JPH0337115Y2 - - Google Patents

Info

Publication number
JPH0337115Y2
JPH0337115Y2 JP1982119447U JP11944782U JPH0337115Y2 JP H0337115 Y2 JPH0337115 Y2 JP H0337115Y2 JP 1982119447 U JP1982119447 U JP 1982119447U JP 11944782 U JP11944782 U JP 11944782U JP H0337115 Y2 JPH0337115 Y2 JP H0337115Y2
Authority
JP
Japan
Prior art keywords
sensor
output
signal
receiving device
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982119447U
Other languages
Japanese (ja)
Other versions
JPS5923898U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11944782U priority Critical patent/JPS5923898U/en
Publication of JPS5923898U publication Critical patent/JPS5923898U/en
Application granted granted Critical
Publication of JPH0337115Y2 publication Critical patent/JPH0337115Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は材料試験装置に関し、特に、大形構造
物の各部に多数のセンサを配設して各部のひず
み、変位等を同時測定する材料試験機に実施する
に適したものである。
[Detailed description of the invention] The present invention relates to a material testing device, and is particularly suitable for use in material testing equipment that simultaneously measures strain, displacement, etc. of each part of a large structure by arranging a large number of sensors in each part of the structure. It is something that

従来、この種の大がかりな試験においては多数
のセンサの出力信号を出力インピーダンスの低い
増幅器を用いてインピーダンス変換し、中央の制
御装置に至る長い距離をケーブルにより伝送して
いたが、それでもなお、伝送ケーブルからノイズ
の入る問題が避けられず、更に、多数本のケーブ
ルを引廻すため煩雑になり、伝送信号が伝送中に
減衰するため測定精度が低下するなどの欠点があ
つた。
Traditionally, in this type of large-scale testing, the output signals of numerous sensors were impedance-converted using amplifiers with low output impedance, and then transmitted over long distances via cables to a central control unit. The problem of noise entering from the cables cannot be avoided, and furthermore, there are disadvantages such as the complexity of routing a large number of cables, and the fact that the transmission signal is attenuated during transmission, resulting in a decrease in measurement accuracy.

本考案の目的は、上記の諸欠点を一挙に解決
し、構成も簡素な材料試験装置を提供することに
ある。
An object of the present invention is to solve the above-mentioned drawbacks all at once and to provide a material testing device with a simple configuration.

本考案は、搬送波発振器の出力が入力され、試
験材料の荷重、変位等の物理量を電気信号に変換
するセンサと、このセンサの出力信号及び搬送波
発振器の出力を高周波変調し電波により送信する
送信装置と、センサの設置場所から離れた場所に
設置され、送信装置からの電波を受信し、復調す
る受信装置と、この受信装置により復調された搬
送波発振器の出力の大きさを基準電圧と比較して
偏差を得る手段と、受信装置により復調された搬
送センサの出力信号に上記の偏差を乗じる乗算器
を有し、送信装置から受信装置へ無線伝送された
センサ出力に関する信号が感度較正されるよう構
成したことによつて特徴づけられる。
The present invention consists of a sensor that receives the output of a carrier wave oscillator and converts physical quantities such as load and displacement of the test material into electrical signals, and a transmitter that modulates the output signal of this sensor and the output of the carrier wave oscillator at a high frequency and transmits it by radio waves. A receiving device is installed at a location far from the sensor installation location and receives and demodulates the radio waves from the transmitting device, and the magnitude of the output of the carrier wave oscillator demodulated by this receiving device is compared with a reference voltage. It has means for obtaining a deviation and a multiplier that multiplies the output signal of the carrier sensor demodulated by the receiving device by the deviation, and is configured so that the signal regarding the sensor output wirelessly transmitted from the transmitting device to the receiving device is calibrated for sensitivity. characterized by what has been done.

以下、本考案の実施例を図面に基いて明する。 Hereinafter, embodiments of the present invention will be explained based on the drawings.

第1図にセンサ側装置の回路ブロツク図を示
し、通常この装置は複数個並用される。第2図に
中央制御部側の回路ブロツク図を示し、通常は1
台だけ用いられる。なお、中央制御部から各セン
サ側へ指令信号等を発する装置は本考案の要旨に
関係がないので省略する。
FIG. 1 shows a circuit block diagram of a sensor-side device, and normally a plurality of this device is used in parallel. Figure 2 shows the circuit block diagram of the central control unit.
Only the stand is used. Note that the device for issuing command signals and the like from the central control unit to each sensor side is not related to the gist of the present invention and will therefore be omitted.

ロードセル1は材料の応力を電気信号に変換
し、差動トランス2に材料の変位を電気信号に変
換する。搬送波発信器3は、例えば数百Hzないし
数千Hzの搬送波を出力し、この搬送信号が励振ア
ンプ4及び5により増幅されてロードセル1及び
差動トランス2を直接駆動するとともに、アンプ
6により増幅されて基準信号、信号Cとなる。ロ
ードセル1の出力及び差動トランス2の出力は、
それぞれ検出アンプ7及び8により増幅されて信
号A及び信号Bを得る。変調器9は信号A,B,
Cを時分割制御により直列信号に変換し、高調波
変調する。送信器10はこれをアンテナから送信
する。
The load cell 1 converts the stress of the material into an electric signal, and the differential transformer 2 converts the displacement of the material into an electric signal. The carrier wave oscillator 3 outputs a carrier wave of, for example, several hundred Hz to several thousand Hz, and this carrier signal is amplified by the excitation amplifiers 4 and 5 to directly drive the load cell 1 and the differential transformer 2, and is also amplified by the amplifier 6. and becomes the reference signal, signal C. The output of load cell 1 and the output of differential transformer 2 are:
A signal A and a signal B are obtained by being amplified by detection amplifiers 7 and 8, respectively. The modulator 9 receives signals A, B,
C is converted into a serial signal by time division control and subjected to harmonic modulation. The transmitter 10 transmits this from an antenna.

中央制御部は、送信器10の電波を、まず受信
器11が受信し、復調器12が、これを復調し、
信号A′,B′,C′の信号に分離する。信号C′はア
ンアンプ13で増幅され、絶対値整流回路等の交
流直流変換器14により直流に変換され、基準電
圧15と比較され、その偏差成分が掛算器22及
び23に乗数として入力される。信号A′はアン
プ16で増幅され、復調器18にて信号C′を参照
信号として復調され、フイルタ20により荷重に
比例した直流信号が取り出され、掛算器22に被
乗数として入力される。同様にして信号B′もア
ンプ17、復調器19及びフイルタ21により変
位に比例した直流信号が取り出され、掛算器23
に被乗数として入力される。
In the central control unit, the receiver 11 first receives the radio waves from the transmitter 10, and the demodulator 12 demodulates the radio waves.
Separate into signals A′, B′, and C′. The signal C' is amplified by an amplifier 13, converted to DC by an AC/DC converter 14 such as an absolute value rectifier circuit, compared with a reference voltage 15, and its deviation component is input to multipliers 22 and 23 as a multiplier. Signal A' is amplified by amplifier 16, demodulated by demodulator 18 using signal C' as a reference signal, and filter 20 extracts a DC signal proportional to the load, which is input to multiplier 22 as a multiplicand. Similarly, a DC signal proportional to the displacement is extracted from the signal B' by the amplifier 17, the demodulator 19, and the filter 21, and the multiplier 23
is input as the multiplicand.

信号Cは、センサが設置されている場所の周囲
温度その他による感度変動や、電波状態の不安定
さに起因する感度変動などを較正するために設け
られているもので、受信側に設けられた基準電圧
15と信号Cの受信信号の大きさの偏差を、信号
A及び信号Bの受信信号に乗ずることにより、信
号A及びBの伝送中における減衰分を補償し、感
度較正を行つている。
Signal C is provided to calibrate sensitivity fluctuations due to ambient temperature and other factors in the location where the sensor is installed, and sensitivity fluctuations due to unstable radio wave conditions. By multiplying the received signals of the signals A and B by the deviation between the reference voltage 15 and the magnitude of the received signals of the signal C, the attenuation during transmission of the signals A and B is compensated for and sensitivity calibration is performed.

以上説明したように、本考案によれば、試験装
置のセンサと中央制御部との間を電波を用いて送
受信するので、センサと中央制御部との間の接続
コードが不要になり、センサ設置場所の制約がな
くその設置が容易になるとともに、伝送コードを
使用した際に問題とされていたコードへのノイズ
誘起によるSN比低下を解消できる。しかも、セ
ンサに入力する搬送波発振器出力の復調出力の大
きさを基準信号と比較して、その偏差をもとに、
受信側に無線伝送されたセンサ出力に関する信号
の感度を較正するので、センサの遠近やその他の
感度変動要因を補正することができ、高精度の試
験データを得ることができる。さらに搬送波発振
器自体の振幅変動による感度変動をも較正するこ
とができるといつた利点もある。
As explained above, according to the present invention, since radio waves are used to transmit and receive data between the sensors of the test equipment and the central control unit, there is no need for a connection cord between the sensors and the central control unit, and the sensor installation There are no restrictions on location, making it easy to install, and it also eliminates the problem of a reduction in SN ratio due to noise induced in the code, which was a problem when using a transmission code. Moreover, the magnitude of the demodulated output of the carrier wave oscillator output input to the sensor is compared with the reference signal, and based on the deviation,
Since the sensitivity of the signal related to the sensor output wirelessly transmitted to the receiving side is calibrated, it is possible to correct the distance of the sensor and other sensitivity fluctuation factors, and it is possible to obtain highly accurate test data. Another advantage is that sensitivity fluctuations due to amplitude fluctuations of the carrier wave oscillator itself can be calibrated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はいずれも本発明実施例を示
す回路ブロツク図であつて、第1図はそのセンサ
側を示し、第2図は中央制御部側を示す。 1,2……センサ、3……搬送波発信器、9…
…変調器、10……送信器、11……受信器、1
2……復調器、14……交流・直流変換器、15
……基準電圧、22,23……乗算器。
1 and 2 are circuit block diagrams showing an embodiment of the present invention, with FIG. 1 showing the sensor side and FIG. 2 showing the central control section side. 1, 2...sensor, 3...carrier wave oscillator, 9...
...Modulator, 10...Transmitter, 11...Receiver, 1
2...Demodulator, 14...AC/DC converter, 15
...Reference voltage, 22, 23... Multiplier.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 搬送波発振器の出力が入力され、試験材料の荷
重、変位等の物理量を電気信号に変換するセンサ
と、このセンサの出力信号及び上記搬送波発振器
の出力を高周波変調し電波により送信する送信装
置と、上記センサの設置場所から離れた場所に設
置され、上記送信装置からの電波を受信し、復調
する受信装置と、この受信装置により復調された
上記搬送波発振器の出力の大きさを基準電圧と比
較して偏差を得る手段と、上記受信装置により復
調された上記センサの出力信号に上記偏差を乗じ
る乗算器を有し、上記送信装置から上記受信装置
へ無線伝送されたセンサ出力に関する信号が感度
較正されるよう構成された材料試験装置。
a sensor that receives the output of the carrier wave oscillator and converts physical quantities such as load and displacement of the test material into electrical signals; a transmitter that modulates the output signal of this sensor and the output of the carrier wave oscillator at a high frequency and transmits it by radio waves; A receiving device installed at a location away from the sensor installation location receives and demodulates the radio waves from the transmitting device, and the magnitude of the output of the carrier wave oscillator demodulated by this receiving device is compared with a reference voltage. and a multiplier for multiplying the output signal of the sensor demodulated by the receiving device by the deviation, and the signal regarding the sensor output wirelessly transmitted from the transmitting device to the receiving device is calibrated for sensitivity. Material testing equipment configured as follows.
JP11944782U 1982-08-04 1982-08-04 material testing equipment Granted JPS5923898U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11944782U JPS5923898U (en) 1982-08-04 1982-08-04 material testing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11944782U JPS5923898U (en) 1982-08-04 1982-08-04 material testing equipment

Publications (2)

Publication Number Publication Date
JPS5923898U JPS5923898U (en) 1984-02-14
JPH0337115Y2 true JPH0337115Y2 (en) 1991-08-06

Family

ID=30274129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11944782U Granted JPS5923898U (en) 1982-08-04 1982-08-04 material testing equipment

Country Status (1)

Country Link
JP (1) JPS5923898U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228211U (en) * 1985-08-01 1987-02-20
JP2582160Y2 (en) * 1992-03-23 1998-09-30 愛知機械工業株式会社 Belt block distortion measuring device
JP5076420B2 (en) * 2006-09-22 2012-11-21 株式会社島津製作所 Measuring device and material testing machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577000A (en) * 1980-06-17 1982-01-13 Fujitsu Ltd Transmission line loss correcting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577000A (en) * 1980-06-17 1982-01-13 Fujitsu Ltd Transmission line loss correcting system

Also Published As

Publication number Publication date
JPS5923898U (en) 1984-02-14

Similar Documents

Publication Publication Date Title
US4225851A (en) Self-calibrated subcarrier telemetry system
KR830003103A (en) Range selectable non-contact data preparation system for rotary machines
WO2017200117A1 (en) Wireless temperature measuring apparatus using saw device
US6617840B2 (en) Wireless alternating current phasing voltmeter
JPH0337115Y2 (en)
CN105259397A (en) Electronic voltage transformer
US4355894A (en) Method and apparatus for correcting for meteorological error in distance measurements using light waves
US6223138B1 (en) Carrier frequency measuring method and apparatus
US3290930A (en) Acoustic wire strain gauges
US5397983A (en) Vibration based deenergized cable detector and method
EP0041856A1 (en) Telemetry apparatus
JPH10269487A (en) System for measuring distribution of physical quantity
SU687605A1 (en) Device for remote measuring of amplitude-frequency characteristics of communication channels
JPS5690215A (en) Ultrasonic measurement device
SU985809A1 (en) Signal receiving/ transmission device
JPS59195166A (en) Rough measuring method of frequency
JPS5854499A (en) Values detector for rotor
JPH0577707U (en) Belt block strain measuring device
JPH0346346Y2 (en)
SU1320654A1 (en) Device for measuring deformation of object rotating portion
JP2921778B2 (en) Data transmission method near high-voltage charging section and abnormal approach warning system to high-voltage charging section
JPS6010137Y2 (en) Radio line adjustment device for telemeter
JPS5858488A (en) Detector for object buried in ground
JPS6488144A (en) Humidity measuring instrument
SU1476130A1 (en) Apparatus for monitoring the internal strain and mobility of rock mass