JPH033692B2 - - Google Patents

Info

Publication number
JPH033692B2
JPH033692B2 JP12899283A JP12899283A JPH033692B2 JP H033692 B2 JPH033692 B2 JP H033692B2 JP 12899283 A JP12899283 A JP 12899283A JP 12899283 A JP12899283 A JP 12899283A JP H033692 B2 JPH033692 B2 JP H033692B2
Authority
JP
Japan
Prior art keywords
bisphenol
reaction
mol
epihalohydrin
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12899283A
Other languages
Japanese (ja)
Other versions
JPS6020926A (en
Inventor
Kaoru Kanayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58128992A priority Critical patent/JPS6020926A/en
Priority to US06/630,817 priority patent/US4656294A/en
Publication of JPS6020926A publication Critical patent/JPS6020926A/en
Publication of JPH033692B2 publication Critical patent/JPH033692B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は溶解性に優れ、か぀、䌞びず剛性のバ
ランスは優れ、耐熱性、耐衝撃性に優れた硬化物
を䞎えるスピロアセタヌル環を含有するポリグリ
シゞル゚ヌテルの補造方法に関するものである。
本発明の実斜により埗られるポリグリシゞル゚ヌ
テルはCFRP甚マトリツクス暹脂、電子郚品封止
剀、泚型材、積局材、塗料甚バむンダヌずしお有
甚である。 ゚ポキシ暹脂は優れた耐熱性、電気絶瞁性、耐
薬品性、機械特性を有するこずから、塗料接着
剀、封止剀、構造材等の分野で広汎に甚いられお
いる。特に近幎、炭玠繊維ずの耇合材料
CFRPが金属ず同等もしくはそれ以䞊の機械
的匷床、匟性率を有し、か぀軜量化が可胜ずなる
こずにより、宇宙航空機噚の構造材料、鉄道、自
動車等の茞送産業甚基材、たたはゎルフシダフ
ト、぀り竿、スキヌ板等のレゞダヌ甚郚材ずしお
甚いられおおり、今埌ずも倧きな発展が期埅され
おいる。 珟圚、CFRP甚マトリツクス暹脂ずしお甚いら
れおいるポリ゚ポキシ化合物ずしおはビスプノ
ヌルのゞグリシゞル゚ヌテル〔゚ピコヌト828、
゚ピコヌト1004等油化シ゚ル゚ポキシ(æ ª)商品
名〕、アミノプノヌルのポリ゚ポキシド〔ELM
−120䜏友化孊(æ ª)商品名〕、メチレンゞアニリン
のテトラ゚ポキシド〔YH−434東郜化成(æ ª)商
品名〕、クレゟヌルノボラツクポリ゚ポキシド
〔゚ピコヌト154油化シ゚ル゚ポキシ(æ ª)商品名〕、
オル゜クレゟヌルノボラツク゚ポキシド
〔EOCN104S日本化薬(æ ª)商品名〕等が挙げられ
る。 これらポリ゚ポキシ化合物より埗られる硬化物
は耐熱性は十分であるがカヌボン繊維匷化甚暹脂
ずしおは可撓性、耐衝撃性のより向䞊が望たれお
いるのが実情である。 可撓性に富む硬化物を䞎えるポリ゚ポキシ化合
物ずしおはスピロアセタヌル環を有するポリ゚ポ
キシ化合物が知られおいる。 䟋えばUSP3128255号明现曞には、次匏で瀺さ
れるポリ゚ポキシ化合物が開瀺されおいるが、こ
れより埗られる硬化物の熱倉圢枩床は147〜170℃
であり、CFRP甚暹脂ずしおは耐熱性に欠ける。 たた、USP3347871号および同第3388098号明
现曞には、(A)プノヌル性氎酞基に察しおアル
デヒド基がパラ䜍にある䞀䟡プノヌル類ずペン
タ゚リスリトヌルずを反応させお埗られる二䟡フ
゚ノヌルに、曎に(B)゚ピクロルヒドリンを反応さ
せるこずにより補造された䞀般匏、 〔匏䞭、は、Cl、CH3であり、は〜
の敎数である〕 で瀺されるポリ゚ポキシ化合物が開瀺されおい
る。しかし、このポリ゚ポキシ化合物は、耐熱
性、耐衝撃性に優れる硬化物を䞎えるが、可撓性
に改良の䜙地があるずずもに汎甚の溶剀、䟋えば
アセトン、メチル゚チルケトン、メチルむ゜ブチ
ルケトン、トル゚ン、酢酞゚チル、テトラヒドロ
フラン等に察する溶解性に乏しく、溶剀で垌釈し
お甚いるプロプレグや塗料甚のポリ゚ポキシ化合
物ずしおは実甚に乏しい。 本発明者は、このUSP3347871号の技術におい
お、原料の䞀䟡プノヌルずしお−オキシ−
−メトキシベンズアルデヒドず−オキシベンズ
アルデヒドを䜵甚しお埗られるポリグリシゞル゚
ヌテルが前蚘汎甚溶剀に察する溶解性に優れ、か
぀耐熱性、可撓性、䌞床−剛性バランスの良奜な
硬化物を䞎えるこずを芋い出し、本発明に到達し
た。 すなわち、本発明は、−オキシ−−メトキ
シベンズアルデヒドず−オキシベンズアルデヒ
ドの95〜95モル比混合物に、ペンタ゚リ
スリトヌルずを反応させお埗られるスピロアセタ
ヌル環を有するビスプノヌルに、曎に゚ピハロ
ヒドリンたたはβ−メチル゚ピハロヒドリンを反
応させおポリグリシゞル゚ヌテルを補造する方法
を提䟛するものである。 本発明の実斜においお、スピロアセタヌル環を
有するビスプノヌル混合物は、−オキシ−
−メトキシベンズアルデヒド〜95モル、奜た
しくは20〜80モルず、−オキシベンズアルデ
ヒド95〜モル、奜たしくは80〜20モルの混
合物にペンタ゚リスリトヌルを觊媒存圚䞋、40〜
200℃、奜たしくは80〜150℃に加熱しお脱氎瞮合
を行うこずにより容易に埗られる。原料の仕蟌み
比はペンタ゚リスリトヌルモルに察し化孊量論
量のアルデヒドが必芁であるが、過剰量のアルデ
ヒドを甚いおもさし぀かえない。 たた、溶剀を甚いお生成する氎を共沞により連
続的に反応系倖に陀去するこずが奜たしい。 甚いられる溶媒ずしおは、ベンれン、トル゚
ン、キシレン等の芳銙族炭化氎玠が経枈的である
が、これらにアルデヒドに察しより良溶媒の
−ゞメチルホルムアミド、−ゞメチルア
セトアミド、−メチルピロリドン、テトラヒド
ロフラン、ゞオキサン、ゞメチルスルホキシド等
を䜵甚しおも良い。 觊媒ずしおは、−トル゚ンスルホン酞が奜た
しく、他に、シナり酞、酢酞亜鉛、塩酞、硫酞等
通垞甚いられる脱氎瞮合觊媒を甚いおもよい。 䞀般に−オキシ−−メトキシベンズアルデ
ヒドの倚量の䜿甚は埗られるがポリグリシゞル゚
ヌテル化合物の溶剀に察する溶解を容易ずするず
ずもに、該ポリグリシゞル゚ヌテルの硬化物の䌞
びを向䞊させる。たた、−オキシベンズアルデ
ヒドは埗られるポリグリシゞル゚ヌテルの硬化物
の耐熱性、機械的匷床を向䞊させるように䜜甚す
る。 このビスプノヌル混合物は分離するこずが困
難である。その成分は、原料から掚定しお次匏
〜で瀺されるビスプノヌルの混合
物ず思われる。 〔匏䞭、は氎玠、R′はメトキシ基を瀺す〕。 次に、この反応により埗られた二䟡のビスプ
ノヌル混合物に゚ピハロヒドリンたたはβ−メチ
ル゚ピハロヒドリン以䞋、䞡者を「゚ピハロヒ
ドリン」で代衚させお蚘茉するを反応させおポ
リグリシゞル゚ヌテルを補造する方法ずしおは、
公知の゚ポキシ化方法を採甚できる。䟋えば次の
(1)〜(3)の方法があげられる。 (1) ビスプノヌル混合物ず過剰の「゚ピハロヒ
ドリン」ずをアルカリ金属氎酞化物の共存䞋に
反応させ、ビスプノヌル混合物ぞの「゚ピハ
ロヒドリン」の付加反応ず、゚ポキシ環を圢成
する閉環反応ずを同時に行぀おポリグリシゞル
゚ヌテルを補造する䞀段法。 (2) ビスプノヌル混合物ず過剰の「゚ピハロヒ
ドリン」ずをホスホニりム塩たたは四玚アンモ
ニりム塩等の觊媒の存圚䞋で付加反応させ、次
いでアルカリ金属氎酞化物を添加しお閉環反応
を行な぀おポリグリシゞル゚ヌテルを補造する
二段法。 (3) ビスプノヌル混合物ず過剰の「゚ピハロヒ
ドリン」及びアルコヌル等の反応促進溶媒を䜵
甚し、宀枩〜80℃の䜎枩䞋でアルカリ金属氎酞
化物氎溶液を添加し付加反応ず閉環反応を同時
に行う溶剀法。 これらの方法により埗られるポリグリシゞル゚
ヌテルは(1)(2)(3)の順に分子量分垃は増倧する
傟向にあり、目的に応じおこれらの゚ポキシ化方
法のいずれかを遞択するこずが可胜である。 ゚ポキシ化方法(1)の堎合、反応は60〜150℃、
奜たしくは80〜120℃の範囲の枩床で行われる。
スピロアセタヌル環を含有するビスプノヌル混
合物に察する「゚ピハロヒドリン」の配合量は
倍〜20倍モル、奜たしくは倍〜12倍モルであ
る。たたアルカリ金属氎酞化物はビスプノヌル
混合物の氎酞基に察しお少なくずも等モル、奜た
しくは1.05〜1.5モル倍量䜿甚する。 ゚ポキシ化方法(2)では前段の付加反応は40〜
150℃、奜たしくは70〜140℃で行われ、埌段の閉
環反応は20〜150℃、奜たしくは40〜80℃で行わ
れる。觊媒の量はビスプノヌル混合物に察しお
0.1〜モル、「゚ピハロヒドリン」及びアルカ
リ金属氎酞化物の量は䞀段法ず同様である。 たた゚ポキシ化方法(3)の堎合、甚いる溶剀は
「゚ピハロヒドリン」に察しお0.2〜5.0モル、
奜たしくは0.5〜2.0モル、反応枩床は宀枩〜80
℃で行うのが奜たしい。 䞀段法、及び二段法における埌段の閉環反応は
垞圧又は枛圧䞋50〜200mmHgで、生成する氎
を「゚ピハロヒドリン」ずの共沞により連続的に
系倖に陀去しながら行぀おもよい。 これらの反応終了埌、反応液を過助剀䟋え
ばセラむト等を甚いお過しお副生する塩を陀
去した埌、未反応の「゚ピハロヒドリン」を枛圧
回収し、生成物を埗るか又は反応液を枛圧しお未
反応の「゚ピハロヒドリン」を回収した埌、氎に
難溶性の有機溶媒、䟋えば、メチルむ゜ブチルケ
トン、トル゚ン等に溶解し、この溶液を氎たたは
枩氎ず接觊させお食塩等の無機䞍玔物を氎盞に溶
解し、その埌有機溶媒を留去しお粟補を行なう。 そしお、原料の「゚ピハロヒドリン」ずしお
は、たずえば゚ピクロルヒドリン、゚ピブロモヒ
ドリン、β−メチル゚ピクロルヒドリン及びβ−
メチル゚ピブロモヒドリン等があげられる。 たた、アルカリ金属氎酞化物ずしおは氎酞化カ
リりム、氎酞化ナトリりムが挙げられる。 曎に、二段法においお前段の付加反応に䜿甚さ
れる觊媒ずしおは、第四玚アンモニりム塩、ホス
フアむト等があげられる。第四玚アンモニりム塩
ずしおは、たずえばテトラメチルアンモニりムク
ロラむド、テトラ゚チルアンモニりムブロマむ
ド、トリ゚チルメチルアンモニりムクロラむド、
テトラ゚チルアンモニりムアむオダむド、セチル
トリ゚チルアンモニりムブロマむド等があげられ
る。ホスフアむトずしおはトリプニルホスホニ
りムハラむドたずえばアむオダむド、ブロマむ
ド、クロラむド、トリプニル゚チルホスホニ
りムゞ゚チルホスプむトおよびホスホネむト等
があげられる。特に奜たしい觊媒はテトラメチル
アンモニりムクロラむド又はテトラ゚チルアンモ
ニりムブロマむドである。 このようにしお埗られたポリグリシゞル゚ヌテ
ルは、䞀般には次匏〜で瀺されるポ
リグリシゞル゚ヌテルの混合物である。 〔匏䞭、は氎玠、R′はメトキシ基、EXは
The present invention relates to a method for producing polyglycidyl ether containing a spiroacetal ring, which provides a cured product with excellent solubility, an excellent balance between elongation and rigidity, and excellent heat resistance and impact resistance.
The polyglycidyl ether obtained by carrying out the present invention is useful as a matrix resin for CFRP, a sealant for electronic parts, a casting material, a laminated material, and a binder for paints. Epoxy resins have excellent heat resistance, electrical insulation, chemical resistance, and mechanical properties, and are therefore widely used in fields such as paint adhesives, sealants, and structural materials. In particular, in recent years, carbon fiber composite materials (CFRP) have mechanical strength and elastic modulus equal to or higher than metals, and can be made lighter. It is used as a base material for the transportation industry, such as golf shafts, fishing rods, skis, etc., and is expected to continue to develop greatly in the future. Polyepoxy compounds currently used as matrix resins for CFRP include diglycidyl ether of bisphenol A [Epicote 828,
Epicote 1004 etc.: Yuka Ciel Epoxy Co., Ltd. trade name], aminophenol polyepoxide [ELM
−120: Sumitomo Chemical Co., Ltd. trade name], methylene dianiline tetraepoxide [YH-434: Toto Kasei Co., Ltd. trade name], cresol novolac polyepoxide [Epicote 154: Yuka Ciel Epoxy Co., Ltd. trade name] ,
Examples include orthocresol novolac epoxide [EOCN104S: Nippon Kayaku Co., Ltd. trade name]. Although cured products obtained from these polyepoxy compounds have sufficient heat resistance, the reality is that as resins for reinforcing carbon fibers, improvements in flexibility and impact resistance are desired. Polyepoxy compounds having a spiroacetal ring are known as polyepoxy compounds that provide cured products with high flexibility. For example, USP 3,128,255 discloses a polyepoxy compound represented by the following formula, and the heat distortion temperature of the cured product obtained from this is 147 to 170°C.
Therefore, it lacks heat resistance as a CFRP resin. In addition, USP No. 3347871 and USP No. 3388098 include (A). A general formula produced by further reacting (B) epichlorohydrin with a divalent phenol obtained by reacting a monovalent phenol whose aldehyde group is in the para position with respect to the phenolic hydroxyl group and pentaerythritol, [In the formula, Y is H, Cl, CH3 , and n is 0 to 2
is an integer of ] is disclosed. However, although this polyepoxy compound provides a cured product with excellent heat resistance and impact resistance, there is still room for improvement in flexibility, and general-purpose solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, It has poor solubility in tetrahydrofuran, etc., and is of little practical use as a polyepoxy compound for propregs or paints that are diluted with a solvent. In the technique of USP 3,347,871, the present inventor discovered that 4-oxy-3
- It has been found that polyglycidyl ether obtained by using methoxybenzaldehyde and 4-oxybenzaldehyde in combination has excellent solubility in the above-mentioned general-purpose solvents and provides a cured product with good heat resistance, flexibility, and elongation-rigidity balance. , arrived at the present invention. That is, the present invention provides a bisphenol having a spiroacetal ring obtained by reacting a mixture of 4-oxy-3-methoxybenzaldehyde and 4-oxybenzaldehyde in a molar ratio of 5/95 to 95/5 with pentaerythritol, Furthermore, it provides a method for producing polyglycidyl ether by reacting epihalohydrin or β-methyl epihalohydrin. In the practice of this invention, the bisphenol mixture having a spiroacetal ring is 4-oxy-3
- Pentaerythritol is added to a mixture of 5 to 95 mol %, preferably 20 to 80 mol % of methoxybenzaldehyde and 95 to 5 mol %, preferably 80 to 20 mol % of 4-oxybenzaldehyde in the presence of a catalyst.
It can be easily obtained by heating to 200°C, preferably 80 to 150°C to carry out dehydration condensation. As for the charging ratio of raw materials, a stoichiometric amount of aldehyde is required per mole of pentaerythritol, but an excess amount of aldehyde may be used. Moreover, it is preferable to continuously remove water produced from the reaction system by azeotropy using a solvent. As the solvent used, aromatic hydrocarbons such as benzene, toluene, and xylene are economical, but in addition to these, N, which is a better solvent for aldehydes, is used.
N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, tetrahydrofuran, dioxane, dimethylsulfoxide, etc. may be used in combination. The catalyst is preferably p-toluenesulfonic acid, and other commonly used dehydration condensation catalysts such as oxalic acid, zinc acetate, hydrochloric acid, and sulfuric acid may also be used. Generally, the use of a large amount of 4-oxy-3-methoxybenzaldehyde facilitates the dissolution of the polyglycidyl ether compound in the solvent and improves the elongation of the cured product of the polyglycidyl ether compound. Furthermore, 4-oxybenzaldehyde acts to improve the heat resistance and mechanical strength of the resulting cured polyglycidyl ether. This bisphenol mixture is difficult to separate. The components are believed to be a mixture of bisphenols represented by the following formulas () to (), estimated from the raw materials. [In the formula, R represents hydrogen and R' represents a methoxy group]. Next, the divalent bisphenol mixture obtained by this reaction is reacted with epihalohydrin or β-methyl epihalohydrin (hereinafter both will be referred to as "epihalohydrin") to produce polyglycidyl ether. ,
A known epoxidation method can be employed. For example the following
Methods (1) to (3) can be mentioned. (1) A bisphenol mixture and excess "epihalohydrin" are reacted in the presence of an alkali metal hydroxide, and the addition reaction of "epihalohydrin" to the bisphenol mixture and the ring-closing reaction to form an epoxy ring are performed simultaneously. A one-step method for producing polyglycidyl ethers. (2) The bisphenol mixture and excess "epihalohydrin" are subjected to an addition reaction in the presence of a catalyst such as a phosphonium salt or a quaternary ammonium salt, and then an alkali metal hydroxide is added to perform a ring-closing reaction to form polyglycidyl. A two-step process for producing ether. (3) A solvent method in which an aqueous alkali metal hydroxide solution is added at a low temperature of room temperature to 80°C, using a bisphenol mixture, excess “epihalohydrin” and a reaction accelerating solvent such as alcohol to carry out addition and ring-closing reactions simultaneously. . The molecular weight distribution of polyglycidyl ethers obtained by these methods tends to increase in the order of (1), (2), and (3), and it is possible to select one of these epoxidation methods depending on the purpose. It is. In the case of epoxidation method (1), the reaction is carried out at 60-150℃,
Preferably it is carried out at a temperature in the range of 80-120°C.
The amount of "epihalohydrin" added to the bisphenol mixture containing a spiroacetal ring is 2
The amount is 20 times to 20 times, preferably 8 times to 12 times. The alkali metal hydroxide is used in an amount of at least equimolar, preferably 1.05 to 1.5 times the hydroxyl group of the bisphenol mixture. In epoxidation method (2), the first stage addition reaction is 40~
The reaction is carried out at 150°C, preferably 70-140°C, and the subsequent ring-closing reaction is carried out at 20-150°C, preferably 40-80°C. The amount of catalyst is based on the bisphenol mixture.
0.1-5 mol %, the amounts of "epihalohydrin" and alkali metal hydroxide are the same as in the one-stage process. In addition, in the case of epoxidation method (3), the solvent used is 0.2 to 5.0 mol% based on "epihalohydrin",
Preferably 0.5 to 2.0 mol%, reaction temperature is room temperature to 80
Preferably, it is carried out at .degree. The latter stage ring-closing reaction in the one-stage method and the two-stage method may be carried out under normal pressure or reduced pressure (50 to 200 mmHg) while continuously removing the generated water from the system by azeotroping with "epihalohydrin". . After the completion of these reactions, the reaction solution is filtered through a filter aid (for example, celite, etc.) to remove by-product salts, and the unreacted "epihalohydrin" is recovered under reduced pressure to obtain the product or the reaction solution is removed. After recovering unreacted "epihalohydrin" by reducing the pressure of the liquid, it is dissolved in an organic solvent that is sparingly soluble in water, such as methyl isobutyl ketone, toluene, etc., and this solution is brought into contact with water or hot water to remove inorganic substances such as common salt. Purification is carried out by dissolving impurities in an aqueous phase and then distilling off the organic solvent. Examples of the raw material "epihalohydrin" include epichlorohydrin, epibromohydrin, β-methylepichlorohydrin, and β-
Examples include methyl epibromohydrin. Further, examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Furthermore, examples of catalysts used in the first-stage addition reaction in the two-stage process include quaternary ammonium salts and phosphites. Examples of quaternary ammonium salts include tetramethylammonium chloride, tetraethylammonium bromide, triethylmethylammonium chloride,
Examples include tetraethylammonium iodide and cetyltriethylammonium bromide. Phosphites include triphenylphosphonium halides (eg iodide, bromide, chloride), triphenylethylphosphonium diethyl phosphate and phosphonates. A particularly preferred catalyst is tetramethylammonium chloride or tetraethylammonium bromide. The polyglycidyl ether thus obtained is generally a mixture of polyglycidyl ethers represented by the following formulas () to (). [In the formula, R is hydrogen, R' is methoxy group, EX is

【匏】であり、R″はたたはメチル 基である〕。 䜆し、反応、粟補条件によ぀おは次匏〜
等で瀺される高分子量䜓を40重量以䞋の
割合で含有するこずもある。 〔匏䞭、は、R′はメトキシ基、R″はた
たはCH3であり、は〜の敎数である〕。 本発明の実斜により埗られるポリグリシゞル゚
ヌテルは比范的䜎軟化点であり、䌞床ず匟性率の
バランスに優れた硬化物を䞎えるものであるため
にCFRD甚マトリツクス暹脂ずしお有甚であるば
かりでなく、このポリグリシゞル゚ヌテルはアセ
トン、メチル゚チルケトン、メチルむ゜ブチルケ
トン、トル゚ン、酢酞゚チル、塩化メチレン等に
溶解するので塗料、プリプレグ甚ワニス原料ずし
おも有甚である。 たた、このポリグリシゞル゚ヌテルは、単独
で、又は他の゚ポキシ化合物ず䜵甚しお゚ポキシ
暹脂ずしおの甚途に䟛するこずができる。すなわ
ち、この二官胜のポリグリシゞル゚ヌテル混合物
を単独で、又はこれに他の゚ポキシ化合物の皮
又は皮以䞊を䜵甚しお、適圓な硬化剀で硬化
架橋反応をさせれば、耐熱性、可撓性、耐衝
撃性に富む硬化物ずなる。䜵甚される他の゚ポキ
シ化合物には栌別の制限がなく、甚途等に応じお
皮々の゚ポキシ化合物が䜵甚される。その䜵甚さ
れる他の゚ポキシ化合物ずしおは、たずえばビス
プノヌル若しくはプロモビスプノヌル等
のポリグリシゞル゚ヌテル類、フタル類、シクロ
ヘキサンゞカルボン酞等のポリグリシゞル゚ステ
ル類、又はアニリン若しくはメチレンゞアニリン
等のポリグリシゞルアミン、アミノプノヌル類
の゚ポキシ化物およびプノヌルノボラツクおよ
びクレゟヌルノボラツク等のグリシゞル゚ヌテル
類等があげられる。 このポリグリシゞル゚ヌテル混合物を硬化させ
る硬化剀ずしおは既知の゚ポキシ暹脂におけるず
同様な皮々の硬化剀が䜿甚できる。たずえば、脂
肪族アミン類、芳銙族アミン類、耇玠環匏アミン
類、䞉フツ化ホり玠等のルむス酞及びそれらの塩
類、有機酞類、有機酞無氎物類、尿玠若しくはそ
れらの誘導䜓類、及びポリメルカプタン類等があ
げられる。その具䜓䟋ずしおは、たずえばゞアミ
ノゞプニルメタン、ゞアミノゞプニルスルホ
ン、−ゞアミノ−−キシレン等の芳銙族
アミン−メチルむミダゟヌル、−
トリプニルむミダゟヌル、−シアノ゚チル−
−メチルむミダゟヌル等のむミダゟヌル若しく
はむミダゟヌル眮換䜓たたはこれらず有機酞ずの
塩フマル酞、トリメリツト酞、ヘキサヒドロフ
タル酞等の有機カルボン酞無氎フタル酞、無氎
゚ンドメチレンテトラヒドロフタル酞、無氎ヘキ
サヒドロフタル酞等の有機酞無氎物ゞシアンゞ
アミド、メラミン、グアナミン等の尿玠誘導䜓
トリ゚チレンテトラミン、ゞ゚チレントリアミ
ン、キシリレンゞアミン、む゜ホロンゞアミン等
の脂肪族ポリアミン類及びこれらの゚チレンオキ
シド、プロピレンオキシド等の゚ポキシ化合物も
しくはアクリロニトリル、アクリル酞等のアクリ
ル化合物などずの付加物等が䜿甚できる。 さらに、このポリグリシゞル゚ヌテルには、硬
化剀のほかに、必芁に応じお可塑剀、有機溶剀、
反応性垌釈剀、増量剀、充おん剀、補匷剀、顔
料、難燃化剀、増粘剀及び可撓性付䞎剀等の皮々
の添加剀を配合するこずができる。 本発明の実斜により埗られるポリグリシゞル゚
ヌテルから埗られる゚ポキシ暹脂硬化物は、埓来
のビスプノヌル系゚ポキシ暹脂ず比べお䌞床
−匟性率のバランス、耐衝撃性に優れ、か぀耐熱
性にも優れおおり、CFRP甚マトリツクス暹脂、
電子郚品封止剀、泚型剀、積局材、塗料ずしお有
甚である。 以䞋に実斜䟋をあげおさらに具䜓的な説明をす
るが、これらの実斜䟋は䟋瀺であり、本発明は実
斜䟋によ぀お制限されるものでない。 二䟡ポリプノヌルの補造䟋〜 䟋  枩床蚈、窒玠導入管、撹拌装眮、氎分離噚の付
いたの四぀口フラスコ内に、−オキシ−
−メトキシベンズアルデヒドバニリン76
0.5モル、−オキシベンズアルデヒド61
0.5モル、ペンタ゚リスリトヌル68、パラト
ル゚ンスルホン酞30、トル゚ン500mlおよび
−ゞメチルホルムアミド150mlを仕蟌んだ。窒
玠ガスを系内に流しながら120℃に加熱し脱氎瞮
合を行぀た。生成氎はトル゚ンずの共沞により連
続的に陀去し、理論量に達した時点18mlで反
応の終点ずした。 反応終了埌、埗られた生成物の溶液をの氎
䞭に投入し、析出した結晶を別、也燥しおスピ
ロアセタヌル環を含有するビスプノヌルの淡赀
色結晶147.7収率79.0を埗た。 この結晶の融点は189℃〜204℃であ぀た。た
た、この結晶を液䜓クロマトグラフで分析した結
果、䞋蚘䞀般匏においお R′のものが25、R′OCH3のも
のが50からなる混合物であるこずが刀明した。 䟋  バニリン380.25モル、−ヒドロキシベ
ンズアルデヒド91.50.75モルず䜿甚する量
を倉曎する他は䟋ず同様にしおスピロアセタヌ
ル環を含有するビスプノヌルの淡赀耐色結晶
133.4収率74.3を埗た。 この結晶の融点は206℃〜221℃であ぀た。た
た、液䜓クロマトグラフ分析の結果、匏に
おいお、R′のものが54.2R′
OCH3のものが8.3R′OCH3のもの
が37.5であ぀た。 䟋  バニリン1140.75モル、−ヒドロキシベ
ンズアルデヒド30.50.25モルず䜿甚量を倉
曎する他は䟋ず同様にしおスピロアセタヌル環
を含有するビスプノヌルの淡耐色結晶137.1
収率70.5を埗た融点182℃〜201℃。液䜓
クロマトグラフ分析の結果、匏においお
R′のものが8.0R′OCH3のもの
が56.7R′OCH3のものが35.3で
あ぀た。 䟋  バニリン76および−ヒドロキシベンズアル
デヒド61の代りに、−ヒドロキシベンズアル
デヒド1221.0モルを甚いる他は䟋ず同様
にしお−ビス−ヒドロキシプニル
−10−テトラオキサスピロ〔5.5〕
りンデカンの癜色粉末を埗た融点251〜253℃。 䟋  −ヒドロキシベンズアルデヒド1221.0モ
ルの代りに−クロロ−−ヒドロキシベンズ
アルデヒド150モルを甚いる他は䟋ず
同様にしお−ビス−クロロヒドロキシ
プニル−10−テトラオキサスピ
ロ〔5.5〕りンデカンを埗た。 䟋  −ヒドロキシベンズアルデヒド122モ
ルの代りに−メチル−−ヒドロキシベンズ
アルデヒド133モルを甚いる他は䟋ず
同様にしお−ビス−−メチルヒドロ
キシプニル−10−テトラオキサ
スピロ〔5.5〕りンデカンを埗た。 䟋  −ヒドロキシベンズアルデヒド122の代り
に、バニリン122モルを甚いる他は䟋
ず同様にしお、−ビス−オキシ−−
メトキシプニル−10−テトラオ
キサスピロ〔5.5〕りンデカンの癜色結晶融点
175℃を132.1埗た。 実斜䟋  前蚘䟋で埗たスピロアセタヌル環を含有する
ビスプノヌル1870.5モル、゚ピクロルヒ
ドリン462.55.0モル、テトラメチルアンモ
ニりムブロマむド40を枩床蚈、冷华噚、撹拌装
眮の付いたの䞉぀口フラスコ内に仕蟌み、還
流䞋117℃で時間反応を行぀た。 その埌、反応溶液を60℃に冷华し、氎分離噚を
取り付け、氎酞化ナトリりム421.05モルを
加え、枛圧䞋150〜100mmHgで閉環反応を行
぀た。生成する氎ぱピクロルヒドリンずの共沞
により連続的に系倖に陀去しながら生成氎が18ml
に達した時点で反応を終了した。 末反応の゚ピクロルヒドリンを0.1〜50mmHg、
60〜〜110℃で回収した埌、メチルむ゜ブチルケ
トンを加えお生成物をスラリヌ状ずし、次い
で500mlの氎で十分に氎掗しお副生した塩化ナト
リりムを陀去した。 氎掗埌の生成物溶液よりメチルむ゜ブチルケト
ンをロヌタリヌ゚バポレヌタヌを甚いお枛圧留去
し、淡黄色の固䜓228を埗た。 このものの゚ポキシ圓量は280であり、軟化枩
床は72〜78℃であ぀た。 実斜䟋  ビスプノヌルずしお前蚘䟋で埗たスピロア
セタヌル環を有するビスプノヌル179.5を甚
いる他は実斜䟋ず同様にしお゚ポキシ化反応を
行い、淡黄色の固䜓212を埗た゚ポキシ圓量
260、軟化点75〜85℃。 実斜䟋  ビスプノヌルずしお前蚘䟋で埗たスピロア
セタヌル環を含有するビスプノヌル194.5を
甚いた他は実斜䟋ず同様にしお゚ポキシ化反応
を行い、淡黄色固䜓223を埗た゚ポキシ圓量
292、軟化点61〜70℃。 比范䟋 〜 前蚘䟋〜より埗られたビスプノヌルの
0.5モルをビスプノヌルずしお甚いる他は実斜
䟋ず同様にしお衚に瀺す物性を有するポリグ
リシゞル゚ヌテルを補造した。 溶剀に察する溶解性テスト 実斜䟋〜および比范䟋〜ならびに汎甚
のビスプノヌルのゞグリシゞル゚ヌテル“゚
ピコヌト828”〔油化シ゚ル゚ポキシ(æ ª)補商品名、
゚ポキシ圓量玄186〕重量郚に、衚に瀺す各
皮溶剀95重量郚をかきたぜ、ポリグリシゞル゚ヌ
テルの溶解性を調査した。 結果を同衚に瀺す。
[Formula] and R'' is H or a methyl group]. However, depending on the reaction and purification conditions, the following formula () ~
It may contain 40% by weight or less of high molecular weight substances such as those shown in parentheses. [In the formula, R is H, R' is a methoxy group, R'' is H or CH3 , and m is an integer from 1 to 5.] The polyglycidyl ether obtained by carrying out the present invention has a relatively low softening property. This polyglycidyl ether is not only useful as a matrix resin for CFRD because it gives a cured product with an excellent balance between elongation and elastic modulus. Since it dissolves in ethyl acetate, methylene chloride, etc., it is useful as a raw material for paints and prepreg varnishes.In addition, this polyglycidyl ether can be used alone or in combination with other epoxy compounds as an epoxy resin. That is, if this bifunctional polyglycidyl ether mixture is used alone or in combination with one or more other epoxy compounds, a curing (crosslinking) reaction is performed with an appropriate curing agent. , it becomes a cured product with high heat resistance, flexibility, and impact resistance.There are no particular restrictions on other epoxy compounds used in combination, and various epoxy compounds are used in combination depending on the application. Examples of other epoxy compounds include polyglycidyl ethers such as bisphenol A or promobisphenol A, phthals, polyglycidyl esters such as cyclohexanedicarboxylic acid, polyglycidyl amines such as aniline or methylene dianiline, amino acids, etc. Examples include epoxidized phenols and glycidyl ethers such as phenol novolac and cresol novolac.As the curing agent for curing this polyglycidyl ether mixture, various curing agents similar to those used in known epoxy resins can be used. For example, aliphatic amines, aromatic amines, heterocyclic amines, Lewis acids such as boron trifluoride and their salts, organic acids, organic acid anhydrides, urea or their derivatives, and polyamides. Mercaptans, etc. Specific examples include aromatic amines such as diaminodiphenylmethane, diaminodiphenyl sulfone, 2,4-diamino-m-xylene; 2-methylimidazole, 2,4,5-
Triphenylimidazole, 1-cyanoethyl-
Imidazole or imidazole substitutes such as 2-methylimidazole, or salts of these with organic acids; organic carboxylic acids such as fumaric acid, trimellitic acid, hexahydrophthalic acid; phthalic anhydride, endomethylenetetrahydrophthalic anhydride, hexahydro anhydride Organic acid anhydrides such as phthalic acid; urea derivatives such as dicyandiamide, melamine, and guanamine;
Aliphatic polyamines such as triethylenetetramine, diethylenetriamine, xylylenediamine, and isophoronediamine, and adducts of these with epoxy compounds such as ethylene oxide and propylene oxide, or acrylic compounds such as acrylonitrile and acrylic acid, etc. can be used. In addition to curing agents, this polyglycidyl ether also contains plasticizers, organic solvents,
Various additives such as reactive diluents, extenders, fillers, reinforcing agents, pigments, flame retardants, thickeners and flexibility agents can be incorporated. The cured epoxy resin obtained from the polyglycidyl ether obtained by carrying out the present invention has a better elongation-modulus balance, better impact resistance, and better heat resistance than conventional bisphenol A-based epoxy resins. CFRP matrix resin,
It is useful as an electronic component encapsulant, casting agent, laminated material, and paint. A more specific explanation will be given below with reference to Examples, but these Examples are merely illustrative and the present invention is not limited by the Examples. Production Examples 1 to 6 of Divalent Polyphenol Example 1 Into a four-necked flask equipped with a thermometer, nitrogen inlet tube, stirring device, and water separator, 4-oxy-3
-Methoxybenzaldehyde (vanillin) 76g
(0.5 mol), 4-oxybenzaldehyde 61g
(0.5 mol), 68 g of pentaerythritol, 30 g of para-toluenesulfonic acid, 500 ml of toluene and N,
150 ml of N-dimethylformamide was charged. Dehydration condensation was carried out by heating to 120°C while flowing nitrogen gas into the system. The produced water was continuously removed by azeotroping with toluene, and the reaction was terminated when the theoretical amount was reached (18 ml). After the reaction was completed, the solution of the obtained product was poured into water in Step 5, and the precipitated crystals were separated and dried to obtain 147.7 g (yield 79.0%) of pale red crystals of bisphenol containing a spiroacetal ring. Ta. The melting point of this crystal was 189°C to 204°C. In addition, as a result of analyzing this crystal by liquid chromatography, the following general formula () was found. It turned out to be a mixture consisting of 25% R=R'=H and 50% R=R'=OCH 3 . Example 2 Light reddish brown crystals of bisphenol containing a spiroacetal ring were prepared in the same manner as in Example 1, except that the amounts used were changed: 38 g (0.25 mol) of vanillin, 91.5 g (0.75 mol) of p-hydroxybenzaldehyde.
133.4g (yield 74.3%) was obtained. The melting point of this crystal was 206°C to 221°C. In addition, as a result of liquid chromatography analysis, in formula (), 54.2% of R=R'=H;R=R'=
8.3% of OCH 3 ; 37.5% of R=H, R′=OCH 3 . Example 3 137.1 g of light brown crystals of bisphenol containing a spiroacetal ring were prepared in the same manner as in Example 1 except that the amounts used were changed to 114 g (0.75 mol) of vanillin and 30.5 g (0.25 mol) of p-hydroxybenzaldehyde.
(yield 70.5%) (melting point 182°C to 201°C). As a result of liquid chromatography analysis, in formula (), R
=R'=H was 8.0%; R=R'=OCH 3 was 56.7%; R=H, R'=OCH 3 was 35.3%. Example 4 3,9-bis(p-hydroxyphenyl) was prepared in the same manner as in Example 1 except that 122 g (1.0 mol) of p-hydroxybenzaldehyde was used instead of 76 g of vanillin and 61 g of p-hydroxybenzaldehyde.
-2,4,8,10-tetraoxaspiro [5.5]
A white powder of undecane was obtained (melting point 251-253°C). Example 5 3,9-bis(p-chlorohydroxyphenyl) was prepared in the same manner as in Example 1 except that 150 g (1 mol) of 3-chloro-4-hydroxybenzaldehyde was used instead of 122 g (1.0 mol) of p-hydroxybenzaldehyde. -2,4,8,10-tetraoxaspiro[5.5]undecane was obtained. Example 6 3,9-bis(p-2-methylhydroxyl) was prepared in the same manner as in Example 4, except that 133 g (1 mol) of 3-methyl-4-hydroxybenzaldehyde was used instead of 122 g (1 mol) of p-hydroxybenzaldehyde. Enyl)-2,4,8,10-tetraoxaspiro[5.5]undecane was obtained. Example 7 Example 4 except that 122 g (1 mol) of vanillin was used instead of 122 g of p-hydroxybenzaldehyde.
3,9-bis(4-oxy-3-
White crystals of (methoxyphenyl)-2,4,8,10-tetraoxaspiro[5.5]undecane (melting point
175°C) was obtained. Example 1 187 g (0.5 mol) of the spiroacetal ring-containing bisphenol obtained in Example 7 above, 462.5 g (5.0 mol) of epichlorohydrin, and 40 g of tetramethylammonium bromide were placed in a 1-tub system equipped with a thermometer, a cooler, and a stirring device. The mixture was charged into a three-necked flask, and the reaction was carried out under reflux (117°C) for 2 hours. Thereafter, the reaction solution was cooled to 60° C., a water separator was attached, 42 g (1.05 mol) of sodium hydroxide was added, and a ring-closing reaction was carried out under reduced pressure (150 to 100 mmHg). The produced water is continuously removed from the system by azeotroping with epichlorohydrin, and the produced water is reduced to 18ml.
The reaction was terminated when the temperature reached . 0.1 to 50 mmHg of epichlorohydrin in the final reaction,
After collection at 60 to 110°C, 1 methyl isobutyl ketone was added to make the product into a slurry, and the product was thoroughly washed with 500 ml of water to remove by-produced sodium chloride. Methyl isobutyl ketone was distilled off under reduced pressure from the product solution after washing with water using a rotary evaporator to obtain 228 g of a pale yellow solid. The epoxy equivalent of this product was 280, and the softening temperature was 72-78°C. Example 2 An epoxidation reaction was carried out in the same manner as in Example 1, except that 179.5 g of bisphenol having a spiroacetal ring obtained in Example 2 was used as the bisphenol, and 212 g of a pale yellow solid was obtained (epoxy equivalent:
260, softening point 75-85℃). Example 3 An epoxidation reaction was carried out in the same manner as in Example 1, except that 194.5 g of the spiroacetal ring-containing bisphenol obtained in Example 3 was used as the bisphenol, and 223 g of a pale yellow solid was obtained (epoxy equivalent:
292, softening point 61-70℃). Comparative Examples 1-4 Bisphenols obtained from Examples 4-7 above
A polyglycidyl ether having the physical properties shown in Table 1 was produced in the same manner as in Example 1, except that 0.5 mol was used as bisphenol. Solubility test in solvents Examples 1 to 3 and Comparative Examples 1 to 4 and general-purpose diglycidyl ether of bisphenol A “Epicote 828” [trade name, manufactured by Yuka Ciel Epoxy Co., Ltd.
5 parts by weight of epoxy equivalent (approximately 186) were mixed with 95 parts by weight of various solvents shown in Table 1, and the solubility of the polyglycidyl ether was investigated. The results are shown in the same table.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  −オキシ−−メトキシベンズアルデヒド
ず−オキシベンズアルデヒドの95〜95
モル比混合物に、ペンタ゚リスリトヌルずを反応
させお埗られるスピロアセタヌル環を有するビス
プノヌルに、曎に゚ピハロヒドリンたたはβ−
メチル゚ピハロヒドリンを反応させおポリグリシ
ゞル゚ヌテルを補造するこずを特城ずする補造方
法。  ビスプノヌルが䞋蚘〜で瀺さ
れるビスプノヌルの混合物であるこずを特城ず
する特蚱請求の範囲第項蚘茉の補造方法。 〔匏䞭、は氎玠、R′はメトキシ基を瀺す〕。
[Claims] 1 5/95 to 95/5 of 4-oxy-3-methoxybenzaldehyde and 4-oxybenzaldehyde
In the molar ratio mixture, bisphenol having a spiroacetal ring obtained by reacting pentaerythritol with epihalohydrin or β-
A production method characterized by producing polyglycidyl ether by reacting methyl epihalohydrin. 2. The manufacturing method according to claim 1, wherein the bisphenol is a mixture of bisphenols represented by the following () to (). [In the formula, R represents hydrogen and R' represents a methoxy group].
JP58128992A 1983-07-15 1983-07-15 Production of polyglycidyl ether Granted JPS6020926A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58128992A JPS6020926A (en) 1983-07-15 1983-07-15 Production of polyglycidyl ether
US06/630,817 US4656294A (en) 1983-07-15 1984-07-13 Polyglycidyl ethers and a process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58128992A JPS6020926A (en) 1983-07-15 1983-07-15 Production of polyglycidyl ether

Publications (2)

Publication Number Publication Date
JPS6020926A JPS6020926A (en) 1985-02-02
JPH033692B2 true JPH033692B2 (en) 1991-01-21

Family

ID=14998447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58128992A Granted JPS6020926A (en) 1983-07-15 1983-07-15 Production of polyglycidyl ether

Country Status (1)

Country Link
JP (1) JPS6020926A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373489B2 (en) * 1988-12-12 1999-12-15 The Dow Chemical Company Concurrent addition process for preparing high purity epoxy resins
JP3359410B2 (en) * 1994-03-04 2002-12-24 䞉菱電機株匏䌚瀟 Epoxy resin composition for molding, molded product for high voltage equipment using the same, and method for producing the same

Also Published As

Publication number Publication date
JPS6020926A (en) 1985-02-02

Similar Documents

Publication Publication Date Title
JPS643217B2 (en)
JPS63142019A (en) Polyfunctional epoxide resin
US4532308A (en) Epoxy resin composition
JPS61282372A (en) Polyepoxide and use
JPH0212225B2 (en)
JPH0377814B2 (en)
JPH0212950B2 (en)
US4656294A (en) Polyglycidyl ethers and a process for producing the same
KR910004902B1 (en) Phenol ethers containing epoxide groups
JPH033692B2 (en)
JPS58194874A (en) Tetrafunctional epoxy compound
JPH05140138A (en) Epoxy resin, resin composition and cured product
JPH0434558B2 (en)
JPS6165876A (en) Trifunctional epoxy compound
JPH0245632B2 (en)
JPH0245633B2 (en)
KR960007027B1 (en) Pneumatic tire
JPH09132635A (en) Bisphenol f epoxy resin of low halogen content, its production, epoxy resin composition and its production
JPS591488A (en) Preparation of polyepoxy compound
JPS61186376A (en) Novel polyepoxy compound
JPS6343396B2 (en)
JPS58213783A (en) Purification of polyepoxy compound
JPS627913B2 (en)
JPS59175482A (en) Preparation of epoxy compound
JPS61186377A (en) Novel polyepoxy compound