JPH0336917Y2 - - Google Patents

Info

Publication number
JPH0336917Y2
JPH0336917Y2 JP19236085U JP19236085U JPH0336917Y2 JP H0336917 Y2 JPH0336917 Y2 JP H0336917Y2 JP 19236085 U JP19236085 U JP 19236085U JP 19236085 U JP19236085 U JP 19236085U JP H0336917 Y2 JPH0336917 Y2 JP H0336917Y2
Authority
JP
Japan
Prior art keywords
flow cell
gas
holes
sliding body
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19236085U
Other languages
Japanese (ja)
Other versions
JPS62115143U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19236085U priority Critical patent/JPH0336917Y2/ja
Publication of JPS62115143U publication Critical patent/JPS62115143U/ja
Application granted granted Critical
Publication of JPH0336917Y2 publication Critical patent/JPH0336917Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【考案の詳細な説明】 イ 産業上の利用分野 本考案は、ガスクロマトグラフから流出した試
料成分をフーリエ変換型赤外分光光度計によつて
分析する分析手法(GC−FTIR)等に用いるガ
スフローセル装置に関する。
[Detailed explanation of the invention] A. Field of industrial application This invention is a gas flow cell used in analytical methods such as GC-FTIR, in which sample components flowing out from a gas chromatograph are analyzed using a Fourier transform infrared spectrophotometer. Regarding equipment.

ロ 従来の技術 GC−FTIRの測定において、従来はガスクロ
マトグラフから出てきた流出ガスを、FTIR(フ
ーリエ変換型赤外分光光度計)の試料室内のフロ
ーセルに導入し、リアルタイムで測定する方式が
一般的であるが、測定時間が少なくて十分な積算
効果が得られず、試料成分が微量の場合、真のデ
ータがノイズの中に埋もれてしまい、十分な分析
感度が得られないという問題点があつた。
B. Conventional technology In GC-FTIR measurements, the conventional method was to introduce the outflow gas from a gas chromatograph into a flow cell in the sample chamber of an FTIR (Fourier transform infrared spectrophotometer) and measure it in real time. However, the problem is that the measurement time is short and sufficient integration effect cannot be obtained, and if the sample components are in trace amounts, the true data is buried in noise, making it impossible to obtain sufficient analysis sensitivity. It was hot.

ハ 考案が解決しようとする問題点 本考案は、従来のGC−FTIRの測定において、
分析感度が低いという問題点を解消するのを目的
とする。
C. Problems that the invention aims to solve The invention solves the following problems in conventional GC-FTIR measurements.
The purpose is to solve the problem of low analytical sensitivity.

ニ 問題点解決するための手段 フローセルを用いたGC−FTIR装置において、
軸と平行に複数個の孔(フローセル用貫通孔)を
穿設した摺動体、同摺動体の両端面に摺接して上
記複数個の貫通孔の両端を閉塞している側板より
なるガス保持装置において、上記貫通孔の通過軌
跡上に臨み、上記両側板において互いに対向する
位置に、一対の光入射窓、光出射窓及び一対のガ
ス流入孔、ガス流出孔を設けた分光分析用フロー
セル装置。
D. Means for solving problems In a GC-FTIR device using a flow cell,
A gas retention device consisting of a sliding body with a plurality of holes (flow cell through holes) drilled in parallel with the axis, and a side plate that slides on both end surfaces of the sliding body and closes both ends of the plurality of through holes. A flow cell device for spectroscopic analysis, wherein a pair of light entrance windows, a light exit window, and a pair of gas inflow holes and gas outflow holes are provided at mutually opposing positions on the both side plates facing on the path of passage of the through hole.

更に、上記摺動体に駆動装置を連結し、ガス検
出器でガスが検出されたことを検知し、その検知
時間より適宜時間遅延して、摺動体のフローセル
が順次所定の位置に保持されるように、駆動装置
を駆動させることにより、順次指定されたガスを
別々のフローセル用貫通孔に保持させる制御装置
を設けたことを特徴とする分光分析用フローセル
装置。
Furthermore, a drive device is connected to the sliding body, so that the gas detector detects the detection of gas, and the flow cells of the sliding body are sequentially held at predetermined positions with an appropriate time delay from the detection time. A flow cell device for spectroscopic analysis, further comprising a control device that sequentially holds specified gases in separate flow cell through-holes by driving a drive device.

ホ 作用 本考案によれば、測定ガス成分をフローセル内
に保持しておいて、任意時期に任意に時間をかけ
て測定することができるので、フーリエ変換赤外
分光分析測定の特徴である積算効果が生かされ
て、測定ガス成分が微量でもS/N比の良い測定
データを入手することが出来て、ガスクロマトグ
ラフ流出ガス等時間的に変化する試料の分析を、
感度を落とさずに行うことが可能になつた。
E. Effect According to the present invention, the gas components to be measured can be held in the flow cell and measured at any time and over an arbitrary period of time. By taking advantage of this, it is possible to obtain measurement data with a good S/N ratio even if the measured gas components are minute, making it possible to analyze samples that change over time, such as gas chromatograph effluent gas.
It is now possible to do this without reducing sensitivity.

更に、駆動装置を使つてCPUにより順次摺動
体を摺動させて、フローセルに測定ガス成分を保
持したり、フローセル内のガスを順次測定するこ
とを自動的に行わせることによつて、測定能率が
向上する。
Furthermore, measurement efficiency can be improved by automatically holding the measuring gas components in the flow cell and sequentially measuring the gas in the flow cell by sequentially sliding the sliding body by the CPU using a drive device. will improve.

ヘ 実施例 第1図は本考案の一実施例の縦断側面図であ
る。第1図において、1は回転部で回転軸1b
(第2図)を両端面に突出させた円柱であり、こ
の円柱と同心の一円周上に軸と平行に孔(フロー
セル用貫通孔)1aが数個貫通していて回転部を
構成している。2は固定台で両端に互いに対向す
る一対の側板3,3′を有する。両方の側板3,
3′は回転部1の両端面に摺接しており、中央に
回転軸1bに適合した孔を設け、同孔に回転部1
の回転軸1bを挿入させて、回転部を回転可能に
保持している。回転部1に設けられたフローセル
1aの一つが図で上部位置に来た時に合致するよ
うに、光出射孔13と光入射孔12を両方の側板
3,3′の上部に、フローセル1aの軸方向と平
行に貫通させて設け、側板3,3′の上面から出
射孔13及び入射孔12の中央部に向けて孔を貫
通させて、同孔にパイプ15及びパイプ14を接
続させる。側板3は固定台2と一体的であり、他
方3′は固定台2に回転方向には固定され、軸方
向には摺動可能に複数本のピン19によつて係合
されている。4はバネで回転軸1bに嵌合され、
5はバネ止めで回転部1の回転軸1bの端に螺着
され、バネ4を圧縮して回転部1を側板3の方へ
引付け、回転部1の端面を側板3に圧接させてい
る。6はバネでバネ4と同じように右側の側板
3′を回転部1に圧接させる。7はバネ止めピン
で回転軸1bに差し込まれている。8は窓板で右
側側板3′に設けられた入射孔12を外気から遮
断する通光性の板、9も窓板で左側側板3に設け
られた出射孔13を外気から遮断する通光性の
板、10はパイプ14の入射孔12の近くに設置
された電磁弁、11はパイプ15の出射孔13の
近くに設置された電磁弁である。16はパルスモ
ーターでCPU21からの駆動信号より回転部1
を回転させる。17はフーリエ変換赤外分光器、
18は光検出器、20は回転軸1bとパルスモー
ター16の軸とを連結させる継手、21はCPU
でガスクロマトグラフ検出器22の検出データを
記憶すると共に検出データに基づき、パルスモー
ター16に駆動信号を送ると共に検出器18の検
出出力も記憶し、データ処理を行う。ガスクロマ
トグラフ検出器22は、ガスクロマトグラフから
流出する試料成分を検出するものである。
F. Embodiment FIG. 1 is a longitudinal sectional side view of an embodiment of the present invention. In Fig. 1, 1 is a rotating part with a rotating shaft 1b.
(Fig. 2) is a cylinder with protrusions on both end faces, and several holes (through-holes for flow cell) 1a are penetrated on one circumference concentric with this cylinder in parallel to the axis, forming a rotating part. ing. Reference numeral 2 denotes a fixed base having a pair of side plates 3, 3' facing each other at both ends. both side plates 3,
3' is in sliding contact with both end surfaces of the rotating part 1, and a hole that fits the rotating shaft 1b is provided in the center, and the rotating part 1 is inserted into the hole.
The rotating shaft 1b is inserted to rotatably hold the rotating part. The light exit hole 13 and the light entrance hole 12 are placed at the top of both side plates 3 and 3', and the axis of the flow cell 1a is aligned so that they coincide when one of the flow cells 1a provided in the rotating part 1 is at the upper position in the figure. A hole is passed through the side plate 3, 3' from the upper surface of the side plate 3, 3' toward the center of the emission hole 13 and the entrance hole 12, and the pipe 15 and the pipe 14 are connected to the hole. The side plate 3 is integral with the fixed base 2, and the other side plate 3' is fixed to the fixed base 2 in the rotational direction and slidably engaged in the axial direction by a plurality of pins 19. 4 is fitted to the rotating shaft 1b with a spring,
5 is screwed onto the end of the rotating shaft 1b of the rotating part 1 with a spring stopper, compressing the spring 4 to draw the rotating part 1 toward the side plate 3, and press the end surface of the rotating part 1 against the side plate 3. . A spring 6 presses the right side plate 3' against the rotating part 1 in the same way as the spring 4. Reference numeral 7 is a spring lock pin inserted into the rotating shaft 1b. Reference numeral 8 denotes a window plate, which is a light-permeable plate that blocks the entrance hole 12 provided in the right-hand side plate 3' from the outside air, and 9 also refers to a window plate, which has a light-permeable property that blocks the exit hole 13 provided in the left-hand side plate 3 from the outside air. 10 is a solenoid valve installed near the entrance hole 12 of the pipe 14, and 11 is a solenoid valve installed near the exit hole 13 of the pipe 15. 16 is a pulse motor that rotates the rotating part 1 based on the drive signal from the CPU 21.
Rotate. 17 is a Fourier transform infrared spectrometer;
18 is a photodetector, 20 is a joint that connects the rotating shaft 1b and the shaft of the pulse motor 16, and 21 is a CPU.
Detection data of the gas chromatograph detector 22 is stored, and based on the detection data, a drive signal is sent to the pulse motor 16, and the detection output of the detector 18 is also stored, and data processing is performed. The gas chromatograph detector 22 detects sample components flowing out from the gas chromatograph.

次に測定方法を説明する。電磁弁10,11は
通常開いており、ガスクロマトグラフ(不図示)
からパイプ14を通つてカラム流出ガスが回転部
1の一番上の位置にあるフローセル1aに流入し
パイプ15を通つて出て行く。フローセル1aは
フーリエ変換赤外分光器17と検出器18の間の
光軸上に位置され、フローセル1a内に流入した
ガスを測定できるように配置されている。フロー
セル1a内とガスクロマトグラフとの間に挿入さ
れたガスクロマトグラフ検出器22が試料成分の
ピークを検出するとそのデータをCPU21に移
送する。CPU21はこのピーク検出信号が測定
前に予め指定された順位のピークに相当するもの
であるか否か判別し、指定されているピークと判
別した場合、一定の遅れ時間の後、駆動信号を発
生させてパルスモーター16により回転部1をフ
ローセルの1ピツチ分だけ回転させて、フローセ
ル1a内に指定された試料成分ガスを閉じ込め、
次のフローセル1aを光入出射孔12,13に合
致させる。上記した一定の遅れ時間はガスクロマ
トグラフ検出器22の検出出力のピーク頂上が検
出された時からスタートし、そのピーク頂上がフ
ローセル1aの中央に来る迄の時間に設定され
る。このようにして順次フローセル1a内に指定
された試料成分ガスを閉じ込める。ガスをフロー
セル1a内に閉じ込め終わると、電磁弁10,1
1を閉じ、回転部1を回転させて、測定するガス
を閉じ込めたフローセル1aを順次光入出射孔1
2,13と合致させて、フローセル1a内のガス
を順次測定する。一つのフローセルについて測定
が終わつて、次のフローセルに切り換える時、入
出射孔12,13内には前のガスが残つているの
で、切り換え前に電磁弁10,11を開き、パー
ジガスを流して残留ガスを追い出し、その後電磁
弁10,11を閉じて次のフローセルを測定位置
に持つて来る。フローセル1a内のガスは漏れな
いので任意時間をかけて測定が可能になり、フー
リエ変換赤外分光測定の特徴である積算測定が行
える。
Next, the measurement method will be explained. The solenoid valves 10 and 11 are normally open, and the gas chromatograph (not shown)
The column effluent gas flows from the column through the pipe 14 into the flow cell 1a located at the top of the rotating section 1, and exits through the pipe 15. The flow cell 1a is located on the optical axis between the Fourier transform infrared spectrometer 17 and the detector 18, and is arranged so that gas flowing into the flow cell 1a can be measured. When the gas chromatograph detector 22 inserted between the flow cell 1a and the gas chromatograph detects a peak of a sample component, the data is transferred to the CPU 21. The CPU 21 determines whether or not this peak detection signal corresponds to a peak in a pre-designated order before measurement, and if determined to be a designated peak, generates a drive signal after a certain delay time. Then, the rotating part 1 is rotated by one pitch of the flow cell by the pulse motor 16 to confine the specified sample component gas in the flow cell 1a.
The next flow cell 1a is aligned with the light input/output holes 12 and 13. The above-mentioned fixed delay time starts from when the top of the peak of the detection output of the gas chromatograph detector 22 is detected and is set to the time until the top of the peak reaches the center of the flow cell 1a. In this way, designated sample component gases are sequentially confined within the flow cell 1a. When the gas is completely confined within the flow cell 1a, the solenoid valves 10, 1
1 is closed, the rotating part 1 is rotated, and the flow cell 1a containing the gas to be measured is sequentially opened through the light entrance/exit hole 1.
2 and 13, and sequentially measure the gas in the flow cell 1a. When switching to the next flow cell after measurement has been completed for one flow cell, the previous gas remains in the inlet/output holes 12 and 13, so before switching, open the solenoid valves 10 and 11 and let the purge gas flow to remove the remaining gas. After expelling the gas, the solenoid valves 10 and 11 are closed and the next flow cell is brought to the measurement position. Since the gas in the flow cell 1a does not leak, measurement can be performed over an arbitrary period of time, and integrated measurement, which is a characteristic of Fourier transform infrared spectroscopy, can be performed.

本実施例では、フローセルを加熱する装置が付
加されてないが、実際問題としては試料成分が高
沸点の場合は、フローセル部はガスクロマトグラ
フと同程度、例えば250℃程度加熱しておく必要
がある。又、フローセル内面における赤外線の吸
収損失を少なくするために、フローセルの内面に
金蒸着を行うことが望ましい。
In this example, a device to heat the flow cell is not added, but as a practical matter, if the sample component has a high boiling point, the flow cell section needs to be heated to the same degree as a gas chromatograph, for example around 250 degrees Celsius. . Furthermore, in order to reduce absorption loss of infrared rays on the inner surface of the flow cell, it is desirable to deposit gold on the inner surface of the flow cell.

本実施例では、フローセルの位置を、ガス取込
み時と測定時とにおいて同じ位置で使用している
が、測定する位置を取込みする位置と違えても同
じ効果が期待できる。
In this embodiment, the flow cell is used at the same position during gas intake and measurement, but the same effect can be expected even if the measurement position is different from the intake position.

又、摺動体を本実施例では回転部1としている
が、スライド式でも同じ効果が期待できる。
Further, although the sliding body is the rotating part 1 in this embodiment, the same effect can be expected with a sliding type.

ト 効果 (1) 本考案によれば、測定ガス成分をフローセル
に保持してから測定するようにしたので、フー
リエ変換赤外分光分析測定の特徴である積算効
果が生かされて感度が上昇でき、測定ガス成分
が微量でも測定精度が落ちることなく測定が可
能になつた。
G. Effect (1) According to the present invention, since the measurement gas components are held in the flow cell before being measured, the integration effect, which is a characteristic of Fourier transform infrared spectroscopy measurement, can be utilized to increase the sensitivity. It is now possible to measure even trace amounts of gas components without reducing measurement accuracy.

(2) 更に、駆動装置を使つてCPUにより順次回
転部を回転させて、フローセルに測定ガス成分
を保持したり、フローセル内のガスを順次測定
することを自動的に行えるようにしたことで、
分析能率が向上した。
(2) Furthermore, by using a drive device to sequentially rotate the rotating parts by the CPU, it is possible to automatically hold measurement gas components in the flow cell and sequentially measure the gas in the flow cell.
Analysis efficiency has improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の一実施例の縦断側面図であ
る。第2図は、回転部の斜視図である。
FIG. 1 is a longitudinal sectional side view of an embodiment of the present invention. FIG. 2 is a perspective view of the rotating section.

Claims (1)

【実用新案登録請求の範囲】 (1) フローセル用貫通孔を複数個平行して穿設し
た摺動体と、この摺動体の両端面に摺接して上
記複数の貫通孔の両端を閉塞している側板とよ
りなり、上記両側板において、上記フローセル
用貫通孔の通過軌跡に臨み、互いに対向する位
置に一対の光入射窓及び光出射窓を設け、上記
両側板において、上記フローセル用貫通孔の通
過軌跡に臨み、互いに対向する位置に一対のガ
ス流入孔及びガス流出孔を設けた分光分析用フ
ローセル装置。 (2) 実用新案登録請求の範囲1の項において、ガ
ス検出器で試料ガスが検出されたことを検知す
ることにより、摺動体を駆動し、順次指定され
た試料ガスを別々のフローセル用貫通孔に保持
させる制御手段を設けたことを特徴とする分光
分析用フローセル装置。
[Claims for Utility Model Registration] (1) A sliding body in which a plurality of flow cell through-holes are bored in parallel, and a sliding body that slides into both end faces of the sliding body to close both ends of the plurality of through-holes. A pair of light entrance windows and a light exit window are provided on the both side plates at positions facing each other and facing the passage path of the flow cell through hole, and on the both side plates, a pair of light entrance windows and a light output window are provided at positions facing the passage path of the flow cell through hole. A flow cell device for spectroscopic analysis that has a pair of gas inflow holes and gas outflow holes facing each other in positions facing the trajectory. (2) In claim 1 of the utility model registration, by detecting that a sample gas is detected by a gas detector, the sliding body is driven and the specified sample gases are sequentially transferred to separate flow cell through-holes. 1. A flow cell device for spectroscopic analysis, characterized in that it is provided with a control means for maintaining the temperature.
JP19236085U 1985-12-13 1985-12-13 Expired JPH0336917Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19236085U JPH0336917Y2 (en) 1985-12-13 1985-12-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19236085U JPH0336917Y2 (en) 1985-12-13 1985-12-13

Publications (2)

Publication Number Publication Date
JPS62115143U JPS62115143U (en) 1987-07-22
JPH0336917Y2 true JPH0336917Y2 (en) 1991-08-05

Family

ID=31147366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19236085U Expired JPH0336917Y2 (en) 1985-12-13 1985-12-13

Country Status (1)

Country Link
JP (1) JPH0336917Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2940429A1 (en) * 2014-03-17 2015-09-24 Prism Analytical Technologies, Inc. Process and system for rapid sample analysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033390U (en) * 1983-08-12 1985-03-07 株式会社川村電光舎 Signal light blinking control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974360U (en) * 1982-11-11 1984-05-19 昭和電工株式会社 Liquid chromatograph detection device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033390U (en) * 1983-08-12 1985-03-07 株式会社川村電光舎 Signal light blinking control device

Also Published As

Publication number Publication date
JPS62115143U (en) 1987-07-22

Similar Documents

Publication Publication Date Title
US3968367A (en) Filter system for infrared analysis
CN105372195B (en) A kind of micro ultraviolet specrophotometer quality determining method and detection kit
JPH08327545A (en) Infrared gas analyzer
JPH0336917Y2 (en)
CN101694457B (en) Gas concentration measuring instrument
Renoe et al. Automated multiple flow-injection analysis in clinical chemistry: determination of albumin with bromcresol green.
CN110987845A (en) Real-time detection method for dye concentration in single-component and double-component dye solutions
Holman et al. Quantitative determination of sulfur-oxygen anion concentrations in aqueous solution: Multicomponent analysis of attenuated total reflectance infrared spectra
Polesuk et al. Chromatographic detection
DK0817957T3 (en) Method for standardizing oximeters and for reporting results
JPH09178655A (en) Infrared gas analyzer
Gomez-Taylor et al. Improved sensitivity for in situ infrared identification of species separated by thin-layer chromatography using programmed multiple development
US6513397B2 (en) Process and unit for sampling aldehydes and ketones contained in exhaust gases
RU103400U1 (en) LABORATORY STAND FOR CREATION AND CONTROL OF CONCENTRATIONS OF GASES IN THE FORMATION OF THE BASIS OF SPECTRAL DATA AND ASSESSMENT OF TECHNICAL CHARACTERISTICS OF FOURIER SPECTRADRADIOMETERS
CN106483085B (en) Light absorption test light pool for photometer
Garneau et al. The use of sensor array technology for rapid differentiation of the sapwood and heartwood of Eastern Canadian spruce, fir and pine
JPH02129534A (en) Photochromic reaction measuring device
Low Infrared Fourier Transform spectroscopy in flavor analysis. IV. Spectra of gas chromatography fractions
US4495418A (en) Method of standardizing IR breath alcohol device
SU1122931A1 (en) Tray for spectral investigation of solids in medium under checking
EP1447664A3 (en) Gas analysis apparatus and corresponding method
JPH10232203A (en) Method and device for measuring particulate in piping
Holy Commentary: Flow-injection analysis—an idea incomplete?
Wrenshall Applications of the Photoelectric Colorimeter to Soil Analysis
JPH0329746Y2 (en)