JPH0336905Y2 - - Google Patents
Info
- Publication number
- JPH0336905Y2 JPH0336905Y2 JP11183983U JP11183983U JPH0336905Y2 JP H0336905 Y2 JPH0336905 Y2 JP H0336905Y2 JP 11183983 U JP11183983 U JP 11183983U JP 11183983 U JP11183983 U JP 11183983U JP H0336905 Y2 JPH0336905 Y2 JP H0336905Y2
- Authority
- JP
- Japan
- Prior art keywords
- blade
- blades
- height
- parallel
- discharge port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012360 testing method Methods 0.000 claims description 18
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
【考案の詳細な説明】
本考案は、複数枚互いに平行に並べて使用され
る翼、たとえば、タービン翼の試験を行う翼列試
験装置の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a blade cascade testing device for testing a plurality of blades arranged in parallel to each other, such as turbine blades.
蒸気タービンなどの性能を左右する要件に、タ
ービンの翼の形状がある。この形状を決定するに
当たつては、流体テストが行われる。特にこの種
の翼は、複数枚並べられた状態で使用するため、
テストの場合でも複数枚並べて置く必要がある。
そこで、従来第1図に示すような翼列試験装置を
使用している。 One of the requirements that affects the performance of steam turbines is the shape of the turbine blades. A fluid test is performed to determine this shape. In particular, this type of wing is used in a state where multiple pieces are lined up,
Even in the case of a test, it is necessary to place multiple sheets side by side.
Therefore, conventionally, a blade cascade testing device as shown in FIG. 1 has been used.
1は断面矩形の流路で、吐出口1Aが大気に開
口し他端側が図示しない空気源、あるいは送風機
に連通されており、この流路1内を高速の風Fが
流れる。2は複数枚の翼(図では7枚)で、夫々
第2図に示すような翼2が流路1の吐出口1Aへ
取り付けられたものである。第2図のHを翼の高
さ、Lを翼弦長と呼ぶと、流路1の幅に応じて翼
2の高さHが決定されていて支持枠6により、互
いに平行に流路1幅を横断するように位置決めさ
れている。 Reference numeral 1 denotes a flow path with a rectangular cross section, a discharge port 1A opens to the atmosphere, and the other end communicates with an air source or blower (not shown), and a high-speed wind F flows through the flow path 1. Reference numeral 2 denotes a plurality of blades (seven blades in the figure), each of which is attached to the discharge port 1A of the flow path 1 as shown in FIG. In Fig. 2, H is the height of the blade and L is the chord length of the blade.The height H of the blade 2 is determined according to the width of the flow path 1, and the support frame 6 allows the flow paths to be aligned parallel to each other. positioned across the width.
さて、流路1内へ亜音速、あるいは、超音速の
風Fを流し、翼2の後流側の流速、流向等を計測
するが、計測位置は一点鎖線Xで示す位置であ
る。すなわち、流路1から大気中に吐出された風
Fは、静止した大気中を進むことになるので、大
気の影響を受けにくい翼2の列の中央部分の後流
を計測するわけである。 Now, a subsonic or supersonic wind F is flowed into the flow path 1, and the flow velocity, flow direction, etc. on the wake side of the blade 2 are measured, and the measurement position is the position indicated by the dashed line X. That is, since the wind F discharged into the atmosphere from the flow path 1 travels through the stationary atmosphere, the wake of the central portion of the row of blades 2, which is less susceptible to the influence of the atmosphere, is measured.
実際のタービン翼では、翼弦長Lが同じで、翼
の高さHの異なるものを多数使用することが多
い。従つて、翼の高さ(以下翼ハイトと言う)の
異なるものを夫々試験しなければならない。 In actual turbine blades, a large number of blades with the same blade chord length L and different blade heights H are often used. Therefore, it is necessary to test blades with different heights (hereinafter referred to as blade heights).
このような翼ハイトの影響を把握する翼列試験
装置では、
(1) 翼ハイトが種々異なる翼モデルを作る必要が
ある。 In order to use a blade cascade test device to understand the influence of blade height, (1) it is necessary to create blade models with various blade heights;
(2) 上記翼モデルに必要な翼列前流絞りダクトを
夫々作らなければならない。(2) It is necessary to create each blade cascade forward throttling duct required for the above blade model.
などの理由により膨大な試験費用が掛かる欠点が
あつた。For these reasons, it had the drawback of requiring a huge amount of testing costs.
本考案は、風を流す断面矩形の流路の吐出口
へ、同吐出口を横断して互いに平行に複数枚の翼
を取り付けてなる翼列試験装置において、上記吐
出口を流れと平行に縦断すると共に、上記複数枚
の翼を挿通し、翼の高さ方向へ平行移動可能に保
持されたハイト調整板を具備したものであるか
ら、同一の翼モデル、同一の流路の吐出口を用い
て様々な翼ハイトについて試験を行うことができ
るので試験費用が少なくて済むことになる。 The present invention is based on a blade cascade test device in which a plurality of blades are attached parallel to each other across the discharge port of a flow channel with a rectangular cross section through which wind flows. In addition, since it is equipped with a height adjustment plate that is inserted through the plurality of blades and is held movable in parallel in the height direction of the blades, it is possible to use the same blade model and the same flow path outlet. Since tests can be conducted for various wing heights, testing costs can be reduced.
以下本考案を第3図、および、第4図に示す一
実施例について説明する。 The present invention will be described below with reference to an embodiment shown in FIGS. 3 and 4.
1は断面矩形の流路で、吐出口1Aが大気に開
口し他端側が図示しない空気源、あるいは、送風
機に連通されていて、この流路1内を高速の風F
が流れる。2は複数枚の翼で、流路1の吐出口1
Aへ、支持枠6により互いに平行に吐出口1A幅
を横断するように位置決めされて取り付けられて
いる。3は一対のハイト軸で、翼2と平行に支持
枠6に取り付けられている。7および7′はハイ
ト調整板で、吐出口1Aを縦断する大きさを有し
ており、ハイト軸3および複数枚の翼2を通す穴
が形成されていて、風Fの流れと平行であつて、
翼2の高さ方向へ平行移動可能に保持されてい
る。8はハイト調整パイプ、9は一対のスペーサ
ーである。尚一対のスペーサー9の長さと、ハイ
ト調整板7と7′の厚さとさらにハイト調整パイ
プ8の長さを合計した長さは、複数枚の翼2の高
さと一致するようになつている。 1 is a flow path with a rectangular cross section, a discharge port 1A is open to the atmosphere, and the other end is connected to an air source (not shown) or a blower, and a high-speed wind F flows through the flow path 1.
flows. 2 is a plurality of blades, and the discharge port 1 of the flow path 1
A, they are positioned and attached to each other in parallel to each other by a support frame 6 so as to cross the width of the discharge port 1A. A pair of height shafts 3 are attached to the support frame 6 in parallel with the wings 2. Reference numerals 7 and 7' denote height adjusting plates, which have a size that extends vertically through the discharge port 1A, and are formed with holes through which the height axis 3 and a plurality of blades 2 are passed, and are parallel to the flow of the wind F. hand,
It is held so as to be able to move in parallel in the height direction of the wing 2. 8 is a height adjustment pipe, and 9 is a pair of spacers. The total length of the pair of spacers 9, the thickness of the height adjustment plates 7 and 7', and the length of the height adjustment pipe 8 is made to match the height of the plurality of blades 2.
さて翼列試験に当つては、まず翼ハイトが設定
されるのでその翼ハイトと同じ高さのハイト調整
パイプ8を選定し、ハイト調整板7と7′でこの
ハイト調整パイプ8をはさみこむと同時に、一対
のスペーサー9も選定して一対のハイト軸3によ
り、支持枠6に取付ける。 Now, for the blade cascade test, first the blade height is set, so select the height adjustment pipe 8 with the same height as the blade height, sandwich this height adjustment pipe 8 between the height adjustment plates 7 and 7', and at the same time , a pair of spacers 9 are also selected and attached to the support frame 6 by the pair of height shafts 3.
しかるのちに、ハイト調整板7と7′にはさま
れた部分の翼列試験を実施する。 Thereafter, a blade cascade test is performed on the portion sandwiched between the height adjusting plates 7 and 7'.
翼ハイトを変更する場合には、同様にして要求
にあつたハイト調整パイプ8を選びハイト調整板
7,7′の距離を変えてやれば良い。 When changing the blade height, similarly select the height adjustment pipe 8 that meets your requirements and change the distance between the height adjustment plates 7, 7'.
このように、本実施例の翼列試験装置による
と、翼ハイトの変更は、同一の翼2を使用したま
まハイト調整板7,7′を移動させるだけで済む
ので、試験費用、試験時間が大幅に削減されるこ
とになる。 As described above, according to the blade cascade test device of this embodiment, the blade height can be changed by simply moving the height adjusting plates 7, 7' while using the same blade 2, which reduces test costs and test time. This will be significantly reduced.
なお、上記実施例では二枚のハイト調整板を用
いたが、一枚のハイト調整板だけでも十分に考案
の目的を達成できることは説明するまでもないで
あろう。 Although two height adjusting plates were used in the above embodiment, it goes without saying that the object of the invention can be sufficiently achieved with just one height adjusting plate.
また、ハイト調整板の平行移動をネジとネジ軸
により行わせることも可能で、この場合一々ハイ
ト調整パイプを取替る必要がなく便利である。 Further, it is also possible to move the height adjustment plate in parallel using a screw and a screw shaft. In this case, there is no need to replace the height adjustment pipe each time, which is convenient.
第1図は従来の装置の図、第2図は翼の斜視
図、第3図は本考案の一実施例を示す装置の横断
面図、第4図は第3図の−断面図である。
1……流路、2……翼、3……ハイト軸、6…
…支持枠、7,7′……ハイト調整板、8……ハ
イト調整パイプ、9……スペーサー。
Fig. 1 is a diagram of a conventional device, Fig. 2 is a perspective view of a wing, Fig. 3 is a cross-sectional view of the device showing an embodiment of the present invention, and Fig. 4 is a cross-sectional view of Fig. 3. . 1...Flow path, 2...Blade, 3...Height axis, 6...
...Support frame, 7, 7'...Height adjustment plate, 8...Height adjustment pipe, 9...Spacer.
Claims (1)
を横断して互いに平行に複数枚の翼を取り付けて
なる翼列試験装置において、上記吐出口を流れと
平行に縦断すると共に、上記複数枚の翼を挿通
し、翼の高さ方向へ平行移動可能に保持されたハ
イト調整板を具備したことを特徴とする翼列試験
装置。 In a blade cascade test device in which a plurality of blades are attached in parallel to each other across the discharge port of a flow channel with a rectangular cross section through which wind flows, the above discharge port is longitudinally cut parallel to the flow, and the A blade cascade testing device characterized by having a height adjustment plate inserted through a plurality of blades and held so as to be movable in parallel in the height direction of the blades.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11183983U JPS6019945U (en) | 1983-07-19 | 1983-07-19 | Blade cascade test equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11183983U JPS6019945U (en) | 1983-07-19 | 1983-07-19 | Blade cascade test equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6019945U JPS6019945U (en) | 1985-02-12 |
JPH0336905Y2 true JPH0336905Y2 (en) | 1991-08-05 |
Family
ID=30259503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11183983U Granted JPS6019945U (en) | 1983-07-19 | 1983-07-19 | Blade cascade test equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6019945U (en) |
-
1983
- 1983-07-19 JP JP11183983U patent/JPS6019945U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6019945U (en) | 1985-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4768386A (en) | Air pressure measurement element and system incorporating same | |
US6772627B2 (en) | Flow vector analyzer for flow bench | |
JPS6229604B2 (en) | ||
JPH0336905Y2 (en) | ||
CN111896263A (en) | Grid finger type distortion generator | |
US7024929B2 (en) | Flow stabilizer for flow bench | |
Corsiglia et al. | Aerodynamic characteristics of the 40-by 80-/80-by 120-ft wind tunnel at NASA-Ames Research Center | |
Clark Jr et al. | An experimental study of jet-flap compressor blades | |
Starken et al. | Investigation of the axial velocity density ratio in a high turning cascade | |
USRE31258E (en) | Fluid velocity equalizing apparatus | |
JPS55100403A (en) | Flow direction controller | |
Ladson et al. | High Reynolds number transonic tests on a NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel | |
MacMartin et al. | The aerodynamics of a turbine cascade with supersonic discharge and trailing edge blowing | |
JPS581341B2 (en) | air volume controller | |
CN216742122U (en) | Axial flow fan body flowmeter | |
DeSavigny et al. | Aerodynamic characteristics in ground effect of a large-scale model with a high disk-loading lifting fan mounted in the fuselage | |
Tkacik | Cascade performance of double circular arc compressor blades at high angles of attack | |
Federspiel | Using the torque characteristics of dampers to measure airflow, Part I: Model development and validation | |
Carneal | Experimental investigation of reversed flow in a compressor cascade | |
JPS5796265A (en) | Window direction/velocity meter | |
Trehan et al. | Cascade studies of tandem blades for axial flow compressors/fans | |
Harris | The 7 by 10 foot wind tunnel of the national advisory committee for aeronautics | |
Becker et al. | Effect of drift eliminator design on cooling tower performance | |
Shaw | Paper 32: The Effects of Reynolds Number, Turbulence Intensity, and Axial Velocity Ratio on Compressor Blade Performance | |
WOOD et al. | Measuring Techniques in Transonic and Supersonic Cascade Flow(conference) |