JPH0337057B2 - - Google Patents

Info

Publication number
JPH0337057B2
JPH0337057B2 JP60136918A JP13691885A JPH0337057B2 JP H0337057 B2 JPH0337057 B2 JP H0337057B2 JP 60136918 A JP60136918 A JP 60136918A JP 13691885 A JP13691885 A JP 13691885A JP H0337057 B2 JPH0337057 B2 JP H0337057B2
Authority
JP
Japan
Prior art keywords
main rod
dynamic vibration
vibration absorber
torsion
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60136918A
Other languages
Japanese (ja)
Other versions
JPS622031A (en
Inventor
Matsuo Tsuji
Isamu Kano
Tadayoshi Tsumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP13691885A priority Critical patent/JPS622031A/en
Publication of JPS622031A publication Critical patent/JPS622031A/en
Publication of JPH0337057B2 publication Critical patent/JPH0337057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、構造物の防振装置に関し、更に詳し
くは、長大橋の桁又は主塔などの風によるカルマ
ン振動を最小限に押えるための片持ち式動吸振器
に関する。 〔従来の技術〕 従来この種の技術として、重錘を鉛直ばねと油
圧ダンパーで支持した(RIVER WHARFE)歩
道橋の形式(第6図参照)あるいは特願昭57−
216999号(減衰器として粘弾性体又は粘性体を使
用した板ばね式動吸振器、第7図参照)があつ
た。 第6図において、3はこの動吸振器の重錘42
はピストンロツドで、ナツト44によつて重錘3
の上部に固定されており、ピストンロツト42の
他端には、オイルダンパー6がオイル40の中に
挿入されている。オイル40はフレーム17の中
に閉じ込められている。フレーム17と重錘3の
間にはコイルバネ18が挿入されており、重錘3
の下端にはスライド板41がねじ45によつてフ
レーム17の円筒部の外周に摺動出来るように遊
嵌されている。43はフツクであり、重錘3の運
搬時に使用する。以上のように構成された歩道橋
用の動吸振器は、ボルト36によつて被制振橋等
に固定される。 今上記被制振橋などに周期的振動が作用すれ
ば、重錘3は上下に共振し、オイルダンパー6は
オイル40をかくはんするので粘性抵抗を受け、
振動を減衰させるが、フレーム17とスライド板
41との間の摩擦はさけられない。 第7図は特願昭57−21699号による従来の動吸
振器の一例であり、aは側面図、bは平面図、c
は正面図で、板バネを2枚使用した場合を示す。 図において、1,1′は板バネで、間隔をとつ
て互に平行に配設されており、その1端部はバネ
固定金具2に固定されている。板バネ1,1′の
他端部には夫々重錘3,3′が固定される。重錘
3,3′は、夫々板バネ1,1′の長手方向に設け
られた長孔4,4′中を重錘取付けボルト5,
5′を移動させて所望の位置に調整固定すること
が出来る。6は1個以上の粘弾性体ダンパー又は
粘性体ダンパー(以下単に粘弾性体ダンパーと記
す)で、粘弾性体に接着された金属板7,,7′を
介して板バネ1,1′に夫々ダンパー取付ボルト
8,8′によつて固定される。これは粘弾性体を
板バネ1,1′間にはさみこむ方法をとつたもの
で、剪断変形型で使用する。粘弾性体としては減
衰能特性の明確なものを使用している。 上記の如き構成の動吸振器は、制振すべき構造
物9にバネ固定金具2の部分で固定されるが、構
造物に直接固定される場合と構造物に固定された
動吸振器固定部材(第6図に図示せず)を介して
固定される場合とある。 第8図は従来技術の動吸振器の基本諸元を示す
説明図である。この基本諸元の関係式は表−1に
示されるようになる。
[Industrial Application Field] The present invention relates to a vibration isolator for structures, and more particularly to a cantilever type dynamic vibration absorber for minimizing wind-induced Karman vibrations in girders or main towers of long bridges. . [Prior art] Conventional technologies of this type include the type of pedestrian bridge (RIVER WHARFE) in which a weight is supported by a vertical spring and a hydraulic damper (see Figure 6), or the patent application 1983-
No. 216999 (plate spring type dynamic vibration absorber using a viscoelastic or viscous material as a damper, see Figure 7) was published. In Fig. 6, 3 is the weight 42 of this dynamic vibration absorber.
is a piston rod, and a weight 3 is attached by a nut 44.
An oil damper 6 is inserted into the oil 40 at the other end of the piston rod 42 . Oil 40 is confined within frame 17. A coil spring 18 is inserted between the frame 17 and the weight 3.
A slide plate 41 is loosely fitted to the lower end of the frame 17 by screws 45 so as to be able to slide around the outer periphery of the cylindrical portion of the frame 17. 43 is a hook, which is used when transporting the weight 3. The dynamic vibration absorber for a pedestrian bridge configured as described above is fixed to a bridge to be damped or the like with bolts 36. Now, if periodic vibrations act on the bridge to be damped, etc., the weight 3 resonates vertically, and the oil damper 6 stirs the oil 40, so it receives viscous resistance.
Although vibrations are damped, friction between the frame 17 and the slide plate 41 cannot be avoided. Figure 7 shows an example of a conventional dynamic vibration absorber according to Japanese Patent Application No. 57-21699, in which a is a side view, b is a plan view, and c is a side view.
is a front view and shows the case where two leaf springs are used. In the figure, reference numerals 1 and 1' denote leaf springs, which are arranged parallel to each other at intervals, and one end of which is fixed to a spring fixing fitting 2. Weights 3 and 3' are fixed to the other ends of the leaf springs 1 and 1', respectively. The weights 3, 3' are fitted with weight mounting bolts 5, 4' through elongated holes 4, 4' provided in the longitudinal direction of the leaf springs 1, 1', respectively.
5' can be moved and adjusted and fixed at a desired position. Reference numeral 6 denotes one or more viscoelastic dampers or viscous dampers (hereinafter simply referred to as viscoelastic dampers), which apply pressure to the leaf springs 1, 1' via metal plates 7, 7' bonded to the viscoelastic body. They are fixed by damper mounting bolts 8 and 8', respectively. This uses a method in which a viscoelastic body is sandwiched between leaf springs 1 and 1', and is used in a shear deformation type. As the viscoelastic material, one with clear damping ability characteristics is used. The dynamic vibration absorber configured as described above is fixed to the structure 9 to be damped by the spring fixing fitting 2, but in some cases it is directly fixed to the structure, and in other cases the dynamic vibration absorber fixing member is fixed to the structure. (not shown in FIG. 6). FIG. 8 is an explanatory diagram showing the basic specifications of a conventional dynamic vibration absorber. The relational expression of these basic specifications is shown in Table-1.

【表】【table】

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように構成された従来の装置は、次のよ
うな問題があつた。 (1) 第7図に示す従来例では、大規模な橋梁桁な
どの工事に使用するとき、板バネが大形になり
製作上の難点があつた。 (2) 第6図に示す従来例では、構成の中に摩擦部
分があり初期動作に影響を与えた。 (3) 第7図に示す従来例では、重錘3,3′の移
動作業がめんどうである。 (4) 第7図に示す従来例では、鉛直振動用装置と
して使う場合は、重錘3,3′により板バネに
「初期撓み」が生じ、この補償が困難であつた。 〔問題点を解決するための手段〕 本発明は、上記のような問題を解決するために
次のような手段を用いた。 すなわち、フレームに固定されたほぼ水平な軸
と、該軸に一端を軸支された主桿と、該主桿に取
付けられた重錘と、主桿をフレームに対して振動
可能に保持するばね部材と、主桿の振動を減衰す
るように主桿とフレームとの間に設けた減衰器と
からなる片持ち式動吸振器において、 ばね部材を、前記軸とほぼ同軸に配置したねじ
り式ばねとした。 ここで、主桿に対する重錘の位置を変更する取
付け位置調整機構を備えれば、該機構により主桿
の共振周波数を容易に調整可能とでき、また、ね
じり式ばねのフレーム側取付け位置を前記軸まわ
りに回転するねじり角度調整機構を備えれば、該
機構により、主桿の静止位置を容易に調整するこ
とができる。さらに、減衰器を、主桿の振動によ
り剪断力を受けるように配置したごむ粘弾性体と
してもよい。 〔作用〕 本発明の動吸振器を取付けて構造物に振動が発
生すると、その振動はベース、フレーム、主回転
軸、ばねを介して主桿に伝えられるが、主桿及び
構造物の振動は粘弾性体に吸収されて、構造物の
振動を可及的に減衰させる。 〔実施例〕 第1図a,bは本発明の実施例を示す平面図及
び側面図、第2図はその原理図である。先づ第2
図により本発明の原理を説明する。一端をフレー
ム17の軸受に嵌合した主回転軸12に滑合し、
他端に重錘3を摺動出来るように装着した主桿1
0は、主回転軸12の外側に装着されたコイル捩
りばね18に結合され、このコイル捩りばね18
はフレーム17に結合されて弾性的に支持されて
いる。一方補助桿25はフレーム17に設けられ
た補助回転軸23を回転中心として、粘弾性体6
を介して主桿10と連結されている。 今、質量m1、そのバネ常数R1なる制振を要す
る構造物に第2図の装置に取付けたとする。重錘
3の質量をm2、バネ常数をR2、粘弾性体6の粘
性減衰係数をCとし、この系に周期的外力F=
Fosinptが働いた場合、m1,m2の変位をX1,X2
として、シンボルを用いて示せば第4図のように
表せる。 ここで、F0はばねR1に加わつている初期力、
Pは外力の角振動数である。 ところで、本発明が解決しようとする問題の1
つは、構造物の振幅X1を最小限に押え込み、振
動を減衰させることである。第4図に示した本発
明に係る系のX1に関する理論式は下記のように
表わされることが知られている。 (X1/Xst)2=4μ2γ2+(γ2−δ22/4μ2γ
2(γ2−1−βγ22+〔βδ2γ2−(γ2−1)(γ2
−δ2)〕2…〔1〕 但し、Xst=F0/k1は力F0による主振動系の静
たわみ ω2=√2 2は動吸振器の固有角振動数 β=m2/m1は動吸振器と主質量の質量比(mass
ratio) δ=ω2/ωoは動吸振器と主振動系の固有角振動
数の比 γ=P/ωoは外力の振動数と主振動系の固有角
振動数の比 ここで減衰はμ=c/2m2ωoによつて定められ
る。すなわち強制振幅X1は、δ,β,μなどの
パラメータが与えられゝば、種々の振動数比γに
対して〔1〕式を用いて求めることができる。第
5図から、Cc=2m2ωo=臨界減衰で、C/Cc=0
=μであり、μ=0.10のときが最も良い動吸振器
の条件であることがわかる。 以上は、本発明の原理と、この原理の背景とな
つている理論の要約を示した。第1図はその具体
例であり、実際には使用現場の条件、取扱の簡便
さ、製造原価などを考慮して開発されたものであ
る。 第1図において、10は主回転軸12と滑らか
に嵌合し、重錘3,3′が摺動出来るように構成
した主桿である。主桿10にはコイル捩りばね1
8,18′の片側が固着され、他端は各々左巻又
は右巻しながら主回転軸12に固着されている。
今主回転軸12を固定すれば、主桿10は主回転
軸12を支点としてコイル捩りばね18,18′
の力をかりて扇形にかつ弾性的に振動できる。 一方、補助桿25の一端は、上板19上に固着
された台22,22′に軸承24,24′を介して
回動可能に装着された補助回転軸23に嵌合し、
他端は粘弾性体6を介して主桿10に連結されて
いるので、重錘3,3′の上下方向の振動と連動
する。このとき粘弾性体6は、重錘3,3′の運
動エネルギーを吸収し、熱エネルギーに変換して
発散させるので、振巾は拡大されることなく安定
する。又、粘弾性体6は、ピン26,27によつ
て補助桿へ、ピン28,29によつて主桿10に
係合されている平行桿30,30′,31,3
1′間にサンドイツチ状に取り付けられているの
で、主桿10が上下に振動すると平行四辺形状に
せん断変形し、運動エネルギーを熱エネルギーに
変換する。 コイル捩りばね18、18′は主桿10の両側
に、一端を主桿10に他端を主回転軸12に巻き
付くような形でコンパクトに取り付けられている
が、先に原理説明の項で記述したように、このコ
イル捩りばね18,18′の強弱と、重錘3,
3′の大小及びその固定位置ならびに粘弾性体6
の粘性係数等のパラメータを調節することによつ
て、被制振構造物の固有振動数に対応して、制振
効果を発揮することが出来る。しかしながら、通
常は主桿10の上をスライド出来る重錘3,3′
の位置を最大の効果を発揮するように選び、固定
ボルト36によつて固定して使用する。 又第1図bの状態で横棒32を抜き取ると主桿
10が右下りに傾斜する。これではバランスも悪
いし、機能も十分発揮出来ない。そこで、例えば
主桿10の左端部に挿入されている主回転軸12
の片側にキー13を介して、扇形のウオームホイ
ール14と、フレーム17に設けた軸受に支持さ
れたウオーム15とを噛合わせ、このアオーム1
5を左廻りに回転させれば、そのトルクは上記の
ように右下りに傾斜した主桿10に対して、ウオ
ーム15→ウオームホイール14→キー13→主
回転軸12→コイル捩りばね18,18′→主桿
10と伝達され、主桿10を水平位置に複帰させ
ることが出来る。この場合他の駆動機構を設けて
もよい。 35はベースであり、フレーム17及び支持枠
33,33′と一体になつている。そして、付属
品であるボルト36によつて、被制振構造物に、
その振動力向と、重錘3,3′の振動方向を合せ、
かつ水平な橋桁においては、例えば第1図bのよ
うにベース35を下に固定して使用する。取付け
の方向は、対象となる構造物の形や振動方向及び
その環境を見ながら制振出来る位置を選ぶように
する。風向が変るごとに強制振動の向が変化する
ことがわかつている場合には、取付位置が風向と
連動するような装置を併用すれば良い。 第3図は本発明の原理を応用して出来る他の原
理図である。a図は、粘弾性体のかわりに粘性抵
抗を有するピストンを主桿10と補助桿25の間
に斜めに取付けた例である。b図は、コイル捩り
ばね18″を主桿の中央部下向きに装着した例で
ある。c図は粘弾性体6の取付位置を主桿10と
ベース35との間に取付けたものである。d図
は、粘弾性体6を主回転軸12の左方に延長した
主桿と、補助桿の間に設けてもよいことを示す一
例である。 なおこのような実施例に示す装置の重錘と被制
振構造物の質量比は1/200くらいである。 〔発明の効果〕 以上の記述によつて明らかなように、本発明に
よる片持ち式動吸振器によれば、長大橋の建設途
中又は建設後における橋桁や主塔などに当る風に
よるカルマン渦、又はその他の原因の強制振動に
よる共振破壊を防止出来るばかりでなく、幅広い
固有振動数の変化に対応でき、更に作業員の恐怖
感を除去出来るので安心して工事を進行したり、
構造物を使用することが出来る又コイル捩りばね
と粘弾性体をコンパクトに装着したことにより全
体が小型になつたので、挾い場所にも装着出来
る。さらにこの発明は、大型構造物ばかりでな
く、小型の建築作業にも応用出来る。又固有振動
数の判明している建物等に用いれば他の強制振動
による損壊を防止出来る。
The conventional device configured as described above has the following problems. (1) In the conventional example shown in Fig. 7, when used for construction work such as large-scale bridge girders, the leaf spring became large and had manufacturing difficulties. (2) In the conventional example shown in FIG. 6, there was a frictional part in the structure, which affected the initial operation. (3) In the conventional example shown in FIG. 7, moving the weights 3 and 3' is troublesome. (4) In the conventional example shown in FIG. 7, when used as a vertical vibration device, "initial deflection" occurs in the leaf spring due to the weights 3 and 3', and it is difficult to compensate for this. [Means for Solving the Problems] The present invention uses the following means to solve the above problems. In other words, a substantially horizontal shaft fixed to the frame, a main rod having one end pivotally supported on the shaft, a weight attached to the main rod, and a spring that holds the main rod so that it can vibrate relative to the frame. In a cantilever type dynamic vibration absorber consisting of a member and a damper provided between the main rod and the frame to damp vibrations of the main rod, the spring member is a torsion type spring arranged approximately coaxially with the axis. And so. Here, if a mounting position adjustment mechanism for changing the position of the weight with respect to the main rod is provided, the resonant frequency of the main rod can be easily adjusted by the mechanism, and the mounting position of the torsion spring on the frame side can be adjusted as described above. If a torsion angle adjustment mechanism that rotates around the axis is provided, the resting position of the main rod can be easily adjusted by the mechanism. Furthermore, the damper may be a rubber viscoelastic body arranged so as to receive shearing force due to the vibration of the main rod. [Function] When the dynamic vibration absorber of the present invention is installed and vibration occurs in the structure, the vibration is transmitted to the main rod via the base, frame, main rotating shaft, and spring, but the vibration of the main rod and structure is It is absorbed by the viscoelastic body and dampens the vibrations of the structure as much as possible. [Embodiment] FIGS. 1a and 1b are a plan view and a side view showing an embodiment of the present invention, and FIG. 2 is a diagram of its principle. first second
The principle of the present invention will be explained with reference to the drawings. One end is slidably fitted to the main rotating shaft 12 fitted into a bearing of the frame 17,
Main rod 1 with a weight 3 attached to the other end so that it can slide
0 is coupled to a coil torsion spring 18 mounted on the outside of the main rotating shaft 12, and this coil torsion spring 18
is connected to the frame 17 and supported elastically. On the other hand, the auxiliary rod 25 rotates around the auxiliary rotating shaft 23 provided on the frame 17, and rotates around the viscoelastic body 6.
It is connected to the main rod 10 via. Now, suppose that the apparatus shown in FIG. 2 is attached to a structure that requires vibration damping and has a mass m 1 and a spring constant R 1 . The mass of the weight 3 is m 2 , the spring constant is R 2 , the viscous damping coefficient of the viscoelastic body 6 is C, and a periodic external force F=
When Fosinpt works, the displacements of m 1 and m 2 are converted to X 1 and X 2
If it is shown using symbols, it can be expressed as shown in Fig. 4. Here, F 0 is the initial force applied to spring R 1 ,
P is the angular frequency of the external force. By the way, one of the problems that the present invention attempts to solve is
The first is to suppress the amplitude X 1 of the structure to a minimum and damp the vibration. It is known that the theoretical formula regarding X 1 of the system according to the present invention shown in FIG. 4 can be expressed as follows. (X 1 /Xst) 2 = 4μ 2 γ 2 + (γ 2 − δ 2 ) 2 /4μ 2 γ
22 −1−βγ 2 ) 2 + [βδ 2 γ 2 −(γ 2 −1) (γ 2
−δ 2 )] 2 … [1] However, Xst=F 0 /k 1 is the static deflection of the main vibration system due to force F 0 ω 2 =√ 2 2 is the natural angular frequency of the dynamic vibration absorber β = m 2 / m 1 is the mass ratio between the dynamic vibration absorber and the main mass (mass
ratio) δ=ω 2o is the ratio of the natural angular frequency of the dynamic vibration reducer and the main vibration system γ=P/ω o is the ratio of the frequency of the external force and the natural angular frequency of the main vibration system. Here, the damping is It is determined by μ=c/2m 2 ω o . That is, if parameters such as δ, β, μ, etc. are given, the forced amplitude X 1 can be determined using equation [1] for various frequency ratios γ. From Figure 5, C c = 2m 2 ω o = critical damping, and C/C c = 0.
= μ, and it can be seen that the best condition for a dynamic vibration absorber is when μ = 0.10. The foregoing has provided a summary of the principles of the invention and the theory behind these principles. FIG. 1 shows a specific example of this, and it was actually developed taking into consideration conditions at the site of use, ease of handling, manufacturing cost, etc. In FIG. 1, reference numeral 10 denotes a main rod which is configured to fit smoothly with the main rotating shaft 12 and allow the weights 3, 3' to slide thereon. A coil torsion spring 1 is attached to the main rod 10.
8 and 18' are fixed on one side, and the other ends are fixed on the main rotating shaft 12 while being wound left-handed or right-handed, respectively.
If the main rotating shaft 12 is now fixed, the main rod 10 will rotate the coil torsion springs 18, 18' with the main rotating shaft 12 as a fulcrum.
It can vibrate elastically in a fan shape by applying the force of . On the other hand, one end of the auxiliary rod 25 is fitted into an auxiliary rotating shaft 23 which is rotatably mounted on the bases 22, 22' fixed on the upper plate 19 via bearings 24, 24'.
Since the other end is connected to the main rod 10 via the viscoelastic body 6, it moves in conjunction with the vertical vibration of the weights 3, 3'. At this time, the viscoelastic body 6 absorbs the kinetic energy of the weights 3 and 3', converts it into thermal energy, and radiates it, so that the swing width is stabilized without being expanded. Further, the viscoelastic body 6 is connected to the parallel rods 30, 30', 31, 3 which are engaged with the auxiliary rod by pins 26, 27 and with the main rod 10 by pins 28, 29.
Since the main rod 10 is attached in a sandwich-like manner between 1', when it vibrates up and down, it is sheared into a parallelogram shape and converts kinetic energy into thermal energy. The coiled torsion springs 18 and 18' are compactly attached to both sides of the main rod 10 in such a way that one end is wrapped around the main rod 10 and the other end is wrapped around the main rotating shaft 12. As described, the strength of the coil torsion springs 18, 18' and the weights 3,
3' and its fixed position and viscoelastic body 6
By adjusting parameters such as the viscosity coefficient of the structure, it is possible to exert a damping effect in accordance with the natural frequency of the structure to be damped. However, usually a weight 3, 3' that can slide on the main rod 10
The position is selected to maximize the effect, and it is fixed with the fixing bolt 36 for use. Moreover, when the horizontal bar 32 is removed in the state shown in FIG. 1b, the main rod 10 tilts downward to the right. This would result in poor balance and the ability to function to its full potential. Therefore, for example, the main rotating shaft 12 inserted into the left end of the main rod 10
A fan-shaped worm wheel 14 is engaged with a worm 15 supported by a bearing provided on a frame 17 through a key 13 on one side of the worm 1.
5 counterclockwise, the torque will be applied to the main rod 10 tilted downward to the right as described above, from the worm 15 to the worm wheel 14 to the key 13 to the main rotating shaft 12 to the coil torsion springs 18 and 18. ' → is transmitted to the main rod 10, and the main rod 10 can be returned to the horizontal position. In this case, other drive mechanisms may be provided. 35 is a base, which is integrated with the frame 17 and the support frames 33, 33'. Then, the bolt 36, which is an accessory, is attached to the structure to be damped.
Match the direction of the vibration force with the direction of vibration of the weights 3 and 3',
In the case of a horizontal bridge girder, the base 35 is fixed downward as shown in FIG. 1b, for example. The mounting direction should be selected in a position that can dampen vibrations while considering the shape of the target structure, the direction of vibration, and its environment. If it is known that the direction of forced vibration changes each time the wind direction changes, a device whose mounting position is linked to the wind direction may be used. FIG. 3 is another principle diagram that can be created by applying the principle of the present invention. Figure a shows an example in which a piston having viscous resistance is installed obliquely between the main rod 10 and the auxiliary rod 25 instead of a viscoelastic body. Figure b shows an example in which the coiled torsion spring 18'' is mounted downward in the center of the main rod. Figure c shows an example in which the viscoelastic body 6 is installed between the main rod 10 and the base 35. Figure d is an example showing that the viscoelastic body 6 may be provided between the main rod extending to the left of the main rotating shaft 12 and the auxiliary rod. The mass ratio of the weight and the structure to be damped is about 1/200. [Effects of the Invention] As is clear from the above description, the cantilever type dynamic vibration absorber according to the present invention can Not only can it prevent resonance destruction due to Karman vortices caused by wind hitting bridge girders and main towers during or after construction, or forced vibrations caused by other causes, it can also respond to a wide range of changes in natural frequencies, and it can further reduce worker fear. Since the feeling can be removed, construction can be carried out with peace of mind,
In addition, since the coil torsion spring and the viscoelastic body are installed compactly, the overall size is reduced, so it can be installed in a pinched place. Furthermore, this invention can be applied not only to large-scale structures but also to small-scale construction work. Also, if used in buildings etc. whose natural frequencies are known, damage caused by other forced vibrations can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本発明の構造を示す平面図と側
面図、第2図は、本発明の動作原理を示す概念
図、第3図a,b,c,dは本発明の動作原理応
用した他の概念図、第4図は本発明に係る2自由
度系動吸振器のシンボル図、第5図は第4図にお
いてパラメータを変えたときの線図、第6図は従
来の歩道橋に用いた動吸振器の断面図、第7図
a,b,cは従来の他の動吸振器の側面図、平面
図及び正面図、第8図は、従来の動吸振器の基本
諸元を示す説明図である。 図において、3,3′は重錘、6は粘弾性体、
10は主桿、12は主回転軸、14はウオームホ
イール、15はウオーム、17はフレーム、1
8,18′はコイル捩りばね、19は上板、23
は補助回転軸、25は補助桿、30,30′,3
1,31′は平行桿、35はベースである。
Figures 1 a and b are plan and side views showing the structure of the present invention, Figure 2 is a conceptual diagram showing the operating principle of the present invention, and Figures 3 a, b, c, and d are the operating principles of the present invention. Other applied conceptual diagrams, Figure 4 is a symbol diagram of the two-degree-of-freedom system dynamic vibration absorber according to the present invention, Figure 5 is a line diagram when parameters are changed in Figure 4, Figure 6 is a conventional pedestrian bridge. Figures 7a, b, and c are side views, plan views, and front views of other conventional dynamic vibration absorbers, and Figure 8 is the basic specifications of the conventional dynamic vibration absorber. FIG. In the figure, 3 and 3' are weights, 6 is a viscoelastic body,
10 is the main rod, 12 is the main rotating shaft, 14 is the worm wheel, 15 is the worm, 17 is the frame, 1
8, 18' are coil torsion springs, 19 is the upper plate, 23
is the auxiliary rotating shaft, 25 is the auxiliary rod, 30, 30', 3
1 and 31' are parallel rods, and 35 is a base.

Claims (1)

【特許請求の範囲】 1 フレームに固定されたほぼ水平な軸と、該軸
に一端を軸支された主桿と、該主桿に取付けられ
た重錘と、前記主桿を前記フレームに対して振動
可能に保持するばね部材と、前記主桿の振動を減
衰するように前記主桿と前記フレームとの間に設
けた減衰器と、からなる片持ち式動吸振器におい
て、 前記ばね部材を、 前記軸とほぼ同軸に配置したねじり式ばねとし
たことを特徴とする片持ち式動吸振器。 2 前記ねじり式ばねとして、ねじりコイルば
ね、またはトーシヨンバーを採用したことを特徴
とする特許請求の範囲1に記載の片持ち式動吸振
器。 3 前記主桿に対する前記重錘の位置を変更する
取付け位置調整機構を備え、 該機構により、前記主桿の共振周波数を調整可
能としたことを特徴とする特許請求の範囲1又は
2に記載の片持ち式動吸振器。 4 前記ねじり式ばねの前記フレーム側取付け位
置を前記軸まわりに回転するねじり角度調整機構
を備え、 該機構により、前記主桿の静止位置を調整可能
としたことを特徴とする特許請求の範囲1〜3の
いずれかに記載の片持ち式動吸振器。 5 前記減衰器を、 前記主桿の振動により剪断力を受けるように配
置したごむ粘弾性体としたことを特徴とする特許
請求の範囲1〜4のいずれかに記載の片持ち式動
吸振器。
[Scope of Claims] 1. A substantially horizontal shaft fixed to a frame, a main rod having one end pivotally supported on the shaft, a weight attached to the main rod, and a main rod with respect to the frame. A cantilever type dynamic vibration absorber comprising: a spring member that is held so as to be able to vibrate; and a damper provided between the main rod and the frame to damp vibrations of the main rod; , A cantilever type dynamic vibration absorber characterized by having a torsion type spring disposed substantially coaxially with the axis. 2. The cantilever type dynamic vibration absorber according to claim 1, wherein a torsion coil spring or a torsion bar is adopted as the torsion type spring. 3. The device according to claim 1 or 2, further comprising an attachment position adjustment mechanism for changing the position of the weight with respect to the main rod, and the mechanism makes it possible to adjust the resonance frequency of the main rod. Cantilever type dynamic vibration absorber. 4. Claim 1, further comprising a torsion angle adjustment mechanism that rotates the mounting position of the torsion spring on the frame side around the axis, and the resting position of the main rod can be adjusted by the mechanism. The cantilever type dynamic vibration absorber according to any one of . 5. The cantilever type dynamic vibration absorber according to any one of claims 1 to 4, wherein the attenuator is a rubber viscoelastic body arranged to receive shearing force due to the vibration of the main rod. vessel.
JP13691885A 1985-06-25 1985-06-25 Cantilever type dynamic vibration damper Granted JPS622031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13691885A JPS622031A (en) 1985-06-25 1985-06-25 Cantilever type dynamic vibration damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13691885A JPS622031A (en) 1985-06-25 1985-06-25 Cantilever type dynamic vibration damper

Publications (2)

Publication Number Publication Date
JPS622031A JPS622031A (en) 1987-01-08
JPH0337057B2 true JPH0337057B2 (en) 1991-06-04

Family

ID=15186616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13691885A Granted JPS622031A (en) 1985-06-25 1985-06-25 Cantilever type dynamic vibration damper

Country Status (1)

Country Link
JP (1) JPS622031A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320346A (en) * 1988-06-17 1989-12-26 Nkk Corp Torsional vibration preventing device
JPH03140649A (en) * 1989-10-25 1991-06-14 Nkk Corp Vibration control equipment
KR100478031B1 (en) * 2002-10-10 2005-03-21 유니슨 주식회사 Apparatus for Damping Vibration having Amplified Displacement
JP4503493B2 (en) * 2005-06-08 2010-07-14 ヤクモ株式会社 Thin vibration damping device and vibration damping system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140477A (en) * 1977-05-13 1978-12-07 Mitsubishi Heavy Ind Ltd Vibration preventive device of large scale structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53140477A (en) * 1977-05-13 1978-12-07 Mitsubishi Heavy Ind Ltd Vibration preventive device of large scale structure

Also Published As

Publication number Publication date
JPS622031A (en) 1987-01-08

Similar Documents

Publication Publication Date Title
US8044629B2 (en) Self-tuning vibration absorber
JP3898732B2 (en) Motion damping device for structural member and brace device
US4807840A (en) Tuned mass damping system and method
KR20060087106A (en) Semiactive apparatus for damping vibration of structures
KR20190089972A (en) Tuned dynamic damper and method for reducing amplitude of vibration
JPH0337057B2 (en)
JPH09310531A (en) Vibration-control device with limited damping force
KR20070053806A (en) Device for damping vibrations in a building
JP2007263158A (en) Vibration damping device
JPH0310817B2 (en)
JPH0649924A (en) Viscoelastic damper
JPS63297837A (en) Double acting vibration absorber
JPS63114772A (en) Axial tension damper
JPH0228021B2 (en) SHINDOKYUSHUSOCHI
JP3045059B2 (en) Cable staying device for cable stayed cable
JPH1150689A (en) Vibration control mechanism
JPS6246042A (en) Spring loaded pendulum-type dynamic vibration reducer
JP3544756B2 (en) Elasto-plastic damper device
JPH01320346A (en) Torsional vibration preventing device
JP3084905B2 (en) Damping device
JP2777916B2 (en) Cable damper for cable stayed bridge
JPH0266337A (en) Dynamic vibration absorbing device
JPH04171337A (en) Vibration suppressing device for floor
Yamaguchi et al. Linear friction damper consisting of cylindrical friction block and inclined lever (Investigation of fundamental property)
JPH0266336A (en) Dynamic vibration absorbing device