JPH0336811B2 - - Google Patents

Info

Publication number
JPH0336811B2
JPH0336811B2 JP60265903A JP26590385A JPH0336811B2 JP H0336811 B2 JPH0336811 B2 JP H0336811B2 JP 60265903 A JP60265903 A JP 60265903A JP 26590385 A JP26590385 A JP 26590385A JP H0336811 B2 JPH0336811 B2 JP H0336811B2
Authority
JP
Japan
Prior art keywords
monocyclic hydrocarbons
hydrocarbons
solvent
hydrocarbon
monocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60265903A
Other languages
Japanese (ja)
Other versions
JPS62126139A (en
Inventor
Yoshihide Mori
Osamu Morya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26590385A priority Critical patent/JPS62126139A/en
Publication of JPS62126139A publication Critical patent/JPS62126139A/en
Publication of JPH0336811B2 publication Critical patent/JPH0336811B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は抽出蒸留法によつて単環炭化水素類を
分離する際に使用する抽出蒸留用の選択溶剤に関
するものである。 不飽和単環炭化水素は種々の工業薬品原料中間
体として有用な化合物である。例えば、シクロヘ
キセンはアジピン酸、リジン、シクロヘキサノー
ル、シクロヘキサノン等の工業薬品原料及び溶媒
として有用な物質である。又、シクロペンテンは
シクロペンタノール、シクロペンタノン、セバシ
ン酸等の工業薬品原料として有用である。 〈従来の技術〉 芳香族単環炭化水素の部分水素添加反応、又は
飽和単環炭化水素の部分脱水素反応によつて不飽
和単環炭化水素が得られる事はすでに知られてい
る。 芳香族単環炭化水素の部分水素添加反応によつ
て不飽和単環炭化水素を得る方法として、特公昭
60−21126号公報、特開昭57−130926号公報、特
公昭56−22850号公報等にベンゼンの部分水素添
加反応によつてシクロヘキセンが得られ、副生成
物としてシクロヘキサンが生成する事が示されて
いる。又エチレン生産量の4〜5重量%をしめる
副生成物であるシクロペンタジエンの部分水素添
加反応によつてシクロペンテンが得られ、副生成
物としてシクロペンタンが生成する事も知られて
いる。 飽和単環炭化水素の部分脱水素反応によつて不
飽和単環炭化水素を得る方法として、工業化学雑
誌74巻11号2401P〜2402P(1971年)および特開昭
60−100530号公報等にシクロヘキサンの部分脱水
素反応によつてシクロヘキセンが得られ、副生成
物としてベンゼンが生成する事が示されている。
また米国特許第4187156号、特公昭49−41192号公
報および特公昭48−35063号公報にはベンゼンの
電解還元法によつてシクロヘキセンが得られ、副
生成物としてシクロヘキサジエンが生成する事が
示されている。シクロヘキサジエンは部分水素添
加反応によつてシクロヘキサンとシクロヘキセン
になる事はすでに知られている。 石油学会誌VOL.25、No.3,142P〜149P(1982
年)、および特開昭51−62253号公報にはシクロヘ
キシルベンゼンの接触分解によりシクロヘキセン
が得られ、副生成物としてベンゼンが生成する事
が示されている。 これらの各反応によつて得られた生成物は飽和
単環炭化水素、不飽和単環炭化水素および芳香族
単環炭化水素とからなる混合物として得られる
が、これらの混合物を次の目的に活用するとか、
未反応の原料を再び反応に供するためには、それ
ぞれを分離する必要がある。 しかし、これらの混合物を蒸留により分離する
場合、芳香族単環炭化水素、飽和単環炭化水素、
不飽和単環炭化水素の沸点が余りにも接近してい
る。例えば、ベンゼン、シクロヘキサン、シクロ
ヘキセンの沸点はそれぞれ80.1℃、80.8℃、83.3
℃であり、シクロペンタジエン、シクロペンテ
ン、シクロペンタンの沸点はそれぞれ41℃、44
℃、49℃である。またベンゼンとシクロヘキサ
ン、ベンゼンとシクロヘキセンの様に共沸混合物
を生成する場合もある。 以上の問題点を解決するため従来から不飽和単
環炭化水素、飽和単環炭化水素、芳香族単環炭化
水素の上記混合物を抽出蒸留法で分離精製する方
法を確立する試みがなされている。例えば特開昭
57−149234号公報には溶剤としてペンテンニトリ
ルが提案されている。また特開昭51−127043号公
報、特開昭52−5733号公報、特開昭52−144649号
公報、特開昭52−144650号公報、特開昭58−
164524号公報、特開昭58−164525号公報および特
開昭58−172323号公報にはそれぞれ溶剤としてジ
メチルスルホキシド、N−メチルピロリドン、ジ
メチルホルムアミド、γ−ブチロラクトン、ジメ
チルアセトアミド、スルホラン等のスルホン化合
物、アジポニトリル等の脂肪族ジニトリル化合物
が提案されている。また芳香族単環炭化水素を含
有した単環炭化水素混合物を抽出蒸留法によつて
分離する溶剤として、特開昭49−86331号公報に
は上記以外にN−アルキル−ε−カプロラクタ
ム、γ−バレロラクトンおよびε−カプロラクト
ン等が提案されている。 〈発明が解決しようとする問題点〉 工業的に抽出蒸留法で単環炭化水素混合物を分
離する場合、従来の溶剤では分離効率が悪いた
め、多量の溶剤を使用し、還流比を大きくする必
要がある。その結果設備の大型化、分離のエネル
ギーコストが大きい等の欠点を有している。特に
不飽和単環炭化水素と飽和単環炭化水素、例えば
シクロヘキセンとシクロヘキサンとの分離効率が
従来の溶剤では悪く、工業的実施にあたつてはさ
らに分離効率の良い溶剤が求められている。 分離効率の評価指標としての選択性と溶解性に
おいて、従来の溶剤は一般的に選択性が良い溶剤
は溶解性が悪く、又溶解性が良い溶剤は選択性が
悪い。 本発明はこれら従来法の欠点を克服し、より選
択性及び溶解性に優れた溶剤を使用して飽和単環
炭化水素、不飽和単環炭化水素、芳香族単環炭化
水素の混合物を抽出蒸留法で分離精製することに
ある。 〈問題点を解決するための手段〉 本発明者等は単環炭化水素混合物の抽出蒸留法
による分離精製について鋭意研究した結果、フタ
ル酸ジエステルが従来の溶剤にくらべて分離効率
が優れていることを見い出し本発明を完成させる
に至つた。 すなわち本発明は飽和単環炭化水素、不飽和単
環炭化水素および芳香族単環炭化水素のうち少く
とも2種の単環炭化水素からなる混合物から抽出
蒸留によつて飽和単環炭化水素または不飽和単環
炭化水素を分離する方法において、抽出溶剤とし
てフタル酸ジエステルを使用することを特徴とす
る単環炭化水素類の分離方法に関する。 本発明に用いられる芳香族単環炭化水素として
は、ベンゼン、トルエン、O−キシレン、m−キ
シレン、P−キシレン、エチルベンゼン、ジエチ
ルベンゼン、イソプロピルベンゼン、トリメチル
ベンゼンなどがあげられる。 飽和単環炭化水素としては、シクロペンタン、
シクロヘキサン、メチルシクロヘキサン、1,2
−ジメチルシクロヘキサン、1,3−ジメチルシ
クロヘキサン、1,4−ジメチルシクロヘキサ
ン、シクロオクタン、シクロデカン、シクロドデ
カン、メチルシクロペンタン、エチルシクロヘキ
サン、ジエチルシクロヘキサン、エチルシクロペ
ンタンなどがあげられ、不飽和単環炭化水素とし
ては、シクロペンテン、シクロヘキセン、メチル
シクロヘキセン、ジメチルシクロヘキセン、シク
ロオクテン、シクロデセン、シクロドデセン、エ
チルシクロヘキセン、メチルシクロペンテン、エ
チルシクロペンテン、シクロペンタジエン、シク
ロヘキサジエン、メチルシクロヘキサジエン、シ
クロヘプタジエン、シクロオクタジエン、シクロ
デカジエン、シクロドデカジエンなどがあげられ
る。 本発明に用いられる飽和単環炭化水素、不飽和
単環炭化水素は芳香族単環炭化水素の部分水素添
加反応、電解還元反応、また芳香族単環炭化水
素、不飽和単環炭化水素は飽和単環炭化水素の部
分脱水素反応等で生成するが、本発明方法を適用
するにあたつてこれら単環炭化水素の製造方法は
なんら限定されるものではない。 上記各種反応方法によつて得られた芳香族単環
炭化水素、飽和単環炭化水素、不飽和単環炭化水
素を含有した混合物は反応器から取り出したまま
本発明の方法を適用してもよいし、また場合によ
つては蒸留、抽出、分液、晶析、ろ過等公知の別
な分離操作によつて容易に分離可能な触媒、高沸
点成分、低沸点成分を分離した後、本発明の方法
を適用してもよい。また場合によつては本発明に
示した溶剤を用いた液々抽出操作により飽和単環
炭化水素もしくは芳香族単環炭化水素の一部を分
離した後、本発明の方法を適用してもよく、これ
ら前処理の有無及び前処理方法については特に限
定されない。 本発明方法を実施するに当り、芳香族単環炭化
水素、飽和単環炭化水素、不飽和単環炭化水素よ
りなる混合物の組合せは特に限定されるものでは
ない。通常、沸点差、比揮発度が大きく共沸関係
の無い場合には本発明に示された溶剤を用いなく
ても通常の蒸留方法で容易に分離が可能である。
しかし、沸点差がいちじるしく小さく、比揮発度
が1に近くて分離が極めて困難かつ通常の蒸留方
法では不経済で工業的には望ましくないが、もし
くは不可能な場合、例えば芳香族単環炭化水素、
飽和単環炭化水素、不飽和単環炭化水素としてベ
ンゼン、シクロヘキサン、シクロヘキセンまたは
トルエン、メチルシクロヘキサン、メチルシクロ
ヘキセンまたはシクロペンタンシクロペンテン、
シクロペンタジエン等を含む混合物を分離しよう
とする場合には本発明に示されたフタル酸ジエス
テルは優れた分離効果を有している。 本発明において用いられるフタル酸ジエステル
としてはフタル酸ジメチル、フタル酸ジエチル、
フタル酸ジ−n−ブチル、フタル酸ジ−isoブチ
ル、フタル酸ジ−2−エチルヘキシル、フタル酸
ジオクチルなどがあげられ、特にフタル酸ジメチ
ルが好ましい。 溶剤としてフタル酸ジエステルは単独で用いて
も十分な効果が得られるが、2種以上のフタル酸
ジエステルの混合物として用いてもよい。 また、フタル酸ジエステルを他の極性溶剤との
混合物で用いることは何ら問題はないばかりか、
他の極性溶剤との組み合わせとして、飽和単環炭
化水素の分離に対して高い選択性を有するが溶解
性が不十分である溶剤、例えばスルホラン等のス
ルホン化合物、アジポニトリル等の脂肪族ジニト
リル化合物等と組み合わせて使用する場合には優
れた分離効果を発揮する。 本発明において使用する溶剤の量が少ない場合
には、目的とする単環炭化水素の分離効率が悪く
なり、使用する溶剤の量があまりにも多い場合に
は分離効率が良くなる以上に装置が大きくなり、
また溶剤の回収費用が多くなるため工業的には好
ましくない。 通常使用する溶剤の量は分離する単環炭化水素
混合物に対してモル比で0.5〜10倍程度、好まし
くは1〜5倍程度である。 抽出蒸留操作方法としては通常行なわれる回分
法あるいは連続法のいずれでもよく、蒸留を行な
う装置は特別なものである必要はない。また、抽
出蒸留を実施する場合の操作圧力は常圧、加圧、
減圧のいずれでもよく、エネルギーの有効利用を
はかるために多重効用システムを採用する場合に
は減圧系を組み合わせる事が望ましい。 〈実施例〉 以下実施例により本発明を更に詳細に説明する
が、本発明はこれら実施例により何ら制限を受け
るものではない。 ここで炭化水素Aの炭化水素Bに対する比揮発
度αABは次の通りである。 αAB=Y(A)/X(A)/Y(B)/X(B) ただし、Y(A)、Y(B)は気液平衡時における気相
中の炭化水素Aと炭化水素Bの合計に対する炭化
水素A及び炭化水素Bのモル分率を表わし、X
(A)、X(B)は気液平衡時における液相中の炭化水素
Aと炭化水素Bの合計に対する炭化水素A及び炭
化水素Bのモル分率を表わす。 なお、実施例中百分率は重量%である。また分
析はガスクロマトグラフイーによつて実施した。 実施例 1〜7 本発明の溶剤の優れた選択性を確認するため、
撹拌付き気液平衡測定試験装置に2種類の単環炭
化水素混合物と溶剤を単環炭化水素混合物の総モ
ル数に対する溶剤のモル数の比(溶剤のモル数/
各単環炭化水素のモル数の合計)が1.8になる様
に仕込み、気液が十分に平衡にたつした後、気相
及び液相の組成を分析した。分析値より2種類の
単環炭化水素混合物間の比揮発度αABを求めて表
1に示した。 比較例 1〜3 撹拌付気液平衡測定試験装置に2種類の単環炭
化水素混合物と溶剤を単環炭化水素混合物の総モ
ル数に対する溶剤のモル数に比(溶剤のモル数/
各単間炭化水素のモル数の合計)が1.8になる様
に、もしくはまつたく溶剤を添加しない様に仕込
み、気液が十分に平衡にたつした後、気相及び液
相の組成を分析した。分析値より2種類の単環炭
化水素混合物間の比揮発度αABを求めて表1に示
した。 実施例 8 長さ4.5mの第1蒸留塔に充填物としてステン
レス製のデイクソンパツキンを総充填長さ2.7m
充填した充填塔を用い抽出蒸留を常圧、連続法に
て実施した。 充填最上部より1.5m下の位置からベンゼン
48.5%、シクロヘキセン42.0%、シクロヘキサン
9.5%混合物を600g/Hr供給し、一方充填最上
部より0.2m下の位置から溶剤としてフタル酸ジ
メチル3200g/Hrを供給し、還流比15で連続運
転を行なつたところ、塔頂部から純度97.8%のシ
クロヘキサン57.0g/Hrが得られた。 第1蒸留塔の底部から得られた混合物を長さ4
mの第2蒸留塔(充填物として第1蒸留塔と同じ
ステンレス製のデイクソンパツキンを総充填長さ
2.2m充填)の充填最上部より1.4m下の位置から
供給し、一方充填最上部より0.2m下の位置から
溶剤としてフタル酸ジメチルを2500g/Hr供給
し、還流比8で連続運転を行なつたところ、塔頂
部から純度98.3%のシクロヘキセン251g/Hrが
得られた。 実施例 9 実施例8と同一の装置を用い、溶剤としてフタ
ル酸ジエチルを用いた以外は、実施例8と同一の
液供給量、塔頂留出量及び還流比にて抽出蒸留を
行なつたところ第1蒸留塔の塔頂部から得られた
シクロヘキサンの純度は97.0%であり、第2蒸留
塔の塔頂部から得られたシクロヘキセンの純度は
97.5%であつた。 実施例 10 実施例8で示した第1蒸留塔を用いて充填最上
部より1.5m下の位置からメチルシクロヘキセン
60%、トルエン40%混合物を600g/Hr供給し、
一方充填最上部より0.2m下の位置から溶剤とし
てフタル酸ジメチルを2000g/Hr供給し、還流
比10で連続運転を行なつたところ塔頂部から97.5
%のメチルシクロヘキセン360g/Hrが得られ
た。 第1蒸留塔の底部から得られた混合物を実施例
8で示した第2蒸留塔の充填最上部より1.3m下
の位置から供給し、還流比0.5で連続運転を行な
つたところ、塔頂部から95.4%のトルエン239
g/Hrが得られた。 比較例 4 実施例8と同一の装置を用い、溶剤としてジメ
チルスルホキシドを用いた以外は、実施例8と同
一の液供給量、塔頂留出量及び還流比にて抽出蒸
留を行なつたところ第1蒸留塔の塔頂部から得ら
れたシクロヘキサンの純度は91.6%であり、第2
蒸留塔の塔頂部から得られたシクロヘキセンの純
度は94.0%であつた。 〈発明の効果〉 本発明の方法によれば、従来公知の溶剤を使用
する場合に比較して不飽和単環炭化水素、飽和単
環炭化水素および芳香族単環炭化水素混合物の分
離を、特に不飽和単環炭化水素と飽和単環炭化水
素との分離を効率よく行なうことができる。 【表】
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a selective solvent for extractive distillation used in separating monocyclic hydrocarbons by extractive distillation. Unsaturated monocyclic hydrocarbons are compounds useful as intermediates for various industrial chemical raw materials. For example, cyclohexene is a substance useful as a raw material and solvent for industrial chemicals such as adipic acid, lysine, cyclohexanol, and cyclohexanone. Cyclopentene is also useful as a raw material for industrial chemicals such as cyclopentanol, cyclopentanone, and sebacic acid. <Prior Art> It is already known that unsaturated monocyclic hydrocarbons can be obtained by partial hydrogenation reaction of aromatic monocyclic hydrocarbons or partial dehydrogenation reaction of saturated monocyclic hydrocarbons. As a method for obtaining unsaturated monocyclic hydrocarbons by partial hydrogenation reaction of aromatic monocyclic hydrocarbons,
60-21126, JP 57-130926, JP 56-22850, etc., it has been shown that cyclohexene can be obtained by partial hydrogenation reaction of benzene, and cyclohexane is produced as a by-product. ing. It is also known that cyclopentene is obtained by a partial hydrogenation reaction of cyclopentadiene, which is a by-product that accounts for 4 to 5% by weight of ethylene production, and that cyclopentane is produced as a by-product. As a method for obtaining unsaturated monocyclic hydrocarbons by partial dehydrogenation of saturated monocyclic hydrocarbons, the Industrial Chemistry Journal Vol. 74, No. 11, 2401P-2402P (1971) and JP-A Sho
Publication No. 60-100530 etc. disclose that cyclohexene is obtained by partial dehydrogenation of cyclohexane, and benzene is produced as a by-product.
Furthermore, U.S. Patent No. 4187156, Japanese Patent Publication No. 49-41192, and Japanese Patent Publication No. 48-35063 show that cyclohexene can be obtained by electrolytic reduction of benzene, and cyclohexadiene is produced as a by-product. ing. It is already known that cyclohexadiene can be converted into cyclohexane and cyclohexene through a partial hydrogenation reaction. Journal of the Japan Petroleum Institute VOL.25, No.3, 142P-149P (1982
2003) and Japanese Patent Application Laid-Open No. 1983-62253, it is shown that cyclohexene is obtained by catalytic decomposition of cyclohexylbenzene, and benzene is produced as a by-product. The products obtained by each of these reactions are obtained as a mixture of saturated monocyclic hydrocarbons, unsaturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbons, and these mixtures can be used for the following purposes. Or,
In order to subject the unreacted raw materials to the reaction again, it is necessary to separate each raw material. However, when these mixtures are separated by distillation, aromatic monocyclic hydrocarbons, saturated monocyclic hydrocarbons,
The boiling points of unsaturated monocyclic hydrocarbons are too close together. For example, the boiling points of benzene, cyclohexane, and cyclohexene are 80.1℃, 80.8℃, and 83.3℃, respectively.
℃, and the boiling points of cyclopentadiene, cyclopentene, and cyclopentane are 41℃ and 44℃, respectively.
℃, 49℃. Also, azeotropic mixtures may be formed, such as benzene and cyclohexane, or benzene and cyclohexene. In order to solve the above problems, attempts have been made to establish a method for separating and refining the above-mentioned mixtures of unsaturated monocyclic hydrocarbons, saturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbons by extractive distillation. For example, Tokukai Akira
No. 57-149234 proposes pentenenitrile as a solvent. Also, JP-A-51-127043, JP-A-52-5733, JP-A-52-144649, JP-A-52-144650, JP-A-58-
164524, JP 58-164525, and JP 58-172323 each use sulfone compounds such as dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide, γ-butyrolactone, dimethylacetamide, and sulfolane as solvents; Aliphatic dinitrile compounds such as adiponitrile have been proposed. Additionally, as a solvent for separating monocyclic hydrocarbon mixtures containing aromatic monocyclic hydrocarbons by extractive distillation, JP-A-49-86331 discloses N-alkyl-ε-caprolactam, γ- Valerolactone and ε-caprolactone have been proposed. <Problems to be solved by the invention> When monocyclic hydrocarbon mixtures are industrially separated by extractive distillation, conventional solvents have poor separation efficiency, so it is necessary to use a large amount of solvent and increase the reflux ratio. There is. As a result, it has disadvantages such as increased equipment size and high energy cost for separation. In particular, conventional solvents have poor separation efficiency between unsaturated monocyclic hydrocarbons and saturated monocyclic hydrocarbons, such as cyclohexene and cyclohexane, and in industrial implementation, solvents with even better separation efficiency are required. Regarding selectivity and solubility as evaluation indicators of separation efficiency, conventional solvents generally have good selectivity but have poor solubility, and solvents with good solubility have poor selectivity. The present invention overcomes the drawbacks of these conventional methods and extractively distills a mixture of saturated monocyclic hydrocarbons, unsaturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbons using a solvent with superior selectivity and solubility. The purpose is to separate and purify it using a method. <Means for Solving the Problems> As a result of intensive research into the separation and purification of monocyclic hydrocarbon mixtures by extractive distillation, the present inventors have found that phthalic acid diester has superior separation efficiency compared to conventional solvents. This discovery led to the completion of the present invention. That is, the present invention provides for producing saturated monocyclic hydrocarbons or unsaturated monocyclic hydrocarbons by extractive distillation from a mixture of at least two types of monocyclic hydrocarbons selected from saturated monocyclic hydrocarbons, unsaturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbons. The present invention relates to a method for separating saturated monocyclic hydrocarbons, characterized in that a phthalic acid diester is used as an extraction solvent. Examples of aromatic monocyclic hydrocarbons used in the present invention include benzene, toluene, O-xylene, m-xylene, P-xylene, ethylbenzene, diethylbenzene, isopropylbenzene, and trimethylbenzene. Examples of saturated monocyclic hydrocarbons include cyclopentane,
Cyclohexane, methylcyclohexane, 1,2
-Dimethylcyclohexane, 1,3-dimethylcyclohexane, 1,4-dimethylcyclohexane, cyclooctane, cyclodecane, cyclododecane, methylcyclopentane, ethylcyclohexane, diethylcyclohexane, ethylcyclopentane, etc., and unsaturated monocyclic hydrocarbons Examples include cyclopentene, cyclohexene, methylcyclohexene, dimethylcyclohexene, cyclooctene, cyclodecene, cyclododecene, ethylcyclohexene, methylcyclopentene, ethylcyclopentene, cyclopentadiene, cyclohexadiene, methylcyclohexadiene, cycloheptadiene, cyclooctadiene, cyclodecadiene. , cyclododecadiene, etc. The saturated monocyclic hydrocarbons and unsaturated monocyclic hydrocarbons used in the present invention are produced by partial hydrogenation reaction and electrolytic reduction reaction of aromatic monocyclic hydrocarbons, and the aromatic monocyclic hydrocarbons and unsaturated monocyclic hydrocarbons are saturated. Although they are produced by partial dehydrogenation of monocyclic hydrocarbons, the method of producing these monocyclic hydrocarbons is not limited in any way when applying the method of the present invention. The method of the present invention may be applied to mixtures containing aromatic monocyclic hydrocarbons, saturated monocyclic hydrocarbons, and unsaturated monocyclic hydrocarbons obtained by the various reaction methods described above, while being removed from the reactor. In some cases, after separating the catalyst, high-boiling point components, and low-boiling point components that can be easily separated by other known separation operations such as distillation, extraction, liquid separation, crystallization, and filtration, the present invention The method described above may be applied. In some cases, the method of the present invention may be applied after separating a part of the saturated monocyclic hydrocarbons or aromatic monocyclic hydrocarbons by liquid-liquid extraction using the solvents shown in the present invention. The presence or absence of these pre-treatments and the pre-treatment method are not particularly limited. In carrying out the method of the present invention, there are no particular limitations on the combination of mixtures consisting of aromatic monocyclic hydrocarbons, saturated monocyclic hydrocarbons, and unsaturated monocyclic hydrocarbons. Generally, if the boiling point difference and specific volatility are large and there is no azeotropic relationship, separation can be easily performed by a normal distillation method without using the solvent shown in the present invention.
However, in cases where the boiling point difference is extremely small and the specific volatility is close to 1, separation is extremely difficult and is uneconomical and industrially undesirable or impossible using normal distillation methods, such as aromatic monocyclic hydrocarbons. ,
Saturated monocyclic hydrocarbons, unsaturated monocyclic hydrocarbons such as benzene, cyclohexane, cyclohexene or toluene, methylcyclohexane, methylcyclohexene or cyclopentanecyclopentene,
When attempting to separate a mixture containing cyclopentadiene, etc., the phthalic acid diester shown in the present invention has an excellent separation effect. The phthalic acid diesters used in the present invention include dimethyl phthalate, diethyl phthalate,
Examples include di-n-butyl phthalate, di-isobutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, and dimethyl phthalate is particularly preferred. A sufficient effect can be obtained even if the phthalic acid diester is used alone as a solvent, but a mixture of two or more phthalic acid diesters may be used. Furthermore, there is no problem in using phthalic acid diester in a mixture with other polar solvents;
In combination with other polar solvents, solvents that have high selectivity for the separation of saturated monocyclic hydrocarbons but have insufficient solubility, such as sulfone compounds such as sulfolane, aliphatic dinitrile compounds such as adiponitrile, etc. When used in combination, they exhibit excellent separation effects. If the amount of solvent used in the present invention is small, the separation efficiency of the target monocyclic hydrocarbon will be poor, and if the amount of solvent used is too large, the equipment will be too large to improve the separation efficiency. Become,
Furthermore, the cost of recovering the solvent increases, which is not desirable from an industrial perspective. The amount of solvent used is usually about 0.5 to 10 times, preferably about 1 to 5 times, the molar ratio of the monocyclic hydrocarbon mixture to be separated. The extractive distillation operation method may be either a commonly used batch method or a continuous method, and the apparatus for carrying out the distillation does not need to be a special one. In addition, the operating pressure when performing extractive distillation is normal pressure, pressurized,
Either depressurization may be used, and if a multiple effect system is used to effectively utilize energy, it is desirable to combine depressurization systems. <Examples> The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited in any way by these Examples. Here, the specific volatility α AB of hydrocarbon A with respect to hydrocarbon B is as follows. α AB = Y(A)/X(A)/Y(B)/X(B) However, Y(A) and Y(B) are hydrocarbon A and hydrocarbon B in the gas phase at the time of vapor-liquid equilibrium. represents the molar fraction of hydrocarbon A and hydrocarbon B relative to the sum of
(A) and X(B) represent the molar fractions of hydrocarbon A and hydrocarbon B relative to the total of hydrocarbon A and hydrocarbon B in the liquid phase at the time of vapor-liquid equilibrium. Note that the percentages in the examples are by weight. The analysis was also carried out by gas chromatography. Examples 1 to 7 To confirm the excellent selectivity of the solvent of the present invention,
Two types of monocyclic hydrocarbon mixtures and a solvent were placed in a gas-liquid equilibrium measurement test device with stirring, and the ratio of the number of moles of the solvent to the total number of moles of the monocyclic hydrocarbon mixture (number of moles of solvent/
The total number of moles of each monocyclic hydrocarbon was charged to be 1.8, and after the gas and liquid were sufficiently equilibrated, the compositions of the gas and liquid phases were analyzed. The specific volatility α AB between the two types of monocyclic hydrocarbon mixtures was determined from the analytical values and is shown in Table 1. Comparative Examples 1 to 3 Two types of monocyclic hydrocarbon mixtures and a solvent were placed in a gas-liquid equilibrium measurement test device with stirring, and the ratio of the number of moles of the solvent to the total number of moles of the monocyclic hydrocarbon mixture (number of moles of solvent/
The total number of moles of each single hydrocarbon was prepared to be 1.8, or without adding any solvent, and after the gas and liquid were sufficiently equilibrated, the composition of the gas and liquid phases was analyzed. . The specific volatility α AB between the two types of monocyclic hydrocarbon mixtures was determined from the analytical values and is shown in Table 1. Example 8 The first distillation column with a length of 4.5 m was packed with stainless steel Dickson packing for a total length of 2.7 m.
Extractive distillation was carried out in a continuous manner at normal pressure using a packed column. Benzene from a position 1.5m below the top of the filling
48.5%, cyclohexene 42.0%, cyclohexane
A 9.5% mixture was fed at 600 g/Hr, while 3200 g/Hr of dimethyl phthalate was fed as a solvent from a position 0.2 m below the top of the packing, and continuous operation was performed at a reflux ratio of 15. As a result, the purity was 97.8 from the top of the column. % of cyclohexane/Hr was obtained. The mixture obtained from the bottom of the first distillation column is
2nd distillation column (with the same stainless steel Dickson packing as the first distillation column as packing)
2500g/Hr of dimethyl phthalate was supplied as a solvent from a position 0.2m below the top of the filling, and continuous operation was performed at a reflux ratio of 8. As a result, 251 g/Hr of cyclohexene with a purity of 98.3% was obtained from the top of the column. Example 9 Extractive distillation was carried out using the same equipment as in Example 8, with the same liquid supply amount, overhead distillation amount, and reflux ratio as in Example 8, except that diethyl phthalate was used as the solvent. However, the purity of cyclohexane obtained from the top of the first distillation column is 97.0%, and the purity of cyclohexene obtained from the top of the second distillation column is 97.0%.
It was 97.5%. Example 10 Using the first distillation column shown in Example 8, methylcyclohexene was added from a position 1.5 m below the top of the packing.
Supplying 600g/Hr of a mixture of 60% and 40% toluene,
On the other hand, 2000 g/Hr of dimethyl phthalate was supplied as a solvent from a position 0.2 m below the top of the column, and continuous operation was performed at a reflux ratio of 10.
% methylcyclohexene/hr was obtained. The mixture obtained from the bottom of the first distillation column was supplied from a position 1.3 m below the top of the packing of the second distillation column shown in Example 8, and continuous operation was performed at a reflux ratio of 0.5. 95.4% toluene from 239
g/Hr was obtained. Comparative Example 4 Extractive distillation was carried out using the same equipment as in Example 8 and with the same liquid supply amount, overhead distillation amount, and reflux ratio as in Example 8, except that dimethyl sulfoxide was used as the solvent. The purity of cyclohexane obtained from the top of the first distillation column was 91.6%, and the purity of the cyclohexane obtained from the top of the first distillation column was 91.6%.
The purity of cyclohexene obtained from the top of the distillation column was 94.0%. <Effects of the Invention> According to the method of the present invention, unsaturated monocyclic hydrocarbons, saturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbon mixtures can be separated more easily than when conventionally known solvents are used. Unsaturated monocyclic hydrocarbons and saturated monocyclic hydrocarbons can be efficiently separated. 【table】

Claims (1)

【特許請求の範囲】 1 飽和単環炭化水素、不飽和単環炭化水素およ
び芳香族単環炭化水素のうち少くとも2種の単環
炭化水素からなる混合物から抽出蒸留によつて飽
和単環炭化水素または不飽和単環炭化水素を分離
する方法において、抽出溶剤としてフタル酸と炭
素数が1〜8の脂肪族アルコールとの反応によつ
て得られるフタル酸ジエステルを使用することを
特徴とする単環炭化水素の分離方法。 2 フタル酸ジエステルがフタル酸ジメチルでる
特許請求の範囲第1項記載の単環炭化水素の分離
方法。
[Scope of Claims] 1. Saturated monocyclic hydrocarbons are produced by extractive distillation from a mixture of at least two types of monocyclic hydrocarbons among saturated monocyclic hydrocarbons, unsaturated monocyclic hydrocarbons, and aromatic monocyclic hydrocarbons. A method for separating hydrogen or unsaturated monocyclic hydrocarbons, characterized in that a phthalic acid diester obtained by a reaction between phthalic acid and an aliphatic alcohol having 1 to 8 carbon atoms is used as an extraction solvent. Method for separating ring hydrocarbons. 2. The method for separating monocyclic hydrocarbons according to claim 1, wherein the phthalic acid diester is dimethyl phthalate.
JP26590385A 1985-11-25 1985-11-25 Method for separating monocyclic hydrocarbon Granted JPS62126139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26590385A JPS62126139A (en) 1985-11-25 1985-11-25 Method for separating monocyclic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26590385A JPS62126139A (en) 1985-11-25 1985-11-25 Method for separating monocyclic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS62126139A JPS62126139A (en) 1987-06-08
JPH0336811B2 true JPH0336811B2 (en) 1991-06-03

Family

ID=17423700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26590385A Granted JPS62126139A (en) 1985-11-25 1985-11-25 Method for separating monocyclic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS62126139A (en)

Also Published As

Publication number Publication date
JPS62126139A (en) 1987-06-08

Similar Documents

Publication Publication Date Title
US20100197988A1 (en) Method for separating and producing cyclohexene
CN102844115B (en) Alkylated reaction catalyst and employ the manufacture method of alkyl aromatic hydrocarbon compound of this catalyst
WO2020114744A9 (en) Process for the separation of linear alpha-olefins using a dividing wall column
US4948470A (en) Extractive distillation of alkane/cycloalkane feed employing mixed solvent
EP0376123B1 (en) Process of preparation of caprolactam
SK286003B6 (en) Process for production of cyclic alcohols
Chaumont et al. Olefin disproportionation technology (FEAST)-a challenge for process development
JPH0336811B2 (en)
JPS58172323A (en) Separation of monocyclic monoolefin
US3238251A (en) Production of substituted naphthalene derivatives by rearrangement of substituted dicyclopentadiene derivatives with a friedel-crafts catalyst
JPS62123135A (en) Method for separation monocyclic hydrocarbon
JPS62123136A (en) Method for separating mixture of monocyclic hydrocarbon
CN1272292C (en) Method for the production of cyclohexanol from benzole
KR101875986B1 (en) Method for producing 1,3-dimethyladamantane
JPS58164524A (en) Separation of monocyclic aliphatic monoene
WO2019206694A1 (en) Process to increase the fraction of trans-isomers of a mixture of 2,4-diamino-1-methylcyclohexane and 2,6-diamino-1-methylcyclohexane
JPH09165348A (en) Separation of cyclohexene
US5866732A (en) Preparation of alkyl bromides from aqueous hydrobromic acid and olefins
JPH0441442A (en) Purification of cyclohexene
JPH0649660B2 (en) Cyclohexane purification method
JPH01139537A (en) Separation of cyclohexene
JP2980759B2 (en) Process for producing alkenylbenzene and derivatives thereof
JPH05246909A (en) Production of alkenylbenzene and its derivative
US3529031A (en) Recycle of azeotropes in toluene disproportionation process
KR20210091038A (en) Method for preparing acrylonitrile dimer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees