル基
を有する化合物としては、メチル(メタ)アクリ
レート,プロピル(メタ)アクリレート,ブチル
アクリレート,イソブチルアクリレート,t−ブ
チルアクリレート,2−エチルヘキシルアクリレ
ート,ラウリルアクリレート,トリデシルアクリ
レート,シクロヘキシルアクリレート,2−ヒド
ロキシエチルアクリレート,2−ヒドロキシプロ
ピルアクリレート,グリシジルアクリレート,テ
トラヒドロフルフリルアクリレート,ベンジルア
クリレート,1,4−ブチレングリコールアクリ
レート,エトキシエチレンアクリレート,エチル
カルビトールアクリレート,2−ヒドロキシ−3
−クロロプロピルアクリレート,アクリルアミ
ド,N−ヒドロキシメチル(メタ)アクリルアミ
ド,N−ヒドロキシエチル(メタ)アクリルアミ
ド,N−ヒドロキシプロピル(メタ)アクリルア
ミド,N−ヒドロキシブチル(メタ)アクリルア
ミド,ヒドロキシメチルジアセトンアクリルアミ
ド,N−ヒドロキシエチル−N−(メチル)アク
リルアミド等を挙げることができる。 これらの化合物の中でも、1分子中に3個以上
の(メタ)アクリロイルオキシ基を有する化合物
として,次の一般式 (式中,X11,X12,X13,X22,X23…Xn2
Xn3,X14の内少なくとも3個はCH2=CH−
COO−基で残りは水酸基,アミノ基,アルキレ
ン基または置換されたアルキレン基等であり,n
は2〜5の整数である)で示される化合物,例え
ばジペンタエリスリトールトリアクリレート,ジ
ペンタエリスリトールテトラアクリレート,ジペ
ンタエリスリトールペンタアクリレート,ジペン
タエリスリトールヘキサアクリレート等は,空気
中での紫外線による硬化性が優れて特に好まし
く,作業性,コスト等を考慮する場合はこれらの
化合物の1種以上を1分子中に少なくとも3個の
(メタ)アクリロイルオキシ基を有する化合物の
うち20%以上用いた方がよい。 また同様の目的ではこれらと併用して用いる1
分子中に1〜2個の(メタ)アクリロイルオキシ
基を有する化合物としては,一般式〔〕で示さ
れる化合物,例えば2,2−ビス−(4−アクリロ
キシエトキシフエニル−)プロパン,2,2−ビス
−(4−アクリロキシジエトキシフエニル−)プロパ
ン,2,2−ビス−(4−アクリロキシプロポキシ
フエニル−)プロパン,2,2−ビス−〔4−アクリ
ロキシ−(2−ヒドロキシプロポキシ)フエニル−〕
プロパン,2,2−ビス−〔4−アクリロキシ−(2
−ヒドロキシプロポキシエトキシ)フエニル−〕プ
ロパン等が2官能性単量体としては好ましく,1
官能性単量体としては2−ヒドロキシエチルアク
リレート,2−ヒドロキシプロピルアクリレー
ト,グリシジルアクリレート,テトラヒドロフル
フリルアクリレート,エトキシエチルアクリレー
ト,エチルカルビト−ルアクリレート,ブトキシ
エチルアクリレート,1,4−ブチレングリコー
ルモノアクリレートなどのように化合物の側鎖に
水酸基および/または環状エーテル結合および/
または鎖状エーテル結合を有するアクリレートが
通常の大気中での紫外線による重合活性が優れて
いるので特に好ましい。 一般式〔〕,〔〕または〔〕で表わされる
スルホン酸モノマー,スルホン酸塩モノマーまた
はカルボン酸系モノマーは,単量体混合物(A),無
機微粒子,ラジカル重合しうるビニル単量体およ
び有機溶剤(C)と配合した重合系中で,均一に安定
した分散性を示すビニル単量体重合物と無機微粒
子との複合体を形成するのに必須のものである。
もちろん,スルホン酸モノマー,スルホン酸塩モ
ノマーおよびビニル単量体を配合しなくても無機
微粒子のみの配合だけで,艷消し成形品が得られ
る場合もあるが,本組成物の粘度は100cps/20℃
以下と低いこともあり,特に被覆剤組成物中での
無機微粒子の分散安定性が不良で,長時間放置す
ると下部にケーキ状に固化して再分散しない場合
さえある。また無機微粒子の被覆剤組成物中での
分散性が不良であるため艷消しパターンの均一性
の良いものは全く得られない。 しかしながら,前記したように特定の多官能ア
クリレートと有機溶剤の混合物中で,無機微粒子
と少なくとも1種のラジカル重合し得る単量体
を,スルホン酸モノマー,スルホン酸塩モノマー
またはカルボン酸系モノマーを用いて強固に合一
化させた複合体は,被覆剤組成物中での分散工程
も不必要で、かつ被覆剤組成物中での分散安定性
も非常に良好で,これらからなる被覆剤組成物を
用いた場合,耐摩耗性、耐擦傷性に優れ、かつ艷
消しパターンの均一性および艷消し効果に非常に
優れたプラスチツク成形品を容易に得ることが出
来る。 被覆剤組成物中での複合体の分散性と分散安定
性および均一な艷消しパターン発現性の詳細な機
構に関しては十分に解明されていないが,有機系
の重合物を外層に有する複合体では,無機物と有
機系の多官能(メタ)アクリレートおよび有機溶
剤間に有機系重合物が介在しているという点と、
多官能アクリレートモノマー存在下の反応のため
に多官能アクリレートモノマーの1部がビニル単
量体からなる重合物に共重合されていることが考
えられ、前者の無機微粒子の外層に強固に合一化
された有機物の相溶性の良さと,後者の一層の相
溶性の改善効果が相俟つて、被覆剤組成物の良好
な分散性と分散安定性および均一で優れた艷消し
効果を発現し得たものと考えられる。 無機微粒子と有機重合物の複合体を製造するの
に使用される一般式〔〕,〔〕または〔〕で
表わされるスルホン酸モノマー,スルホン酸塩モ
ノマーまたはスルホン酸系モノマーとしては無機
物と有機物との特異な重合活性を有するスルホン
酸基またはカルボン酸基と,生成重合物と無機物
との強固な結合を発現させる二重結合の存在が必
須であり,これらの官能基を含む構造式を有する
化合物がすべて適用でき、例えば2−アクリルア
ミド−2−メチルプロパンスルホン酸(以後,
AMPSと略す),2−メタアクリルエタスルホン
酸ナトリウム(以後,SEM−Naと略す),3−
メタアクリルプロパンスルホン酸ナトリウム(以
後,SPSと略す),2−プロペンスルホン酸ナト
リウム(以後,NaASと略す),2−メチル−2
−プロペンスルホン酸ナトリウム(以後,
NaMSと略す),アクリル酸,メタクリル酸,ク
ロトン酸,チグリン酸,ケイ皮酸,無水マレイン
酸,無水シトラコン酸等が挙げられるが,特にア
ミド結合を含むAMPS,エステル結合を含む
SEM−NaおよびSPSまたはアクリル酸,メタク
リル酸およびクロトン酸が重合活性が高く好まし
い。 本発明に用いられる無機微粒子としては,1mμ
〜100μの粒径を有するものが好ましく,また無
機微粒子と有機物との複合体も1mμ〜100μの
粒径になるように重合を調節するのが好ましく,
艷消し性,分散性および分散安定性の面では5m
μ〜50μの粒径であるのがより好ましい。 無機化合物としては,周期律表第,,,
,族,遷移金属およびそれらの酸化物,水酸
化物,塩化物,硫酸塩,亜硫酸塩,炭酸塩,リン
酸塩,ケイ酸塩,およびこれらの混合物,複合塩
が有効であるが,中でも亜硫酸カルシウム,硫酸
カルシウム,二酸化ケイ素,酸化チタン,三酸化
アンチモン,タルク,クレー,酸化アルミニウ
ム,炭酸カルシウム,カーボンブラツク,ニツケ
ル粉,鉄粉,亜鉛粉,銅粉,酸化第二鉄,酸化亜
鉛,水酸化アルミニウムがビニルモノマーの活性
化および重合体との強固なる合一化効果がとりわ
け顕著であり好ましい。またこれらはオルガノゾ
ル,水性ゾルの状態のものでも使用に供すること
が出来る。これらの中でも二酸化ケイ素は,透明
性が良好であるため成形品の光学特性,特に透明
性と低曇価が要求される場合には特に好ましい。 本発明に用いられるビニル単量体としては,通
常のラジカル重合しうるビニル単量体はいずれも
適用できるが,中でもメタクリル酸メチルが特異
的に重合活性が高く,しかも生成重合体と無機物
との合一性が良好であるため特に好ましい。二種
以上の単量体の混合物を使用する場合,メタクリ
ル酸メチルをその一成分とすることは,特に重合
活性の面から好ましい適用法といえる。 本発明によれば、スルホン酸モノマー,スルホ
ン酸塩モノマーまたはカルボン酸系モノマーの濃
度は、無機化合物と単量体との総重量に基づき約
0.05〜100重量%の量で使用される。大抵の場合,
単量体成分の増加に応じてスルホン酸モノマー,
スルホン酸塩モノマーまたはカルボン酸系モノマ
ーの量を増加させるのが好ましい。使用する無機
化合物に対する単量体もしくは単量体混合物の重
量比は広範囲に変えることができ,約500:1乃
至1:5,好ましくは約50:1乃至約1:1であ
る。 無機微粒子と有機重合物との複合体は,単量体
混合物(A)100重量部に対して0.01〜20重量部の範
囲に入るように注意する必要がある。複合体が
0.01未満であると艷消し性発現に劣り,逆に20重
量部を越えると複合体の付着量が多すぎて表面の
屈均一性に劣るようになる。 有機溶剤(C)の使用量は単量体混合物(A)100重量
部に対して100〜2000重量部の割合であるが、ス
ルホン酸モノマー,スルホン酸塩モノマーまたは
カルボン酸系モノマーによる反応を効率よく進め
るためには10%以下の水を共存させておいた方が
好ましいし,場合によつてはメルカプタン等の重
合調節剤,分散剤等を少量併用してもよい。しか
しながら水については10%を越えると被覆材組成
物と相分離を起こす場合があるので注意を要す
る。有機溶剤または水を含む有機溶剤の使用量が
100重量部未満の場合には,被覆の平滑性ならび
に均一性にすぐれたものが得られず,一方2000重
量部を越える場合には膜厚が薄くなりすぎて耐摩
耗性,耐擦傷性が低下する。 有機溶剤の具体例としてはエタノール,イソプ
ロパノール,ノルマルプロパノール,イソブチル
アルコール,ノルマルブチルアルコールなどのア
ルコール類,ベンゼン,トルエン,キシレン,エ
チルベンゼンなどの芳香族炭化水素類,アセト
ン,メチルエチルケトンなどのケトン類,ジオキ
サンなどのエーテル類,酢酸エチル,酢酸n−ブ
チル,プロピオン酸エチルなどの酸エステル類な
どがある。これらの有機溶剤は1種以上混合して
使用できるが,被覆材組成物が相分離しないよう
に溶剤の選択および混合割合には注意する必要が
ある。またこの点では、若干の水が使用される場
合はアルコール系の溶剤を併用した方が好まし
い。 以上特定の単量体混合物(A),スルホン酸モノマ
ー,スルホン酸塩モノマーまたはカルボン酸系モ
ノマー,無機微粒子,ビニル単量体および有機溶
剤を混合してなる重合系の反応は,好ましくはた
とえば窒素等の不活性ガスの雰囲気下において温
度約10〜100℃,好ましくは20〜80℃で行なわれ
る。ここで具体的な反応温度は用いるビニルモノ
マーによつて適宜選択されるが,熱重合が無視で
きる程度に抑制される温度で実施することが重要
であり,極端に熱重合がおこる様な高温で実施す
る場合,生成複合体の合一性および均一性は阻害
される。反応時間は30分乃至約15時間である。 本発明被覆材組成物を硬化する手段としては通
常20〜2000KVの電子線加速器から取り出される
電子線,α線,β線,γ線などの放射線などの活
性エネルギー線を照射しても可能であるが,経済
的に容易に硬化するためには波長100nm〜500nm
の範囲の紫外線が好ましい。紫外線照射雰囲気と
しては窒素,炭酸ガス,アルゴン等の不活性ガス
中で照射してももちろん差しつかえないが,前記
した特定のアクリロイルオキシ基を有する化合物
を使用すれば通常の大気中でも効率よく硬化する
ことが可能で,経済的には最も好ましい。 活性エネルギー線として紫外線を用いる場合
は,単量体混合物(A)に対して光増感剤(光触媒)
を添加しておくのが好ましく,これらの光増感剤
としては,たとえばベンゾイン,ベンゾインメチ
ルエーテル,ベンゾインエチルエーテル,ベンゾ
インイソプロピルエーテル,アセトイン,ブチロ
イン,トルオイン,ベンジル,ベンゾフエノン,
p−メトキシベンゾフエノン,ジエトキシアセト
フエノン,α,α−ジメトキシ−α−フエニルア
セトフエノン,メチルフエニルグリオキシレー
ト,エチルフエニルグリオキシレート,4,4′−
ビス(ジメチルアミノベンゾフエノン),2−ヒ
ドロキシ−2−メチル−1−フエニルプロパン−
1−オン等のカルボニル化合物,テトラメチルチ
ウラムモノスルフイド,テトラメチルチウラムジ
スルフイドなどの硫黄化合物,アゾビスイソブチ
ロニトリル,アゾビス.2,4−ジメチルバレロ
ニトリルなどのアゾ化合物,ベンゾイルパーオキ
サイド,ジターシヤリブチルパーオキサイドなど
のパーオキサイド化合物などが挙げられる。単量
体混合物(A)100重量部に対する配合量は0.01〜6
重量部が好ましく,多量に添加しすぎる場合は架
橋硬化被膜を着色させたり,耐候性の低下を招く
ので好ましくなく,またその添加量が少なすぎる
と紫外線による硬化性が悪くなる。 以上が本発明を構成する必要不可欠な構成成分
であるが,もし必要があれば形成される架橋硬化
被膜に制電性,防曇性あるいはその他の機能を付
与する目的で紫外線で重合活性のある他のビニル
単量体の少なくとも1種を併用してもよい。また
必要に応じて酸化防止剤,光安定剤,熱重合防止
剤,紫外線吸収剤等の安定剤,着色剤等を適宜、
少量添加してもよい。 なお得られた成形品の表面の被膜の平滑性,均
一性が特に要求される場合には,シリコン系レベ
リング剤を,好ましくはその分子構造がポリジメ
チルシロキサン単位からなり,その一部がポリオ
キシアルキレン基で変性されているものが好まし
く,変性度としてはメチルシロキサン基1単位
CH3(Sio)1/2−に対して少なくとも1種のオキシ
アルキレン基(−OCH2CH2−,
[Formula] −COO(CH 2 ) n −, or. (CH 2 ) o −, and R 2 and R 3 are each H
or an alkyl group having 1 to 15 carbon atoms, R 4 is an alkylene group having 1 to 15 carbon atoms, m is an integer of 1 to 20,
n is an integer from 0 to 20, Y represents H, NH 4 or an alkali metal atom) The following general formula (In the formula, R 1 is H, an alkyl group having 1 to 15 carbon atoms, COOY, a halogen atom or a phenyl group and its derivatives, R 2 is H, an alkyl group having 1 to 15 carbon atoms, COOZ, a halogen atom or a phenyl group) and its derivatives, R 3 is H, carbon number 1
~15 alkyl groups, halogen atoms or phenyl groups and their derivatives, X, Y, Z each represent H, NH 4 or an alkali metal atom) or the following general formula (In the formula, R 4 and R 5 are each H, carbon number 1 to
At least one monomer selected from the group consisting of sulfonic acid monomers, sulfonate monomers, or carboxylic acid monomers represented by
0.01 to 20 parts by weight of a mixture (B) of inorganic fine particles and at least one radically polymerizable vinyl monomer, and (c) 100 parts by weight of an organic solvent (C) per 100 parts by weight of the monomer mixture (A). At least one photosensitizer (E) is added to the composition (D) obtained by polymerizing the polymerization system {(A) + (B) + (C)} of ~2000 parts by weight. Monomer mixture (A)
The present invention provides an erasable coating material composition with excellent abrasion resistance, which is blended in an amount of 0.01 to 6.0 parts by weight per 100 parts by weight. In the present invention, the compound having at least three (meth)acryloyloxy groups in one molecule is essential for improving the abrasion resistance and abrasion resistance of the coating composition. In order to obtain scratch resistance, these trifunctional or higher functional compounds should account for 30% by weight or more of the monomer mixture (A), and the trifunctional or higher functional compounds should contain 1 to 2 α,
Monomer mixture with β-ethylenically unsaturated bond
The average molecular weight per polymerizable unsaturated group in (A) is
Must be 300 or less. 3 in 1 molecule
If the content of compounds having more than one (meth)acryloyloxy group is less than 30% by weight, or even if these compounds are 30% by weight or more, the monomer mixture is
The average molecular weight per polymerizable unsaturated group in (A) is 300
If it exceeds this, sufficient abrasion resistance and scratch resistance may not be obtained. Examples of compounds having three or more (meth)acryloyloxy groups in one molecule include trimethylolpropane tri(meth)acrylate, trimethylolethane tri(meth)acrylate, pentaglycerol tri(meth)acrylate, and pentaerythritol tri(meth)acrylate. ) acrylate, pentaerythritol tetra(meth)acrylate, glycerin tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa( Poly(meth)acrylate, tripentaerythritol tetra(meth)acrylate, tripentaerythritol penta(meth)acrylate, tripentaerythritol hexa(meth)acrylate, tripentaerythritol hepeta(meth)acrylate, and other poly(meth)acrylates. Acrylate; malonic acid/trimethylolethane/(meth)acrylic acid/trimethylolpropane/(meth)acrylic acid, malonic acid/glycerin/(meth)acrylic acid, malonic acid/pentaerythritol/(meth)
Acrylic acid, succinic acid/trimethylolethane/
(meth)acrylic acid, succinic acid/trimethylolpropane/(meth)acrylic acid, succinic acid/glycerin/(meth)acrylic acid, succinic acid/pentaerythritol/(meth)acrylic acid, adipic acid/trimethylolethane/( Meth)acrylic acid, adipic acid/trimethylolpropane/(meth)acrylic acid, adipic acid/pentaerythritol/(meth)acrylic acid, adipic acid/glycerin/(meth)acrylic acid, glutaric acid/trimethylolethane/(meth) ) Acrylic acid, glutaric acid/trimethylolpropane/(meth)acrylic acid, glutaric acid/glycerin/(meth)acrylic acid, glutaric acid/pentaerythritol/(meth)acrylic acid, sebacic acid/trimethylolethane/(meth) Acrylic acid, sebacic acid/trimethylolpropane/(meth)acrylic acid, sebacic acid/glycerin/(meth)acrylic acid, sebacic acid/pentaerythritol/(meth)acrylic acid, fumaric acid/trimethylolethane/(meth)
Acrylic acid, fumaric acid / trimethylolpropane / (meth)acrylic acid, fumaric acid / glycerin / (meth)acrylic acid, fumaric acid / pentaerythritol / (meth)acrylic acid, itaconic acid /
Trimethylolethane/(meth)acrylic acid, itaconic acid/trimethylolpropane/(meth)acrylic acid, itaconic acid/pentaerythritol/
Saturated or unsaturated polyester poly(meth)acrylate made from a combination of compounds such as (meth)acrylic acid, maleic anhydride/trimethylolethane/(meth)acrylic acid, maleic anhydride/glycerin/(meth)acrylic acid; trimethylol Propane toluylene diisocyanate, or the following general formula (In the formula, R represents an isocyanate residue of hexamethylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), isophorone diisocyanate, trimethylhexamethylene diisocyanate), etc. Acrylic monomers with the indicated polyisocyanates and active hydrogen, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxy-3-methoxypropyl (meth)acrylate, N-methylol (meth)acrylate
Urethane acrylate obtained by reacting three or more acrylamide, N-hydroxy(meth)acrylamide, etc. per molecule of isocyanate by a conventional method; tri(meth)acrylate of tris-(2-hydroxyethyl-)isocyanuric acid, etc. I can do it. As a compound having 1 to 2 α,β-ethylenically unsaturated bonds in one molecule, any ordinary monomer with radical polymerization activity can be used, but the polymerizable unsaturated group A compound having a (meth)acryloyloxy group is preferable because it has excellent polymerization activity by ultraviolet rays. Specific examples of these compounds include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, and compounds having two (meth)acryloyloxy groups in one molecule. Tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1,4-butanediol di(meth)
Acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate; tolylene diisocyanate, xylene diisocyanate, naphthalene diisocyanate, diisocyanate such as hexamethylene diisocyanate, tetramethylene diisocyanate, lysine diisocyanate, 4,4'-diphenylmethane diisocyanate, and an acrylic monomer containing active hydrogen, such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxy-
3-Methoxypropyl (meth)acrylate, N
- Urethane acrylate obtained by reacting two methylol (meth)acrylamide, N-hydroxy (meth)acrylamide, etc. per molecule of isocyanate in a conventional manner; or the following general formula: (In the formula, R 1 is hydrogen or methyl group, X 1 , X 2 ...
Xn is the same or different alkylene group having 6 or less carbon atoms, or a structure in which one hydrogen atom of the alkylene group is replaced with a hydroxyl group, n is an integer from 0 to 5), for example, 2,2-bis -(4acryloxyphenyl-)propane, 2,2-bis-(4methacryloxyphenyl-)propane, 2,2-bis-(4acryloxyethoxyphenyl-)propane,
2,2-bis-(4methacryloxydiethoxyphenyl-)propane, 2,2-bis-(4acryloxydiethoxyphenyl-)propane, 2,2-bis-(4
methacryloxydiethoxyphenyl)propane,
2,2-bis-(4acryloxypropoxyphenyl-)propane, 2,2-bis-(4methacryloxypropoxyphenyl-)propane, 2,2-bis-[
4acryloxy(2hydroxypropoxy)phenyl-]propane, 2,2-bis-[4methacryloxy(2hydroxypropoxy)phenyl-]propane, 2,2-bis-[4acryloxy(2hydroxypropoxyethoxy)phenyl-]propane ,
Examples include 2,2-bis-[4methacryloxy(2hydroxypropoxyethoxy)phenyl]propane. Compounds having one (meth)acryloyl group in one molecule include methyl (meth)acrylate, propyl (meth)acrylate, butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, Tridecyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, 1,4-butylene glycol acrylate, ethoxyethylene acrylate, ethyl carbitol acrylate, 2-hydroxy -3
-Chloropropyl acrylate, acrylamide, N-hydroxymethyl (meth)acrylamide, N-hydroxyethyl (meth)acrylamide, N-hydroxypropyl (meth)acrylamide, N-hydroxybutyl (meth)acrylamide, hydroxymethyl diacetone acrylamide, N -Hydroxyethyl-N-(methyl)acrylamide, etc. can be mentioned. Among these compounds, the following general formula is used as a compound having three or more (meth)acryloyloxy groups in one molecule. (In the formula, X 11 , X 12 , X 13 , X 22 , X 23 ...Xn 2 ,
At least three of Xn 3 and X 14 are CH 2 = CH−
COO- group and the rest are hydroxyl group, amino group, alkylene group, substituted alkylene group, etc., n
is an integer from 2 to 5), such as dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, etc., are curable by ultraviolet rays in air. It is particularly preferred, and when considering workability, cost, etc., it is better to use one or more of these compounds in 20% or more of the compounds having at least three (meth)acryloyloxy groups in one molecule. . Also used in combination with these for similar purposes 1
Examples of compounds having 1 to 2 (meth)acryloyloxy groups in the molecule include compounds represented by the general formula [], such as 2,2-bis-(4-acryloxyethoxyphenyl)propane, 2, 2-bis-(4-acryloxydiethoxyphenyl-)propane, 2,2-bis-(4-acryloxypropoxyphenyl-)propane, 2,2-bis-[4-acryloxy-(2-hydroxy) propoxy) phenyl]
Propane, 2,2-bis-[4-acryloxy-(2
-Hydroxypropoxyethoxy)phenyl-]propane, etc. are preferred as the difunctional monomer;
Examples of functional monomers include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, glycidyl acrylate, tetrahydrofurfuryl acrylate, ethoxyethyl acrylate, ethyl carbitol acrylate, butoxyethyl acrylate, 1,4-butylene glycol monoacrylate, etc. Hydroxyl groups and/or cyclic ether bonds and/or
Acrylates having a chain ether bond are particularly preferred since they have excellent polymerization activity when exposed to ultraviolet light in normal atmosphere. The sulfonic acid monomer, sulfonate monomer or carboxylic acid monomer represented by the general formula [], [] or [] is a monomer mixture (A), inorganic fine particles, radically polymerizable vinyl monomer and organic solvent. It is essential for forming a composite of vinyl monomer polymer and inorganic fine particles that exhibits uniform and stable dispersibility in the polymerization system blended with (C).
Of course, even if sulfonic acid monomer, sulfonate monomer, and vinyl monomer are not blended, a molded product may be obtained by blending only inorganic fine particles, but the viscosity of this composition is 100 cps/20 ℃
In particular, the dispersion stability of the inorganic fine particles in the coating composition is poor, and if left for a long time, they may solidify in the form of a cake at the bottom and may not be redispersed. Further, since the dispersibility of the inorganic fine particles in the coating composition is poor, it is impossible to obtain a uniform faded pattern at all. However, as mentioned above, in a mixture of a specific polyfunctional acrylate and an organic solvent, inorganic fine particles and at least one monomer that can be radically polymerized are mixed with a sulfonic acid monomer, a sulfonate monomer, or a carboxylic acid monomer. The composite that is firmly unified by the process does not require a dispersion step in the coating composition, and has very good dispersion stability in the coating composition. When using this method, it is possible to easily obtain a plastic molded product that has excellent wear resistance, scratch resistance, uniformity of the erasing pattern, and extremely excellent erasing effect. Although the detailed mechanisms of the dispersibility and dispersion stability of the composite in the coating composition and the ability to develop a uniform faded pattern have not been fully elucidated, the composite with an organic polymer in the outer layer , that an organic polymer is interposed between an inorganic substance, an organic polyfunctional (meth)acrylate, and an organic solvent;
It is thought that a part of the polyfunctional acrylate monomer is copolymerized into a polymer consisting of vinyl monomer due to the reaction in the presence of the polyfunctional acrylate monomer, and the former is strongly integrated into the outer layer of the inorganic fine particles. The combination of the good compatibility of the organic matter and the further compatibility improvement effect of the latter results in good dispersibility and dispersion stability of the coating composition, as well as a uniform and excellent erasing effect. considered to be a thing. Sulfonic acid monomers, sulfonate monomers, or sulfonic acid monomers represented by the general formula [ ], [ ], or [ ] used to produce composites of inorganic fine particles and organic polymers include combinations of inorganic and organic substances. The presence of a sulfonic acid group or carboxylic acid group that has a specific polymerization activity and a double bond that creates a strong bond between the resulting polymer and the inorganic substance is essential, and compounds with structural formulas containing these functional groups are essential. All can be applied, such as 2-acrylamido-2-methylpropanesulfonic acid (hereinafter referred to as
AMPS), 2-sodium methacrylate sulfonate (hereinafter abbreviated as SEM-Na), 3-
Sodium methacrylicpropanesulfonate (hereinafter abbreviated as SPS), sodium 2-propenesulfonate (hereinafter abbreviated as NaAS), 2-methyl-2
- Sodium propenesulfonate (hereinafter referred to as
NaMS), acrylic acid, methacrylic acid, crotonic acid, tiglic acid, cinnamic acid, maleic anhydride, citraconic anhydride, etc., but especially AMPS containing amide bonds and AMPS containing ester bonds.
SEM-Na and SPS or acrylic acid, methacrylic acid and crotonic acid have high polymerization activity and are preferred. The inorganic fine particles used in the present invention are 1 mμ
It is preferable to have a particle size of ~100μ, and it is preferable to adjust the polymerization so that the composite of inorganic fine particles and organic matter has a particle size of 1mμ to 100μ.
5m in terms of erasability, dispersibility and dispersion stability.
More preferably, the particle size is between μ and 50 μ. As an inorganic compound, the periodic table number...
, group metals, transition metals and their oxides, hydroxides, chlorides, sulfates, sulfites, carbonates, phosphates, silicates, and mixtures and complex salts of these are effective. Calcium, calcium sulfate, silicon dioxide, titanium oxide, antimony trioxide, talc, clay, aluminum oxide, calcium carbonate, carbon black, nickel powder, iron powder, zinc powder, copper powder, ferric oxide, zinc oxide, hydroxide Aluminum is preferable because it has a particularly remarkable effect of activating the vinyl monomer and strongly integrating it with the polymer. Furthermore, these can be used in the form of organosol or aqueous sol. Among these, silicon dioxide has good transparency and is therefore particularly preferred when optical properties of molded articles, particularly transparency and low haze value, are required. As the vinyl monomer used in the present invention, any ordinary vinyl monomer that can be radically polymerized can be used, but among them, methyl methacrylate has a particularly high polymerization activity, and is also highly compatible with the produced polymer and inorganic substances. It is particularly preferred because of its good coalescence properties. When using a mixture of two or more types of monomers, using methyl methacrylate as one component can be said to be a preferable application method, especially from the viewpoint of polymerization activity. According to the present invention, the concentration of sulfonic acid monomer, sulfonate monomer or carboxylic acid monomer is approximately
Used in amounts of 0.05-100% by weight. In most cases,
Sulfonic acid monomer as the monomer component increases,
Preferably, the amount of sulfonate monomer or carboxylic acid monomer is increased. The weight ratio of monomer or monomer mixture to inorganic compound used can vary within a wide range and is from about 500:1 to 1:5, preferably from about 50:1 to about 1:1. Care must be taken to ensure that the amount of the composite of inorganic fine particles and organic polymer is in the range of 0.01 to 20 parts by weight per 100 parts by weight of the monomer mixture (A). The complex is
If it is less than 0.01, the erasability will be poor, and if it exceeds 20 parts by weight, the amount of composite will be too large and the surface uniformity will be poor. The amount of organic solvent (C) used is 100 to 2000 parts by weight per 100 parts by weight of the monomer mixture (A), but it is necessary to efficiently carry out the reaction with sulfonic acid monomers, sulfonate monomers, or carboxylic acid monomers. In order to proceed well, it is preferable to coexist 10% or less water, and in some cases, a small amount of a polymerization regulator such as mercaptan, a dispersant, etc. may be used in combination. However, with regard to water, care must be taken because if it exceeds 10%, phase separation may occur from the coating material composition. The amount of organic solvents or organic solvents containing water used is
If it is less than 100 parts by weight, it will not be possible to obtain a coating with excellent smoothness and uniformity, while if it exceeds 2000 parts by weight, the film thickness will be too thin and the abrasion resistance and scratch resistance will decrease. do. Specific examples of organic solvents include alcohols such as ethanol, isopropanol, normal propanol, isobutyl alcohol, and normal butyl alcohol, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, ketones such as acetone, methyl ethyl ketone, and dioxane. and acid esters such as ethyl acetate, n-butyl acetate, and ethyl propionate. One or more of these organic solvents can be used as a mixture, but care must be taken in selecting the solvent and in the mixing ratio to prevent phase separation of the coating material composition. From this point of view, when a small amount of water is used, it is preferable to use an alcoholic solvent together. The reaction of a polymerization system obtained by mixing the above-mentioned specific monomer mixture (A), a sulfonic acid monomer, a sulfonate monomer, or a carboxylic acid monomer, an inorganic fine particle, a vinyl monomer, and an organic solvent is preferably carried out using, for example, nitrogen gas. It is carried out at a temperature of about 10 to 100°C, preferably 20 to 80°C, in an atmosphere of an inert gas such as. The specific reaction temperature here is selected as appropriate depending on the vinyl monomer used, but it is important to carry out the reaction at a temperature at which thermal polymerization is suppressed to a negligible level; When carried out, the integrity and homogeneity of the resulting complex is inhibited. Reaction time is 30 minutes to about 15 hours. As a means of curing the coating composition of the present invention, it is also possible to irradiate it with active energy rays such as electron beams, α rays, β rays, γ rays, etc., which are usually taken out from an electron beam accelerator of 20 to 2000 KV. However, for economical and easy curing, a wavelength of 100nm to 500nm is required.
UV radiation in the range is preferred. Of course, UV irradiation can be carried out in an inert gas such as nitrogen, carbon dioxide, or argon, but if a compound containing the specific acryloyloxy group mentioned above is used, it can be cured efficiently even in normal air. This is possible and economically the most preferable. When using ultraviolet rays as active energy rays, a photosensitizer (photocatalyst) is added to the monomer mixture (A).
It is preferable to add sensitizers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, acetoin, butyroin, toluoin, benzyl, benzophenone,
p-Methoxybenzophenone, diethoxyacetophenone, α,α-dimethoxy-α-phenylacetophenone, methylphenylglyoxylate, ethylphenylglyoxylate, 4,4′-
Bis(dimethylaminobenzophenone), 2-hydroxy-2-methyl-1-phenylpropane-
Carbonyl compounds such as 1-one, sulfur compounds such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide, azobisisobutyronitrile, azobis. Examples include azo compounds such as 2,4-dimethylvaleronitrile, and peroxide compounds such as benzoyl peroxide and ditertiarybutyl peroxide. The amount added to 100 parts by weight of monomer mixture (A) is 0.01 to 6.
Parts by weight are preferred; if too large a quantity is added, the cross-linked cured film will be colored or the weather resistance will be deteriorated, which is undesirable. If the quantity is too small, curability by ultraviolet rays will deteriorate. The above are the essential components constituting the present invention. At least one other vinyl monomer may be used in combination. In addition, stabilizers such as antioxidants, light stabilizers, thermal polymerization inhibitors, ultraviolet absorbers, colorants, etc. may be added as necessary.
A small amount may be added. If smoothness and uniformity of the coating on the surface of the obtained molded product are particularly required, it is preferable to use a silicone leveling agent whose molecular structure consists of polydimethylsiloxane units and a portion of which is polyoxygen. Those modified with an alkylene group are preferable, and the degree of modification is 1 unit of methylsiloxane group.
CH 3 (Sio) 1/2 - with at least one oxyalkylene group (-OCH 2 CH 2 -,

【式】)が0.1〜10.0単位の範囲内で結 合しているものが好ましい。オキシアルキレン基
による変性度が0.1未満の場合は被膜の平滑性は
シリコン系界面活性剤を添加しない場合よりもむ
しろ悪くなり,一方オキシアルキレン基による変
性度が10をこえる場合には被膜の平滑性が低下す
るので好ましくない。また場合によつては,シリ
コン系レベリング剤を使用しない場合,得られた
艷消し性成形品が白く濁る場合があるが,これを
少量配合することによつてこれを防止することが
出来る。 本組成物を塗布する方法としては刷毛塗り,流
し塗り,スプレー塗布,回転塗布あるいは浸漬塗
布などの方法が採用されるが、被覆材組成物の塗
布作業性、被膜の平滑性、均一性の面からは浸漬
法にて塗布するのが最も好ましい方法である。 被覆材組成物の合成樹脂成形品表面に対する塗
布量としては硬化被膜の膜厚が1〜30μ,好まし
くは1.5μ〜20μの範囲になるように塗布する必要
がある。架橋硬化被膜の膜厚が1μ未満の場合に
は,得られた成形品の耐摩耗性または表面硬度が
低下したり,30μを越える場合は基材との密着性
が低下したり,クラツクが発生し易くなつたりす
る。 本発明の組成物を用いて耐摩耗性および耐擦傷
性に優れた艷消し性合成樹脂成形品を製造するの
に使用される合成樹脂成形品としては,熱可塑性
樹脂,熱硬化性樹脂を問わず各種合成樹脂成形
品,例えばポリメチルメタアクリレート樹脂,ポ
リカーボネート樹脂,ポリアリルジグリコールカ
ーボネート樹脂,ポリスチレン樹脂,アクリロニ
トリル−スチレン共重合樹脂(AS樹脂),ポリ塩
化ビニル樹脂,アセテート樹脂,ABS樹脂,ポ
リエステル樹脂などから製造されるシート状成形
品、フイルム状成形品、ロツド状成形品ならびに
各種射出成形品などが具体例として挙げられる。
これらの成形品の内でもポリメチルアクリレート
樹脂,ポリカーボネート樹脂などから製造される
成形品はその光学的性質,耐熱性,耐衝撃性など
の特性を生かして使用される場合が多く,かつ耐
摩耗性および耐候性改良への要求も強いので,こ
れらの成形品は本発明に使用される合成樹脂成形
品としては特に好ましいものである。 以上のべたような組成を有する本発明の被覆剤
組成物を用いて製造される耐摩耗性および耐擦傷
性に優れた艷消し性合成樹脂成形品は,その平滑
性,耐薬品性,耐久性にも優れた性能を有するの
で,艷消し性が要求される分野,例えばCRT用
フイルター,テレビ用フイルター,タクシーメー
ターまたはデジタル表示板等のデイスプレー関
係,照明,光学関係,蛍光表示管用フイルター,
液晶用フイルター等の用途に極めて有用である。 以下実施例によつて本発明をさらに詳細に説明
する。実施例中の部は重量部を示す。 なお実施例中の測定評価は次のような方法で行
なつた。 (1) 耐擦傷性 #000のスチールウールを直径25mmの円筒先端
に装着し,水平に置かれたサンプル面に接触さ
せ,100g荷重で5回転(20r.p.m)し,傷の付着
程度を目視観察する。 〇……サンプル表面にほとんど傷がつかない。 △……サンプル表面に少し傷がつく。 ×……サンプル表面に相当傷がつく。 (2) 艷消し面の均一性 目視判定による。 〇……均一性良好。 △……若干ムラ有り。 ×……均一性に劣る。 (3) 分散安定性 被覆材組成物を円筒状のメスシリンダーに入
れ,24時間静置後観察。 〇……沈降,相分離ほとんどみられず。 △……沈降,相分離少し観察される。 ×……沈降,相分離顕著。 実施例1〜8,比較例1,2 冷却管,窒素導入管,撹拌棒および内温検知用
熱電対を装備した1の四ツ口フラスコ反応器に
表1に示す組成物(D)を添加し,分散および撹拌を
続けながら30分間窒素置換を行なつた。なお表1
の組成物(D)のうち水と単量体(SEM−Na)は,
内温が50℃になつた時点で加え,5時間反応させ
た。反応後常温まで冷却した後表1の光増感剤を
添加して被覆材組成物とした。 これらの被覆材組成物の夫々のアクリル板(三
菱レイヨン(株)製 商品名 アクリライトL,
厚さ2mm)を1.0cm/secの引上げ速度で浸漬して
被膜を形成させ,2KWの高圧水銀燈下,照射距
離200mmで10秒間照射した。得られた結果を表1
に示す。 比較例1は実施例1と同じ組成物からなつてい
るが,無機微粒子,SEM−Naおよび溶剤を先に
50℃で5時間反応させておいてから,被覆材組成
物を調整したものである。比較例2は単に無機微
粒子を添加しただけで,反応は行なつていないも
のである。
[Formula]) is preferably bonded within a range of 0.1 to 10.0 units. If the degree of modification by oxyalkylene groups is less than 0.1, the smoothness of the film will be worse than when no silicone surfactant is added, whereas if the degree of modification by oxyalkylene groups exceeds 10, the smoothness of the film will be worse. This is not preferable because it reduces the In some cases, if a silicone leveling agent is not used, the resulting erasable molded product may become cloudy, but this can be prevented by adding a small amount of this agent. Methods such as brush coating, flow coating, spray coating, spin coating, or dip coating are adopted as methods for applying this composition, but these methods are difficult in terms of coating workability, film smoothness, and uniformity. The most preferred method is to apply by dipping. The coating amount of the coating composition on the surface of the synthetic resin molded article must be such that the thickness of the cured film is in the range of 1 to 30 microns, preferably 1.5 to 20 microns. If the thickness of the crosslinked cured film is less than 1μ, the wear resistance or surface hardness of the resulting molded product will decrease, and if it exceeds 30μ, the adhesion to the base material will decrease or cracks will occur. It becomes easier to do. Synthetic resin molded products used to produce erasable synthetic resin molded products with excellent abrasion resistance and scratch resistance using the composition of the present invention include thermoplastic resins and thermosetting resins. Various synthetic resin molded products, such as polymethyl methacrylate resin, polycarbonate resin, polyallyl diglycol carbonate resin, polystyrene resin, acrylonitrile-styrene copolymer resin (AS resin), polyvinyl chloride resin, acetate resin, ABS resin, polyester Specific examples include sheet-like molded products, film-like molded products, rod-like molded products, and various injection molded products manufactured from resins.
Among these molded products, molded products manufactured from polymethyl acrylate resin, polycarbonate resin, etc. are often used to take advantage of their properties such as optical properties, heat resistance, and impact resistance, and they also have excellent wear resistance. Since there is also a strong demand for improved weather resistance, these molded products are particularly preferred as synthetic resin molded products used in the present invention. The erasable synthetic resin molded product with excellent abrasion resistance and scratch resistance produced using the coating composition of the present invention having the above-described sticky composition is characterized by its smoothness, chemical resistance, and durability. Because of its excellent performance, it can be used in fields that require erasability, such as CRT filters, television filters, display-related products such as taximeters or digital display boards, lighting, optical products, fluorescent display tube filters, etc.
It is extremely useful for applications such as liquid crystal filters. The present invention will be explained in more detail below using Examples. Parts in Examples indicate parts by weight. In addition, the measurement evaluation in the examples was performed by the following method. (1) Scratch resistance Attach #000 steel wool to the tip of a cylinder with a diameter of 25 mm, contact it with the horizontally placed sample surface, rotate it 5 times (20 rpm) with a load of 100 g, and visually check the extent of scratches. Observe. 〇...The sample surface is hardly scratched. △...The sample surface is slightly scratched. ×...The sample surface is considerably damaged. (2) Uniformity of faded surface Based on visual judgment. 〇…Good uniformity. △...There is some unevenness. ×...poor uniformity. (3) Dispersion stability The coating material composition was placed in a cylindrical measuring cylinder and observed after standing for 24 hours. 〇…Almost no sedimentation or phase separation was observed. △...Slight sedimentation and phase separation are observed. ×... Sedimentation and phase separation are significant. Examples 1 to 8, Comparative Examples 1 and 2 The composition (D) shown in Table 1 was added to a four-necked flask reactor 1 equipped with a cooling tube, a nitrogen introduction tube, a stirring rod, and a thermocouple for detecting internal temperature. Then, nitrogen substitution was performed for 30 minutes while continuing dispersion and stirring. Furthermore, Table 1
Of the composition (D), water and monomer (SEM-Na) are
It was added when the internal temperature reached 50°C and reacted for 5 hours. After the reaction, the mixture was cooled to room temperature, and then the photosensitizer shown in Table 1 was added to prepare a coating composition. Acrylic plates of each of these coating material compositions (manufactured by Mitsubishi Rayon Co., Ltd., product name Acrylite L,
A film (2 mm thick) was immersed at a pulling rate of 1.0 cm/sec to form a film, and irradiated for 10 seconds under a 2 KW high-pressure mercury lamp at an irradiation distance of 200 mm. Table 1 shows the results obtained.
Shown below. Comparative Example 1 has the same composition as Example 1, but inorganic fine particles, SEM-Na, and solvent were added first.
The coating material composition was prepared after reacting at 50°C for 5 hours. In Comparative Example 2, inorganic fine particles were simply added and no reaction was performed.

【表】【table】

【表】 実施例 9〜17 表2の艷消し(D)を実施例1〜8と同様にして反
応させ,冷却後光増感剤を添加して被覆材組成物
を調整した。これらの組成物の夫々に実施例1〜
8と同様にアクリル板を浸漬して硬化させた。得
られた結果を表2に示す。
[Table] Examples 9 to 17 Discoloration (D) in Table 2 was reacted in the same manner as in Examples 1 to 8, and after cooling, a photosensitizer was added to prepare a coating material composition. Examples 1-
The acrylic plate was immersed and cured in the same manner as in 8. The results obtained are shown in Table 2.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1(a) 1分子中に少なくとも3個の(メタ)アク
リロイルオキシ基を有する化合物30重量%以上
と1分子中に1〜2個のα,β−エチレン系不
飽和結合を有する化合物70重量%以下とからな
る単量体混合物(A), (b) 該単量体混合物(A)100重量部に対して 次の一般式 (式中,R1はH,炭素数1〜20のアルキル
基,フエニル基およびその誘導体またはハロゲ
ン原子,Xは−CONH−,
【式】−COO(CH2)m−, または−(CH2o−であり,R2,R3はそれぞれ
Hまたは炭素数1〜15のアルキル基,R4は炭
素数1〜15のアルキレン基,mは1〜20の整
数,nは0〜20の整数,YはH,NH4または
アルカリ金属原子を示す) 次の一般式 (式中,R1はH,炭素数1〜15のアルキル
基,COOY,ハロゲン原子またはフエニル基
およびその誘導体,R2はH,炭素数1〜15の
アルキル基,COOZ,ハロゲン原子またはフエ
ニル基およびその誘導体,R3はH,炭素数1
〜15のアルキル基,ハロゲン原子またはフエニ
ル基およびその誘導体,X,Y,Zはそれぞれ
H,NH4またはアルカリ金属原子を示す) または次の一般式 (式中,R4,R5はそれぞれH,炭素数1〜
15のアルキル基,ハロゲン原子またはフエニル
基およびその誘導体を示す) で表わされるスルホン酸モノマー、スルホン酸
塩モノマーまたはカルボン酸系モノマーよりな
る群から選ばれた少なくとも1種のモノマー,
無機微粒子および少なくとも1種のラジカル重
合しうるビニル単量体の混合物(B)0.01〜20重量
部,および (c) 該単量体混合物(A)100重量部に対して有機溶
剤(C)100〜2000重量部を混合してなる重合系
{(A)+(B)+(C)}を重合せしめた組成物(D)に,少
なくとも1種の光増感剤(E)を該単量体混合物(A)
100重量部に対して0.01〜6.0重量部配合してな
る耐摩耗性に優れた艷消し性被覆材組成物。 2 1分子中に少なくとも3個の(メタ)アクリ
ロイルオキシ基を有する化合物と1分子中に1〜
2個のα,β−エチレン系不飽和結合を有する化
合物からなる単量体混合物中の重合性不飽和基1
個当りの平均分子量が300以下であることを特徴
とする特許請求の範囲第1項記載の耐摩耗性に優
れた艷消し性被覆材組成物。 3 1分子中に少なくとも3個の(メタ)アクリ
ロイルオキシ基を有する化合物が次の一般式 (式中,X11,X12,X13,X22,X23…Xn2
Xn3,X14の内少なくとも3個はCH2=CH−
COO−基で残りは水酸基,アミノ基,アルキレ
ン基または置換されたアルキレン基等であり,n
は2〜5の整数である) で表わされる単量体の少なくとも1種を20重量%
以上含有することを特徴とする特許請求の範囲第
1項または第2項記載の耐摩耗性に優れた艷消し
性被覆材組成物。 4 1分子中に少なくとも3個の(メタ)アクリ
ロイルオキシ基を有する化合物がジペンタエリス
リトールトリアクリレート,ジペンタエリスリト
ールテトラアクリレート,ジペンタエリスリトー
ルペンタアクリレートまたはジペンタエリスリト
ールヘキサアクリレートより選ばれたものである
ことを特徴とする特許請求の範囲第1項,第2項
または第3項記載の耐摩耗性に優れた艷消し性被
覆材組成物。 5 1分子中に1〜2個のα,β−エチレン系不
飽和結合を有する化合物が1分子中に1個のアク
リロイルオキシ基を有し、側鎖に水酸基および/
または環状エーテル結合および/または鎖状エー
テル結合を有する化合物であることを特徴とする
特許請求の範囲第1項記載の耐摩耗性に優れた艷
消し性被覆材組成物。 6 スルホン酸モノマーまたはスルホン酸塩モノ
マ−またはカルボン酸系モノマーよりなる群から
選ばれる少なくとも1種のモノマ−が2−アクリ
ルアミド−2−メチルプロパンスルホン酸,2−
メタアクリルエタンスルホン酸ナトリウムまたは
3−メタアクリルプロパンスルホン酸ナトリウ
ム,アクリル酸,メタクリル酸またはクロトン酸
より選ばれたものであることを特徴とする特許請
求の範囲第1項記載の耐摩耗性に優れた艷消し性
被覆材組成物。 7 ビニル単量体の主成分がメタクリル酸メチル
であることを特徴とする特許請求の範囲第1項記
載の耐摩耗性に優れた艷消し性被覆材組成物。 8 無機微粒子が亜硫酸カルシウム,硫酸カルシ
ウム,二酸化ケイ素,酸化チタン,三酸化アンチ
モン,タルク,クレー,酸化アルミニウム,炭酸
カルシウム,カーボンブラツク,ニツケル粉,鉄
粉,亜鉛粉,銅粉,酸化第二鉄,酸化亜鉛,水酸
化アルミニウムから選ばれた少なくとも1種であ
ることを特徴とする特許請求の範囲第1項記載の
耐摩耗性に優れた艷消し性被覆材組成物。 9 無機微粒子の粒径がmμ〜100μであること
を特徴とする特許請求の範囲第1項または第8項
記載の耐摩耗性に優れた艷消し性被覆材組成物。 10 無機微粒子が二酸化ケイ素であることを特
徴とする特許請求の範囲第1項,第8項または第
9項記載の耐摩耗性に優れた艷消し性被覆材組成
物。 11 有機溶剤(C)が10%以下の水を含有すること
を特徴とする特許請求の範囲第1項記載の耐摩耗
性に優れた艷消し性被覆材組成物。
[Scope of Claims] 1(a) 30% by weight or more of a compound having at least three (meth)acryloyloxy groups in one molecule and one to two α,β-ethylenically unsaturated bonds in one molecule A monomer mixture (A) consisting of 70% by weight or less of a compound having the following general formula (A), (b) based on 100 parts by weight of the monomer mixture (A): (In the formula, R 1 is H, an alkyl group having 1 to 20 carbon atoms, a phenyl group and its derivatives, or a halogen atom, X is -CONH-,
[Formula] -COO(CH 2 ) m-, or -(CH 2 ) o -, R 2 and R 3 are each H or an alkyl group having 1 to 15 carbon atoms, and R 4 is an alkyl group having 1 to 15 carbon atoms. alkylene group, m is an integer from 1 to 20, n is an integer from 0 to 20, Y represents H, NH 4 or an alkali metal atom) following general formula (In the formula, R 1 is H, an alkyl group having 1 to 15 carbon atoms, COOY, a halogen atom or a phenyl group and its derivatives, R 2 is H, an alkyl group having 1 to 15 carbon atoms, COOZ, a halogen atom or a phenyl group) and its derivatives, R 3 is H, carbon number 1
~15 alkyl groups, halogen atoms or phenyl groups and their derivatives, X, Y, Z each represent H, NH 4 or an alkali metal atom) or the following general formula (In the formula, R 4 and R 5 are each H, carbon number 1 to
At least one monomer selected from the group consisting of sulfonic acid monomers, sulfonate monomers, or carboxylic acid monomers represented by 15 alkyl groups, halogen atoms, phenyl groups, and derivatives thereof,
0.01 to 20 parts by weight of a mixture (B) of inorganic fine particles and at least one radically polymerizable vinyl monomer, and (c) 100 parts by weight of an organic solvent (C) per 100 parts by weight of the monomer mixture (A). At least one photosensitizer (E) is added to the composition (D) obtained by polymerizing the polymerization system {(A) + (B) + (C)} of ~2000 parts by weight of the monomer. body mixture (A)
An erasable coating material composition with excellent abrasion resistance, which is blended in an amount of 0.01 to 6.0 parts by weight per 100 parts by weight. 2 Compounds having at least 3 (meth)acryloyloxy groups in one molecule and 1 to 1 to 1 in 1 molecule
Polymerizable unsaturated group 1 in a monomer mixture consisting of a compound having two α,β-ethylenically unsaturated bonds
2. The erasable coating material composition with excellent abrasion resistance according to claim 1, wherein the average molecular weight per piece is 300 or less. 3 A compound having at least three (meth)acryloyloxy groups in one molecule has the following general formula (In the formula, X 11 , X 12 , X 13 , X 22 , X 23 ...Xn 2 ,
At least three of Xn 3 and X 14 are CH 2 = CH−
COO- group and the rest are hydroxyl group, amino group, alkylene group, substituted alkylene group, etc., n
is an integer from 2 to 5) 20% by weight of at least one monomer represented by
The erasable coating material composition having excellent wear resistance according to claim 1 or 2, which contains the above. 4. The compound having at least three (meth)acryloyloxy groups in one molecule is selected from dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, or dipentaerythritol hexaacrylate. An erasable coating material composition with excellent wear resistance according to claim 1, 2, or 3, characterized by: 5 A compound having 1 to 2 α,β-ethylenically unsaturated bonds in one molecule has one acryloyloxy group in one molecule, and has a hydroxyl group and/or
or a compound having a cyclic ether bond and/or a chain ether bond, the erasable coating material composition having excellent wear resistance according to claim 1. 6 At least one monomer selected from the group consisting of sulfonic acid monomers, sulfonate monomers, or carboxylic acid monomers is 2-acrylamido-2-methylpropanesulfonic acid, 2-
Excellent abrasion resistance as set forth in claim 1, characterized in that it is selected from sodium methacrylethanesulfonate, sodium 3-methacrylpropanesulfonate, acrylic acid, methacrylic acid, or crotonic acid. Erasable dressing composition. 7. The erasable coating material composition with excellent abrasion resistance according to claim 1, wherein the main component of the vinyl monomer is methyl methacrylate. 8 Inorganic fine particles include calcium sulfite, calcium sulfate, silicon dioxide, titanium oxide, antimony trioxide, talc, clay, aluminum oxide, calcium carbonate, carbon black, nickel powder, iron powder, zinc powder, copper powder, ferric oxide, The erasable coating material composition with excellent wear resistance according to claim 1, characterized in that the composition is at least one selected from zinc oxide and aluminum hydroxide. 9. The erasable coating material composition with excellent wear resistance according to claim 1 or 8, wherein the inorganic fine particles have a particle size of mμ to 100μ. 10. The erasable coating material composition with excellent wear resistance according to claim 1, 8, or 9, wherein the inorganic fine particles are silicon dioxide. 11. The erasable coating material composition with excellent wear resistance according to claim 1, wherein the organic solvent (C) contains 10% or less of water.
JP58008179A 1983-01-21 1983-01-21 Matte-finishing coating material composition having excellent wear resistance Granted JPS59135266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58008179A JPS59135266A (en) 1983-01-21 1983-01-21 Matte-finishing coating material composition having excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58008179A JPS59135266A (en) 1983-01-21 1983-01-21 Matte-finishing coating material composition having excellent wear resistance

Publications (2)

Publication Number Publication Date
JPS59135266A JPS59135266A (en) 1984-08-03
JPH033712B2 true JPH033712B2 (en) 1991-01-21

Family

ID=11686082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58008179A Granted JPS59135266A (en) 1983-01-21 1983-01-21 Matte-finishing coating material composition having excellent wear resistance

Country Status (1)

Country Link
JP (1) JPS59135266A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415482Y2 (en) * 1985-07-17 1992-04-07
JPH07110531B2 (en) * 1988-08-01 1995-11-29 大日本印刷株式会社 Suede-like forming sheet and method for producing the same
JP2560795B2 (en) * 1988-09-16 1996-12-04 大日本印刷株式会社 Molded sheet and method for manufacturing molded article using the same
JPH1160427A (en) * 1997-08-14 1999-03-02 San Medical Kk Curable composition
US7072115B2 (en) 2002-03-26 2006-07-04 Keiwa Inc. Light diffusion sheet and backlight unit using the same

Also Published As

Publication number Publication date
JPS59135266A (en) 1984-08-03

Similar Documents

Publication Publication Date Title
CN102471453B (en) Polycarbonates having a scratch-resistant coating and having high transparency, method for the production thereof, and use thereof
JP3864605B2 (en) UV-curable coating resin composition
CN1206288C (en) UV curable paint compositions and method of making and applying same
CN102712783B (en) Plastic substrates having a scratch-resistant coating, in particular housings of electronic devices, having high transparency, method for the production thereof, and use thereof
JP5658869B2 (en) Hard coat composition and molded article with hard coat layer formed
CA1205238A (en) Delustering coating composition excellent in abrasion resistance
WO2008098872A1 (en) High refractive index hard coat
JP2004307735A (en) Liquid hardenable composition, hardened film, and antistatic laminate
TW205063B (en)
JPS6328094B2 (en)
KR100199406B1 (en) Electrically-insulating uv-curable hard coating composition
JP2005068369A (en) Liquid state curable composition, cured film and laminated material for static prevention
JPS5951920A (en) Flat coating composition excellent in abrasion resistance
JP2017171726A (en) Curable composition, cured product thereof, and laminate
JPH033712B2 (en)
JPH0113744B2 (en)
JPS6328095B2 (en)
JP4299513B2 (en) Coating composition and article
JP2009263410A (en) Active energy ray-curing type resin composition, active energy ray-curable coating material, and molded article
JP2006348069A (en) Liquid curable composition and its cured film
JPS59133268A (en) Matte coating material composition having excellent wear resistance
JP3887835B2 (en) Antistatic hard coat agent and antistatic resin molding
JPH09328522A (en) Fine silica particle having photopolymerization initiator at the surface thereof and film-forming method using the same
JPS62236832A (en) Coating composition of excellent adhesion
JPH0694194B2 (en) Plastic molded product with excellent conductivity