JPH0336B2 - - Google Patents

Info

Publication number
JPH0336B2
JPH0336B2 JP15146487A JP15146487A JPH0336B2 JP H0336 B2 JPH0336 B2 JP H0336B2 JP 15146487 A JP15146487 A JP 15146487A JP 15146487 A JP15146487 A JP 15146487A JP H0336 B2 JPH0336 B2 JP H0336B2
Authority
JP
Japan
Prior art keywords
protein kinase
enzyme
triton
protein
membrane fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15146487A
Other languages
Japanese (ja)
Other versions
JPS63317081A (en
Inventor
Kazumi Funane
Miki Kiuchi
Takashi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Original Assignee
NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO filed Critical NORINSUISANSHO SHOKUHIN SOGO KENKYUSHOCHO
Priority to JP15146487A priority Critical patent/JPS63317081A/en
Publication of JPS63317081A publication Critical patent/JPS63317081A/en
Publication of JPH0336B2 publication Critical patent/JPH0336B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は新規なプロテインキナーゼおよびその
製造法に関し、詳しくは原核生物に由来し、安定
性にすぐれ、環状ヌクレオチドに非依存性であ
り、米グロブリンや豚プラズマ蛋白質を燐酸化し
うるプロテインキナーゼおよび微生物を用いる該
酵素の製造法に関する。 〔従来の技術、発明が解決しようとする問題点〕 植物では、搾油後の大豆、ひまわり、ナタネな
どの大量の蛋白質を含んだ残渣が食糧資源として
よりも飼料として利用されることが多く、動物で
は、畜肉を得る際に大量に得られる血液が、俄が
国では捨てられることが多い。これらの蛋白質を
有効に利用することは、人口の急増による将来の
食糧不足を回避する上でも重要なことである。し
かし、未利用の蛋白質は、そのままの形では利用
しにくい場合が多いので、蛋白質に何らかの修飾
を施し、使い易くする必要がある。修飾法として
は、酵素による方法が安全性の点ならびに温和な
条件下で行なえるという点で注目される。 蛋白質の性質を変える酵素の1つにプロテイン
キナーゼがある。本酵素は、真核生物に見出され
ており、特に動物において研究が進んでいるが、
生化学的な方面の研究が盛んである反面、利用面
での研究はあまりされていない。酵素について
は、環状ヌクレオチド、ホルモン、カルモデユリ
ン等の高価な刺激因子を必要とするもの、極めて
基質特異性が高いものなどの応用に適さないも
の、既存の刺激因子では活性の上昇がみられない
ものが知られている。 真核生物以外では、レトロウイルスの発癌遺伝
子産物にチロシンキナーゼ活性があることが知ら
れている。原核生物では、ネズミチフス菌にセリ
ン・スレオニンキナーゼ活性が、大腸菌・光合成
細菌にチロシンキナーゼ活性が検出されたという
報告があるが、その他はほとんど知られていな
い。 また、真核生物では、カゼインなどの外から加
えられた蛋白質を燐酸化する活性を持つプロテイ
ンキナーゼが見出されているが、原核生物では、
菌体蛋白質が燐酸化されているという証拠がある
という報告のみで、外から与えた蛋白質を燐酸化
する活性を見出したという報告は末だない。 これまで、蛋白質を燐酸化するため、固定化酵
素を利用した反応系の報告がある。この反応系に
用いられている酵素は、動物の内臓のプロテイン
キナーゼを部分精製したものである。酵素の利用
を考える際には、動物細胞を用いるよりも、微生
物を用いた方が培養方法が簡単で、大量培養が容
易であり、培養時間も短く、経済的にも有利であ
る。 〔問題点を解決すべき手段〕 そこで本発明者らは、微生物に由来するプロテ
インキナーゼを得るべく検討を重ねた結果、特定
の微生物が安定性にすぐれた新規なプロテインキ
ナーゼを生産することを見出し、かかる知見に基
いて本発明を完成するに至つた。 すなわち本発明は、トリトンX−100で可溶化
したものをゲルろ過により測定した分子量は約
65000と約16000であり、至適PHが7.0であり、PH
7.0、反応時間3分間における至適温度が65℃で
あり、サイクリツクAMPとサイクリツクGMPに
非依存性であり、米グロブリンおよび豚プラズマ
蛋白質を燐酸化しうるプロテインキナーゼに関
し、さらにミクロコツカス属に属し、上記酵素を
生産しうる微生物を培地に培養し、培養物から微
生物菌体を集め、膜画分を採取することを特徴と
するプロテインキナーゼの製造法に関する。 本発明に用いる微生物は上記酵素を生産しうる
ものであればよいが、具体的には東京大学応用微
生物研究所有用菌株保存施設より分譲されたミク
ロコツカス・ルテウスFK1001(IAM 11007)な
どがある。本菌株のほか常法による変異手段を適
用して得られる変異株なども目的とする酵素の生
産能を有する限り、本発明に使用できる。 本菌株の培養に際しては、通常の好気性細菌の
培養方法が適用でき、培地の炭素源としては、ブ
ドウ糖、果糖などが好適であり、窒素源としては
塩化アンモニウム、硫酸アンモニウム、酵母エキ
ス、ペプトン、肉エキス、カザミノ酸などを用い
ることができる。その他、食塩、塩化カリウム、
塩化カルシウム、塩化コバルト、燐酸ナトリウ
ム、燐酸カリウム、硫酸鉄などの無機塩等を加え
ることもできる。また、培地のPHは6.8〜7.8が適
当である。 培養方法は液体培養が適当であり、28〜37℃で
130〜170rpm、好ましくは30℃で150rpmにて振
とう培養を行なう。培養は微生物が増殖して目的
とする培養が十分に生成するまで行なえばよい
が、通常は対数増殖期の菌体を集めて用いる。以
下に、本発明のプロテインキナーゼの製造例を示
す。 まず、上記の如く培養したのち、遠心等により
微生物菌体を集め、アクロモペプチダーゼを用い
てスフエロプラストを形成し、遠心等によりスフ
エロプラストを集める。次いで、低張液中でスフ
エロプラストを破砕したのち、遠心等により膜画
分を集め、これにトリトンX−100を含むバツフ
アーを加え、低温下で撹拌する。しかる後、固液
分離して得た上澄をトリトンX−100可溶性膜画
分とし、粗酵素として用いる。 なお、プロテインキナーゼ活性を有する菌株の
検索は、集菌した破砕したのち固液分離して得た
上澄を用い、基質ヒストンタイプ−A、〔ガン
マ−32P〕ATPと共に30℃で1時間保持し、20%
トリクロロ酢酸で反応を停止させた後、濾別して
得た固形分の放射能を液体シンチレーシヨンカウ
ンターで測定することにより行なつた。また、プ
ロテインキナーゼ活性は、酢酸マグネシウムを含
む燐酸カリウムバツフアー(PH7.0)に上記基質
と〔ガンマー32P〕ATPおよび酵素液を加えた反
応液を一定温度に保ち、反応を行ない、トリクロ
ロ酢酸で反応を停止した後、濾別して得た固形分
をトリクロロ酢酸で洗浄し、乾燥したのち固形分
の放射能を液体シンチレーシヨンカウンターで測
定し、蛋白質にとり込まれた燐酸量を算出するこ
とにより求めた。 前述の方法で調製した粗酵素液は下記の性質を
有する。なお、特にことわらない限り反応は45
℃、3分の条件で行ない、基質は米グロブリンを
用いた。 (1) 至適PH 第1図に示したように、本酵素の至適PHは7.0
付近である。したがつたて、本酵素を用いる反応
は温和な条件で行なうことができる。 (2) 至適温度 PH7.0、反応時間3分間における至適温度は、
第2図に示したように、65℃付近である。なお、
この場合、基質として米グロブリンを使用した。 (3) 2価陽イオン要求性 本酵素はマグネシウム、マンガンなどを加える
と、第1表に示したように、活性が著しく上昇す
る。
[Field of Industrial Application] The present invention relates to a novel protein kinase and a method for producing the same. Specifically, the present invention relates to a novel protein kinase that is derived from prokaryotes, has excellent stability, is independent of cyclic nucleotides, and is capable of converting rice globulin or swine plasma protein into phosphoric acid. The present invention relates to a protein kinase that can be converted into a protein kinase and a method for producing the enzyme using a microorganism. [Prior art and problems to be solved by the invention] In plants, residues containing large amounts of protein after oil extraction, such as soybeans, sunflowers, and rapeseed, are often used as feed rather than as food resources; In Japan, the blood that is obtained in large quantities when obtaining meat is often thrown away. Effective use of these proteins is also important in avoiding future food shortages due to rapid population growth. However, unused proteins are often difficult to use in their original form, so it is necessary to make some kind of modification to the proteins to make them easier to use. As a modification method, enzymatic methods are attracting attention because they are safe and can be carried out under mild conditions. Protein kinase is one of the enzymes that change the properties of proteins. This enzyme has been found in eukaryotes, and research is progressing particularly in animals.
While there is a lot of research being done on the biochemical side, there is not much research being done on the usage side. Regarding enzymes, there are those that require expensive stimulatory factors such as cyclic nucleotides, hormones, and calmodulin, those that are not suitable for application due to extremely high substrate specificity, and those that do not increase activity with existing stimulatory factors. It has been known. In non-eukaryotes, oncogene products of retroviruses are known to have tyrosine kinase activity. Among prokaryotes, there are reports that serine/threonine kinase activity has been detected in Salmonella typhimurium and tyrosine kinase activity has been detected in Escherichia coli and photosynthetic bacteria, but little else is known. Furthermore, in eukaryotes, protein kinases have been discovered that have the activity of phosphorylating externally added proteins such as casein, but in prokaryotes,
There are only reports that there is evidence that bacterial cell proteins are phosphorylated, and there are no reports that have been found to have the ability to phosphorylate externally applied proteins. So far, there have been reports of reaction systems using immobilized enzymes to phosphorylate proteins. The enzyme used in this reaction system is a partially purified protein kinase from animal internal organs. When considering the use of enzymes, it is more economical to use microorganisms than to use animal cells because the culture method is simpler, mass culture is easier, the culture time is shorter, and microorganisms are more advantageous than animal cells. [Means to Solve the Problem] As a result of repeated studies to obtain protein kinases derived from microorganisms, the present inventors discovered that specific microorganisms produce novel protein kinases with excellent stability. Based on this knowledge, we have completed the present invention. That is, in the present invention, the molecular weight measured by gel filtration of a product solubilized with Triton X-100 is approximately
65,000 and about 16,000, and the optimum PH is 7.0, and the PH
7.0, the optimal temperature for a reaction time of 3 minutes is 65°C, it is independent of cyclic AMP and cyclic GMP, and is a protein kinase that can phosphorylate rice globulin and porcine plasma proteins. The present invention relates to a method for producing protein kinase, which comprises culturing a microorganism capable of producing protein kinase in a medium, collecting microbial cells from the culture, and collecting a membrane fraction. The microorganism used in the present invention may be any microorganism as long as it can produce the above-mentioned enzyme, and specific examples include Micrococcus luteus FK1001 (IAM 11007), which was provided by the Useful Bacterial Strain Preservation Facility of the Institute of Applied Microbiology, the University of Tokyo. In addition to the present strain, mutant strains obtained by applying conventional mutation methods can also be used in the present invention as long as they have the ability to produce the desired enzyme. When culturing this strain, normal aerobic bacterial culture methods can be applied, and the carbon sources of the medium are preferably glucose, fructose, etc., and the nitrogen sources are ammonium chloride, ammonium sulfate, yeast extract, peptone, meat, etc. Extracts, casamino acids, etc. can be used. Others: salt, potassium chloride,
Inorganic salts such as calcium chloride, cobalt chloride, sodium phosphate, potassium phosphate, iron sulfate, etc. can also be added. In addition, the appropriate pH of the medium is 6.8 to 7.8. The appropriate culture method is liquid culture, at 28-37℃.
Shaking culture is carried out at 130-170 rpm, preferably 150 rpm at 30°C. Cultivation may be carried out until the microorganisms proliferate to a sufficient extent to produce the desired culture, but usually cells in the logarithmic growth phase are collected and used. An example of producing the protein kinase of the present invention is shown below. First, after culturing as described above, microbial cells are collected by centrifugation or the like, spheroplasts are formed using achromopeptidase, and spheroplasts are collected by centrifugation or the like. Next, after disrupting the spheroplasts in a hypotonic solution, a membrane fraction is collected by centrifugation or the like, a buffer containing Triton X-100 is added thereto, and the mixture is stirred at low temperature. Thereafter, the supernatant obtained by solid-liquid separation is used as a Triton X-100 soluble membrane fraction and used as a crude enzyme. In addition, to search for strains with protein kinase activity, use the supernatant obtained by harvesting, crushing, and solid-liquid separation, and holding it at 30°C for 1 hour with the substrates histone type-A and [gamma- 32P ]ATP. Yes, 20%
After stopping the reaction with trichloroacetic acid, the radioactivity of the solid content obtained by filtration was measured using a liquid scintillation counter. Protein kinase activity was determined by adding the above substrate, [gamma 32 P] ATP, and enzyme solution to a potassium phosphate buffer (PH7.0) containing magnesium acetate, keeping the reaction solution at a constant temperature, and carrying out the reaction. After stopping the reaction, the solid content obtained by filtration was washed with trichloroacetic acid, dried, and the radioactivity of the solid content was measured using a liquid scintillation counter, and the amount of phosphoric acid incorporated into the protein was calculated. Ta. The crude enzyme solution prepared by the above method has the following properties. In addition, unless otherwise specified, the reaction is 45
The reaction was carried out at ℃ for 3 minutes, and rice globulin was used as the substrate. (1) Optimal PH As shown in Figure 1, the optimal PH of this enzyme is 7.0.
It's nearby. Therefore, reactions using this enzyme can be carried out under mild conditions. (2) Optimal temperature The optimal temperature at PH7.0 and reaction time of 3 minutes is:
As shown in Figure 2, the temperature is around 65°C. In addition,
In this case, rice globulin was used as the substrate. (3) Requirement for divalent cations As shown in Table 1, the activity of this enzyme increases significantly when magnesium, manganese, etc. are added.

【表】 ** グリコールエーテルジアミン四酢酸
(4) 環状ヌクレオチド依存性 本酵素は、第2表に示したように、サイクリツ
クAMPおよびサイクリツクGMPを加えても活性
の上昇が認められない。よつて、本酵素はこれら
高価な刺激因子を必要としないことが判つた。
[Table] ** Glycol ether diamine tetraacetic acid
(4) Cyclic nucleotide dependence As shown in Table 2, no increase in activity of this enzyme is observed even when cyclic AMP and cyclic GMP are added. Therefore, it was found that the present enzyme does not require these expensive stimulatory factors.

【表】 (5) 安定性 4℃で保存した場合、本酵素の活性は少なくと
も30日間は安定であつた(第3図参照)。また、
熱安定性については、本酵素を10分間加熱した後
に活性を測定したところ、60℃まではほぼ安定で
あつた(第4図参照)。 (6) 分子量 トリトンX−100で可溶化したプロテインキナ
ーゼをHPLC(カラム:Superose 12HR10/30)
でゲルろ過して分子量を測定したところ、分子量
約65000(X1で示す)と約16000(X2で示す)に分
かれ、このプロテインキナーゼはX1とX2の混合
物であることが判明した。 (7) 基質特異性 本酵素はどのような蛋白質に有効に作用するか
を調べたところ、第3表に示したように、米グロ
ブリンに最も高い活性を示し、その他豚プラズ
マ、卵白アルブミン、ヒストンタイプA等に作
用して燐酸化するが、カゼインのような酸性蛋白
質には作用しなかつた。なお、米グロブリン、ア
ルブミンは岩崎らの方法(日本食品工業学会誌、
第19巻、第2号、70〜75頁(1972))により調整
し、ブタプラズマ蛋白はと場より分譲されたもの
を凍結乾燥して用いた。
[Table] (5) Stability When stored at 4°C, the activity of this enzyme was stable for at least 30 days (see Figure 3). Also,
Regarding thermostability, when the activity was measured after heating the enzyme for 10 minutes, it was found to be almost stable up to 60°C (see Figure 4). (6) Molecular weight Protein kinase solubilized with Triton X-100 was analyzed by HPLC (column: Superose 12HR10/30)
When the molecular weight was measured by gel filtration, the protein kinase was found to have a molecular weight of approximately 65,000 (indicated by X 1 ) and approximately 16,000 (indicated by X 2 ), and it was found that this protein kinase is a mixture of X 1 and X 2 . (7) Substrate specificity When we investigated what kind of proteins this enzyme effectively acts on, as shown in Table 3, it showed the highest activity on rice globulin, and other proteins such as swine plasma, ovalbumin, and histones. Although it acts on type A and phosphorylates it, it does not act on acidic proteins such as casein. In addition, rice globulin and albumin were determined using the method of Iwasaki et al. (Journal of Japan Food Industry Association,
19, No. 2, pp. 70-75 (1972)), and the porcine plasma protein was obtained from an abattoir and was freeze-dried and used.

【表】【table】

〔実施例〕〔Example〕

次に、本発明を実施例により詳しく説明する。 実施例 1 ミクロコツカス・ルテウスFK1001株
(IAM11007)を下記組成の倍地に接種し、30℃
で16時間回転振とう培養を行なつた。 培地組成 ポリペプトン 10g/ 肉エキス 10g/ 食 塩 5g/ PH7.0 培養液より遠心分離にて菌体を集め、アクロモ
ペプチダーゼを用いてスフエロプラストを形成
し、これを集めた。次いで、低張液中でスフエロ
プラストを破砕したのち遠心分離を行ない膜画分
を集めた。この画分にトリトンX−100を含むバ
ツフアーを加え、4℃にて撹拌した。次に、遠心
分離にて上澄を得、これを粗酵素液とした。 この粗酵素液について活性を測定したところ、
粗酵素蛋白質1mgあたり45℃、1分間で約300ピ
コモルの燐酸を米グロブリン蛋白質に転移した。
1分間に1ピコモル燐酸化する酵素を1ユニツト
とすると、2の培養液から1200〜1500ユニツト
の酵素が得られる。 実施例 2 前記した如く、本発明の酵素は米グロブリンを
良く燐酸化するが、該グロブリンをゲル濾過して
分離したとき、どの画分を良く燐酸化するかを調
べた。 米グロブリンをセフアデツクスG−100でゲル
濾過し、溶出した画分を基質として粗酵素を加
え、プロテインキナーゼ活性を測定した。その結
果、比較的高分子の画分が燐酸化されることが判
つた(第5図参照)。次に、フラクシヨン番号1
〜23番を集めて濃縮し、セフアクリルS−200で
ゲル濾過を行ない、同様にして実験を行なつたと
ころ、第6図に示したように、燐酸化される画分
が2つ現われた。フラクシヨン番号10番付近の活
性極大は分子量約123000、15番付近の活性極大は
分子量70000と算出された。 なお、分子量は第6図において示したB〜Fの
標準蛋白質の溶出位置よりラインウエーバー・バ
ルクプロツトを用いて計算した。 〔発明の効果〕 本発明によれば安定性にすぐれたプロテインキ
ナーゼを簡便な方法で、かつ多量に製造すること
ができる。この酵素を用いることにより未利用の
蛋白質を食糧として利用することが可能となる。
Next, the present invention will be explained in detail with reference to examples. Example 1 Micrococcus luteus FK1001 strain (IAM11007) was inoculated into a medium with the following composition and incubated at 30°C.
Rotary shaking culture was performed for 16 hours. Medium composition: Polypeptone 10g/Meat extract 10g/Salt 5g/PH7.0 Bacterial cells were collected from the culture solution by centrifugation, spheroplasts were formed using achromopeptidase, and the cells were collected. Next, the spheroplasts were disrupted in a hypotonic solution and centrifuged to collect membrane fractions. A buffer containing Triton X-100 was added to this fraction, and the mixture was stirred at 4°C. Next, a supernatant was obtained by centrifugation, and this was used as a crude enzyme solution. When the activity of this crude enzyme solution was measured,
Approximately 300 picomole of phosphoric acid was transferred to rice globulin protein in 1 minute at 45°C per 1 mg of crude enzyme protein.
If the enzyme that phosphorylates 1 picomole per minute is 1 unit, then 1200 to 1500 units of the enzyme can be obtained from the second culture solution. Example 2 As mentioned above, the enzyme of the present invention phosphorylates rice globulin well, but when the globulin was separated by gel filtration, it was investigated which fraction phosphorylated well. Rice globulin was gel-filtered using Sephadex G-100, crude enzyme was added to the eluted fraction as a substrate, and protein kinase activity was measured. As a result, it was found that a relatively high molecular weight fraction was phosphorylated (see Figure 5). Next, fraction number 1
When No. 23 was collected and concentrated, gel filtration was performed using Sephacryl S-200, and the same experiment was carried out, two phosphorylated fractions appeared as shown in FIG. The maximum activity around fraction number 10 was calculated to have a molecular weight of approximately 123,000, and the maximum activity around fraction number 15 was calculated to have a molecular weight of 70,000. The molecular weight was calculated from the elution positions of the standard proteins B to F shown in FIG. 6 using a Lineweber bulk plot. [Effects of the Invention] According to the present invention, a protein kinase with excellent stability can be produced in large quantities by a simple method. By using this enzyme, it becomes possible to use unused proteins as food.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の酵素のPH依存性を示すグラ
フ、第2図は本発明の酵素の温度依存性を示すグ
ラフ、第3図は本発明の酵素の保存安定性を示す
グラフ、第4図は本発明の酵素の熱安定性を示す
グラフ、第5図および第6図は米グロブリンをゲ
ル濾過し、溶出した画分の燐酸化を示すグラフで
ある。
FIG. 1 is a graph showing the PH dependence of the enzyme of the present invention, FIG. 2 is a graph showing the temperature dependence of the enzyme of the present invention, FIG. 3 is a graph showing the storage stability of the enzyme of the present invention, and FIG. 4 is a graph showing the storage stability of the enzyme of the present invention. The figure is a graph showing the thermostability of the enzyme of the present invention, and Figures 5 and 6 are graphs showing the phosphorylation of the eluted fraction after gel filtration of rice globulin.

Claims (1)

【特許請求の範囲】 1 トリトンX−100で可溶化したものをゲルろ
過により測定した分子量は約65000と約16000であ
り、至適PHが7.0であり、PH7.0、反応時間3分間
における至適温度が65℃付近であり、サイクリツ
クAMPとサイクリツクGMPに非依存性であり、
米グロブリンおよび豚プラズマ蛋白質を燐酸化し
うるプロテインキナーゼ。 2 ミクロコツカス属に属し、トリトンX−100
で可溶化したものをゲルろ過により測定した分子
量は約65000と約16000であり、至適PHが7.0であ
り、PH7.0、反応時間3分間における至適温度が
65℃付近であり、サイクリツクAMPとサイクリ
ツクGMPに非依存性であり、米グロブリンおよ
び豚プラズマ蛋白質を燐酸化しうるプロテインキ
ナーゼを生産しうる微生物を培地に培養し、培養
物から微生物菌体を集め、膜画分を採取すること
を特徴とするプロテインキナーゼの製造法。 3 ミクロコツカス属に属するプロテインキナー
ゼ生産菌がミクロコツカス・ルテウスFK1001株
(IAM 11007)である特許請求の範囲第2項記載
の方法。 4 膜画分がトリトンX−100で可溶性膜画分で
ある特許請求の範囲第2項記載の方法。
[Claims] 1. The molecular weights measured by gel filtration of the solubilized product with Triton The optimum temperature is around 65℃, and it is independent of cyclic AMP and cyclic GMP.
A protein kinase capable of phosphorylating rice globulin and porcine plasma proteins. 2 Belongs to the genus Micrococcus, Triton X-100
The molecular weights of the solubilized products measured by gel filtration are approximately 65,000 and approximately 16,000, and the optimal pH is 7.0, and the optimal temperature at pH 7.0 and reaction time of 3 minutes is
A microorganism that can produce a protein kinase that is around 65°C, is independent of cyclic AMP and cyclic GMP, and can phosphorylate rice globulin and swine plasma protein is cultured in a medium, and microbial cells are collected from the culture. A method for producing protein kinase, which comprises collecting a membrane fraction. 3. The method according to claim 2, wherein the protein kinase-producing bacterium belonging to the genus Micrococcus is Micrococcus luteus FK1001 strain (IAM 11007). 4. The method according to claim 2, wherein the membrane fraction is a Triton X-100 soluble membrane fraction.
JP15146487A 1987-06-19 1987-06-19 Protein-kinase Granted JPS63317081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15146487A JPS63317081A (en) 1987-06-19 1987-06-19 Protein-kinase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15146487A JPS63317081A (en) 1987-06-19 1987-06-19 Protein-kinase

Publications (2)

Publication Number Publication Date
JPS63317081A JPS63317081A (en) 1988-12-26
JPH0336B2 true JPH0336B2 (en) 1991-01-07

Family

ID=15519104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15146487A Granted JPS63317081A (en) 1987-06-19 1987-06-19 Protein-kinase

Country Status (1)

Country Link
JP (1) JPS63317081A (en)

Also Published As

Publication number Publication date
JPS63317081A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
JPS61247382A (en) Novel d-amino acid transaminase
Wise Jr et al. Teichoic acid hydrolase activity in soil bacteria
Kim et al. Purification and characterization of novel sulfotransferase obtained from Klebsiella K-36, an intestinal bacterium of rat
Umbarger et al. THREONINE DEAMINATION IN ESCHERICHIA COLI I: d-and l-Threonine Deaminase Activities of Cell-Free Extracts
SU1124889A3 (en) Method of obtaining n-carbamyl phenylglycine derivatives
CA1284464C (en) D(-)-mandelate dehydrogenase produced microbiologically, a process for its production and application thereof
JPH0336B2 (en)
JPS6049478B2 (en) Glycerokinase enzyme and method for producing the enzyme
Paress et al. Glutamine synthetase of Streptomyces cattleya: purification and regulation of synthesis
Cleary et al. Enzymatic reduction of D-biotin-d-sulfoxide with cell-free extracts of Escherichia coli
Tsai et al. Physiological characteristics of glutamine synthetases I and II of Frankia sp. strain CpI1
JPH0937780A (en) Thermostable maltose phosphorylase, its production, bacterium used therefor and use of the same enzyme
JP4085055B2 (en) Vitamin B6 phosphate phosphatase
JP3029915B2 (en) Thermostable adenosine-5'-phosphosulfate kinase and method for producing the same
JP2000023690A (en) Enzymatic production of vitamin b6
Balińska et al. Betaine-homocysteine methyltransferase in the fungus Aspergillusnidulans
Benemann et al. Temperature sensitive nitrogen fixation mutants of Azotobacter vinelandii
JPS5934884A (en) Leucine dehydrogenase and its preparation
JPH0478274B2 (en)
AU2002321064A1 (en) Vitamin B6-phosphate phosphatase
Lichstein On the specificity of biotin in the metabolism of propionibacteria
JPH05137572A (en) Thermostable adenosine-5'-triphosphate sulfurylase and its production
JPH09224691A (en) Production of sugar phosphate
JPS58212783A (en) Preparation of phospholipase a by fermentation method
JPH0616704B2 (en) Bacterial catalase resistant to fluoride ions and Micrococcus sp. KWI-5 strain

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term