JPH0336978A - Motor-speed controller - Google Patents

Motor-speed controller

Info

Publication number
JPH0336978A
JPH0336978A JP1170144A JP17014489A JPH0336978A JP H0336978 A JPH0336978 A JP H0336978A JP 1170144 A JP1170144 A JP 1170144A JP 17014489 A JP17014489 A JP 17014489A JP H0336978 A JPH0336978 A JP H0336978A
Authority
JP
Japan
Prior art keywords
speed
motor
responding property
target
betai
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1170144A
Other languages
Japanese (ja)
Inventor
Shigeo Mitani
三谷 重雄
Shinobu Kake
忍 懸
Masaki Hashikawa
橋川 正喜
Hisashi Kinoshita
木下 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1170144A priority Critical patent/JPH0336978A/en
Publication of JPH0336978A publication Critical patent/JPH0336978A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a speed control system suppressing the vibration of a motor load and being excellent in speed response by making a speed feedback (FB) value and position FB value variable at the time of feedbacking the estimate of the state (speed, position) of a load connected with a motor so that the present speed of response is equal to a target responding property. CONSTITUTION:The responding property of a system including an observer system 9 is judged by a characteristic value A-KT. A is a part of the indication of variables of a mathematical expression model state and KT is the feedback FB matrix of the block diagram. Then, the characteristic value is alphai, a target system characteristic value betai is stored beforehand in the memory of a computing element 12, and alphai and betai are compared with each other. In case of alphai>betai, the present responding property is larger than a target responding property so that only Komega 15 and Ktheta 16 further shown in the drawing are feedbacked. At the time of alphai<betai, FB is reduced, because the responding property is under the target, and the correction of FB is not performed in case of alphai=betai. Thus, when Komega 15 and Ktheta 16 are variably feedbacked to a position command 1 and speed command 2 according to the responding property, a speed responding property can be made equal to the target response.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はNC工作機、産業用ロボットなどに使用される
モータの速度制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a motor speed control device used in NC machine tools, industrial robots, and the like.

従来の技術 近年、産業界のFA化には目ざましいものがあり、NC
工作機、産業用ロボットの伸びは大きく、モータ速度制
御装置の進歩も著しい。
Conventional technology In recent years, there has been a remarkable shift towards FA in industry, and NC
Machine tools and industrial robots are growing rapidly, and motor speed control devices are also making remarkable progress.

以下図面を参照しながら従来のモータ制御装置について
説明する。
A conventional motor control device will be described below with reference to the drawings.

第4図は従来のモータ速度制御装置のブロック図を示す
ものである。
FIG. 4 shows a block diagram of a conventional motor speed control device.

また、第3図は負荷に接続されたモータ部の数式モデル
図である。第3図において、11はモータのインダクタ
ンスL、のインダクタ、12は抵抗値R1の抵抗、13
は発電定数Kh、l’ルク定数に□ ロータイナーシャ
JMのモータである。16はモータ13に接続された負
荷の数式モデルであり、14はスプリング定数Ks、1
5はモータ摩擦、17は負荷慣性JLである。今、モー
タが角速度ωM、負荷が角速度ωLで回転し、ロータの
位置をθM、負荷の回転位置をθLとする。モータ印加
電圧をV、とすると、 V a” Rm I a + L a I a + K
 b (J) m      ”’ ”’ filθ。
Moreover, FIG. 3 is a mathematical model diagram of a motor section connected to a load. In FIG. 3, 11 is an inductor with a motor inductance L, 12 is a resistor with a resistance value R1, and 13 is an inductor with a resistance value R1.
is a motor with rotor inertia JM where the power generation constant is Kh and the l'k constant is □. 16 is a mathematical model of the load connected to the motor 13, 14 is a spring constant Ks, 1
5 is motor friction, and 17 is load inertia JL. Now, the motor rotates at an angular velocity ωM, the load rotates at an angular velocity ωL, the rotor position is θM, and the rotational position of the load is θL. If the motor applied voltage is V, then V a” Rm I a + L a I a + K
b (J) m ”'”' filθ.

=ω、              ・・・・・・(2
)K a I a = J M(d M+ K s (
θ□−θL)+BS(ω。−ω、)・・・・・・(3) Kg(θ間−θt)+Bs(ωM−ωL)=JL(II
L・・・・・・(4) θL:ωL ・・・・・・(5) となる。
=ω, ・・・・・・(2
) K a I a = J M(d M+ K s (
θ□-θL)+BS(ω.-ω,)...(3) Kg(θ-θt)+Bs(ωM-ωL)=JL(II
L...(4) θL:ωL...(5) It becomes.

上記(1)。(1) above.

(2)。(2).

(3)。(3).

(4)。(4).

(5)式より状態変数表示を すれば、 ・・・・・・(6) となる。State variable display from equation (5) if, ・・・・・・(6) becomes.

(6)式を妥=Ax + b Uとおく。(6) formula =Ax +b Let's call it U.

ただし、 x=[Imωyθ%lωlθL]’ b=[1 0]゛。however, x=[Imωyθ%lωlθL]' b=[1 0]゛.

u=Vaである。u=Va.

この状態変数■□ ωL+ θL。This state variable■□ ωL+ θL.

ωM。ωM.

0M を用い て状態フィードバックを行なうと、第4図のブロック図
となる。1は位置ゲイン、2は速度系ゲイン、3は補償
ゲイン、4は電流ループゲイン、5は電流補償ゲイン、
6はモータの伝達関数係数である。なお状態変数ωL、
θLは直接観測できないので、オブザーバの手法を用い
て推定を行なう。
When state feedback is performed using 0M, the block diagram shown in FIG. 4 is obtained. 1 is position gain, 2 is velocity system gain, 3 is compensation gain, 4 is current loop gain, 5 is current compensation gain,
6 is the motor transfer function coefficient. Note that the state variable ωL,
Since θL cannot be directly observed, an observer method is used to estimate it.

第4図の速度制御装置において、負荷の速度。In the speed control device of FIG. 4, the speed of the load.

位置のフィードバックかオブザーバ9により負荷の速度
9位置を推定し、フィードバックすることにより負荷の
振動を押えるようにしたものである。
The vibration of the load is suppressed by estimating the speed 9 position of the load using the observer 9 and feeding back the position feedback.

発明が解決しようとする課題 しかしながら、上記のような構成では、負荷の振動をあ
る程度押えることができるが、負荷が定常状態に達する
までの応答性については考慮されていない欠点があった
Problems to be Solved by the Invention However, although the above configuration can suppress the vibration of the load to some extent, it has the disadvantage that it does not take into account the responsiveness until the load reaches a steady state.

本発明は上記欠点に鑑み、負荷の振動を押さえ、かつ速
度応答性が良好なモータ速度制御装置を提供するもので
ある。
In view of the above drawbacks, the present invention provides a motor speed control device that suppresses load vibration and has good speed response.

課題を解決するための手段 上記課題を解決するため、本発明のモータ速度制御装置
はモータに接続される負荷の状態を演算する第1手段と
、第1手段の演算値を可変的に速度指令1位置指令にフ
ィードバックする第2手段と、速度の応答性を算出する
第3手段と、速度の規範応答性と第3手段により算出さ
れた速度応答性を比較し、その差値を出力する第4手段
により構成されたものである。
Means for Solving the Problems In order to solve the above problems, the motor speed control device of the present invention includes a first means for calculating the state of a load connected to the motor, and a speed command that variably uses the calculated value of the first means. a second means for feeding back to the first position command; a third means for calculating the speed responsiveness; and a third means for comparing the standard speed responsiveness and the speed responsiveness calculated by the third means and outputting the difference value. It is composed of four means.

作用 本発明は上記した構成により、所望の速度応答性を規範
応答性とし、現在の速度応答性を規範に等しくなるよう
に負荷の状態フィードバック演算値を修正し、速度の応
答性を改善できることになる。
According to the present invention, with the above-described configuration, it is possible to improve the speed response by setting the desired speed response as the reference response and correcting the load state feedback calculation value so that the current speed response becomes equal to the reference. Become.

実施例 以下、本発明の実施例について図面を参照しながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は本発明の実施例におけるモータ速度制御方法の
ブロック図を示す。第1図において、第4図と同一の構
成に対して同一番号を付し、説明を省略する。12は規
範速度応答値と現在の速度応答性を比較し、フィードバ
ック演算値を可変にすることができる演算器である。ま
た第2図は演算器12の処理内容を示すフb−チャート
である。まずモータの角速度ωM1位置θMとオブザー
バによって推定された負荷の角速度ω52位置θ。
FIG. 1 shows a block diagram of a motor speed control method in an embodiment of the present invention. In FIG. 1, the same components as in FIG. 4 are designated by the same numbers, and their explanations will be omitted. Reference numeral 12 denotes a computing unit that can compare the standard speed response value and the current speed response and make the feedback calculation value variable. Further, FIG. 2 is a flowchart showing the processing contents of the arithmetic unit 12. First, the angular velocity ωM1 position θM of the motor and the angular velocity ω52 position θ of the load estimated by the observer.

の偏差を求める。Find the deviation.

Δω=ω□−ω、        ・・・・・・(7)
Δθ=θM−θL        ・・・・・・(8)
となる。
Δω=ω□−ω, ・・・・・・(7)
Δθ=θM−θL (8)
becomes.

次に、第1図におけるフィードバック行列をkTとする
と、 k”−[K+、  K、M、  KPM、  K、t、
  Kst]  −−(91となる。
Next, if the feedback matrix in Fig. 1 is kT, then k"-[K+, K, M, KPM, K, t,
Kst] --(becomes 91.

u = −k”x                ・
・・・・11(1を状態フィードバックとすると、G1
式を(6)式に代入して、 x=Ax−kTx= (A−k”)x  ・・・・・・
(11)となる。
u = −k”x ・
...11 (If 1 is the state feedback, G1
Substituting the formula into formula (6), x=Ax-kTx= (A-k")x...
(11).

ここでシステムの応答性はA−kTの固有値で判定され
る。
Here, the responsiveness of the system is determined by the eigenvalue of A-kT.

(9)式におけるに、t、にθLを(8)式の偏差を含
んだ式に置きかえると、 K−t= k−L(1+Δω)      ・・・・・
・(12)K11L=に#t (1+Δθ)     
・・・・・・(13)となる。
In equation (9), if θL is replaced with an equation that includes the deviation of equation (8) for t, then K-t= k-L(1+Δω)...
・(12) K11L=#t (1+Δθ)
...(13).

(12) 、  (13)式を(9)式のフィードバッ
ク行列に代入し、(11)式のA−kTの固有値を求め
ると、オブザーバの系を含んだ応答性が得られる。得ら
れた固有値をαI(i=1.・・・・・・n)とし、目
標とするシステムの固有値がβ1(i=1.・・・・・
・n)をあらかじめ演算器12のメモリーに格納してお
き、αとβ直を比較する。この結果、1α1!〉1β1
1ならば現在の応答性は目標とする応答性を上回ってお
り、さらにフィードバックを ks=b  l  α11−1 β11      ・
・・・・・(15)(a、 bは重み係数)だけ行なう
。1α11〈1βなら応答性は目標より下回っており、
k、=−a11a+l−lβ−l、ke−−b If 
all  lβとしてフィードバックを減少させる。
By substituting equations (12) and (13) into the feedback matrix of equation (9) and finding the eigenvalue of A−kT in equation (11), the responsiveness including the observer system can be obtained. Let the obtained eigenvalue be αI (i=1...n), and the eigenvalue of the target system be β1 (i=1......n).
・N) is stored in the memory of the arithmetic unit 12 in advance, and α and β values are compared. As a result, 1α1! 〉1β1
If it is 1, the current responsiveness exceeds the target responsiveness, and further feedback is given as ks=b l α11-1 β11 ・
...(15) (a and b are weighting coefficients). If 1α11<1β, the responsiveness is lower than the target,
k,=-a11a+l-lβ-l,ke--b If
Decrease feedback as all lβ.

また、1α11=1β11ならに、、=ks−〇とし、
フィードバックの補正は行なわない。以上のように演算
器12より、第1図に示すようにk。
Also, if 1α11=1β11, then =ks−〇,
No feedback correction is performed. As described above, the arithmetic unit 12 calculates k as shown in FIG.

15とにβ16を可変的に速度指令と位置指令にフィー
ドバックすることにより、速度の応答性を規範応答に等
しくできる。以上のように本実施例によれば、モータに
接続される負荷の状g(速度1位置)の推定値をフィー
ドバックする際、現在の応答速度を規範(目標)の応答
性と等しくなるように速度フィードバック値1位置フィ
ードバック値を可変にすることにより、モータ負荷の振
動を押え、かつ連応性の良好な速度制御系を構成できる
By variably feeding back β16 to the speed command and the position command, the speed responsiveness can be made equal to the standard response. As described above, according to this embodiment, when feeding back the estimated value of the state g (velocity 1 position) of the load connected to the motor, the current response speed is made equal to the reference (target) response. By making the speed feedback value 1 and the position feedback value variable, it is possible to suppress vibrations of the motor load and configure a speed control system with good coordination.

発明の効果 以上のように本発明によれば、負荷の振動を抑え、かつ
速度の応答性を良好にすることができる。
Effects of the Invention As described above, according to the present invention, vibration of the load can be suppressed and speed responsiveness can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるモータ速度制御装置の
ブロック図、第2図は同装置の演算器12の処理内容を
示すフローチャート、第3図はモータ部と負荷の数式モ
デル図、第4図は従来のモータ制御装置の回路図である
。 12・・・・・・演算器。
FIG. 1 is a block diagram of a motor speed control device according to an embodiment of the present invention, FIG. 2 is a flowchart showing the processing contents of the computing unit 12 of the same device, FIG. 3 is a mathematical model diagram of the motor section and load, and FIG. The figure is a circuit diagram of a conventional motor control device. 12... Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] モータのエンコーダによりロータの位置と速度を検出し
、位置指令、速度指令に前記ロータの位置と速度を追従
させるモータ速度制御装置において、モータに接続され
る負荷の状態を演算する第1手段と、前記第1手段の演
算値を可変的に速度指令、位置指令にフィードバックす
る第2手段と、速度の応答性を算出する第3手段と、速
度の規範応答性と前記第3手段により算出された速度応
答性を比較しその差値を出力する第4手段を具備したモ
ータ速度制御装置。
In a motor speed control device that detects the position and speed of a rotor using an encoder of the motor and causes the position and speed of the rotor to follow a position command and a speed command, a first means for calculating a state of a load connected to the motor; a second means for variably feeding back the calculated value of the first means to a speed command and a position command; a third means for calculating speed responsiveness; and a speed standard responsiveness calculated by the third means. A motor speed control device comprising a fourth means for comparing speed responses and outputting a difference value.
JP1170144A 1989-06-30 1989-06-30 Motor-speed controller Pending JPH0336978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170144A JPH0336978A (en) 1989-06-30 1989-06-30 Motor-speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170144A JPH0336978A (en) 1989-06-30 1989-06-30 Motor-speed controller

Publications (1)

Publication Number Publication Date
JPH0336978A true JPH0336978A (en) 1991-02-18

Family

ID=15899487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170144A Pending JPH0336978A (en) 1989-06-30 1989-06-30 Motor-speed controller

Country Status (1)

Country Link
JP (1) JPH0336978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679011B1 (en) * 2004-07-15 2007-02-05 삼성전자주식회사 Scalable video coding method using base-layer and apparatus thereof
KR100703724B1 (en) * 2004-10-18 2007-04-05 삼성전자주식회사 Apparatus and method for adjusting bit-rate of scalable bit-stream coded on multi-layer base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100679011B1 (en) * 2004-07-15 2007-02-05 삼성전자주식회사 Scalable video coding method using base-layer and apparatus thereof
KR100703724B1 (en) * 2004-10-18 2007-04-05 삼성전자주식회사 Apparatus and method for adjusting bit-rate of scalable bit-stream coded on multi-layer base

Similar Documents

Publication Publication Date Title
JP2709969B2 (en) Servo motor control method
CN109756166B (en) Parameter setting method for dual closed-loop vector control PI (proportional integral) regulator of permanent magnet synchronous motor
US4914365A (en) Control device for servo motor
US4968925A (en) Universal field-oriented controller
JPH0683403A (en) Adaptive pi control system
JP2514669B2 (en) Servo motor control method
JP3239789B2 (en) Control device and control method
JP3656663B2 (en) Electric motor positioning control method
JPH0336978A (en) Motor-speed controller
JPH03289385A (en) Regulating method for gain of motor control
JPH0317703A (en) Zeroing method using speed-dependent disturbance estimating observer
JPH05252779A (en) Robot servo controller
JP3229926B2 (en) Motor position control device
JPH0580805A (en) Adaptive sliding mode control system based on pi control loop
JPH05224703A (en) Direct-device robot controller
JP3244184B2 (en) Torsion control system by state space method.
JPH11215883A (en) Two inertia resonance systems torque control method
JPH07327382A (en) Control system for ac motor
JPS61255415A (en) Control method for industrial robot
JP2784002B2 (en) Acceleration control type servo system
CN116599401B (en) Permanent magnet synchronous motor speed regulation control method based on self-adaptive sliding mode approach law
JP3424836B2 (en) AC motor current control device
JP2923993B2 (en) Motor control device
JPH061988B2 (en) Current control method for current source thyristor inverter
JPH06214656A (en) Sliding mode control method provided with damping element