JPH0336795A - Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic - Google Patents

Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic

Info

Publication number
JPH0336795A
JPH0336795A JP17272789A JP17272789A JPH0336795A JP H0336795 A JPH0336795 A JP H0336795A JP 17272789 A JP17272789 A JP 17272789A JP 17272789 A JP17272789 A JP 17272789A JP H0336795 A JPH0336795 A JP H0336795A
Authority
JP
Japan
Prior art keywords
radio wave
magnet
ferrite
magnetic field
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17272789A
Other languages
Japanese (ja)
Inventor
Yoji Kozuka
洋司 小塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17272789A priority Critical patent/JPH0336795A/en
Publication of JPH0336795A publication Critical patent/JPH0336795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

PURPOSE:To obtain a radio wave absorber in which arbitrary matching frequency characteristic can be realized over a wide band by disposing a conductor plate having a function of controlling a short-circuiting plate and the magnetic field of a magnet or further a spacer having a short-circuiting plate on a front face of the magnet having a predetermined coercive force, and bringing ferrite into close contact with the front face. CONSTITUTION:A radio wave absorber has a ferrite 1, a waveguide plate 2, and a magnet 3 disposed from its front face. Here, the magnet 3 is so magnetized as to hold a magnetic field of maximum limit to be determined according to the frequency of the upper limit of high frequency side to be matched. The magnetic field of the magnet 3 is magnetized to the maximum limit, magnetic field intensity to be applied to the ferrite 1 is controlled by altering the thickness of a conductor plate 2, and matching frequency characteristic is varied by altering the thickness of the ferrite 1. A spacer 6 of a dielectric, etc., is interposed to be held between the plate 2 and the magnet 3, the plate 2 is reduced in thickness to be reduced in weight. The magnetic field intensity to act the ferrite 1 is controlled by changing the thickness of the spacer 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電波吸収体および電波吸収壁ならびにその整合
周波数特性の可変方法に関する。さらに詳述すると本発
明は、同じ電波吸収材で整合周波数特性を変化させ得る
構造の電波吸収体および電波吸収壁ならびにその周波数
特性を広帯域にわたり可変する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a radio wave absorber, a radio wave absorbing wall, and a method of varying the matching frequency characteristics thereof. More specifically, the present invention relates to a radio wave absorber and a radio wave absorption wall having a structure in which matching frequency characteristics can be changed using the same radio wave absorbing material, and a method for varying the frequency characteristics thereof over a wide band.

(従来の技術〉 従来のフェライト電波吸収体の基本構造は、第6図に示
すように、フェライト(1〉をタイル状またはシート状
に製作し、これに導体板を裏打ちして成る。これまでの
フェライト電波吸収体は、材料組成の混合割合や加圧、
焼成などの製造条件によって、その材料固有の整合周波
数や整合厚が定まってしまうという試行錯誤的な製法で
あった。
(Prior art) As shown in Figure 6, the basic structure of a conventional ferrite radio wave absorber is to manufacture ferrite (1) in the form of a tile or sheet, which is then lined with a conductor plate. The ferrite radio wave absorber of
It was a trial-and-error manufacturing method in which the matching frequency and matching thickness unique to the material were determined by manufacturing conditions such as firing.

このため、所望の整合周波数特性の電波吸収体を設計す
るためには、始めに立戻り、再びフェライトの製造条件
を検討し、フェライトを製作する必要がある。この従来
の製法では、任意の整合周波数特性を実現することは、
きわめて困難であるという大きな欠点を有しており、吸
収しようとする電波の周波数毎に、フェライトを開発し
なければならないという問題がある。そこで、先にフェ
ライトに直流磁界をすることによって、任意の整合周波
数特性を得る電波吸収体を提案した(実願昭62−10
6915号)。これは、フェライトに加わる静磁界とフ
ェライト厚を調節して整合周波数を変更するようにした
ものである。
Therefore, in order to design a radio wave absorber with desired matching frequency characteristics, it is necessary to go back to the beginning, consider the manufacturing conditions of ferrite again, and manufacture ferrite. With this conventional manufacturing method, it is difficult to achieve arbitrary matched frequency characteristics.
This has the major drawback of being extremely difficult to absorb, and ferrite must be developed for each frequency of radio waves to be absorbed. Therefore, we first proposed a radio wave absorber that can obtain arbitrary matching frequency characteristics by applying a DC magnetic field to ferrite (Utility Application 1986-10).
No. 6915). This is designed to change the matching frequency by adjusting the static magnetic field applied to the ferrite and the ferrite thickness.

(発明が解決しようとする課題) しかしながら、この電波吸収体は、単一のフェライト電
波吸収体としては有効であるが、この単一電波吸収体を
壁面に多数貼りめぐらし、電波吸収体を構成するために
は、フェライト背面に密着している隣接磁石間に反発力
等が発生し、磁界分布が乱れるという問題がある。また
、整合周波数特性を変更するには、その都度異なった保
磁力の磁石と交換する必要がある。本発明は、同一のフ
ェライト材、及び同一磁界強度の磁石を使用して任意の
整合周波数特性を広帯域にわたり実現し得る整合特性可
変型の電波吸収体、およびその製造法とそれを使用した
電波吸収壁並びに整合周波数特性の可変方法を提供する
ことを目的とする。
(Problem to be Solved by the Invention) However, although this radio wave absorber is effective as a single ferrite radio wave absorber, it is difficult to form a radio wave absorber by pasting many of these single radio wave absorbers on a wall surface. Therefore, there is a problem in that a repulsive force is generated between adjacent magnets that are in close contact with the back surface of the ferrite, and the magnetic field distribution is disturbed. Furthermore, in order to change the matching frequency characteristics, it is necessary to replace the magnet with a magnet of a different coercive force each time. The present invention relates to a radio wave absorber with variable matching characteristics that can realize arbitrary matching frequency characteristics over a wide range using the same ferrite material and magnets with the same magnetic field strength, a method for manufacturing the same, and radio wave absorption using the same. It is an object of the present invention to provide a method for varying wall and matching frequency characteristics.

(問題を解決するための手段) この目的を達成するために、本発明の電波吸収体は、一
定の保磁力を持つ磁石の前面に、短絡板と磁石の磁界を
制御する機能を併せ持つ導体板あるいは更に短絡板を有
するスペーサを加えて配置し、その前面にフェライトを
密着する構成としている。
(Means for Solving the Problem) In order to achieve this objective, the radio wave absorber of the present invention has a conductive plate that has both a shorting plate and a function of controlling the magnetic field of the magnet in front of a magnet having a certain coercive force. Alternatively, a spacer having a short circuit plate is further arranged, and the ferrite is closely attached to the front surface of the spacer.

また、この場合の磁石として、磁石粉末あるいは磁石小
片をバインダーで連結したものを用い隣接磁石間に作用
する磁界の乱れや反発力の発生の問題を解決している。
Furthermore, the magnet in this case is made by connecting magnetic powder or small pieces of magnet with a binder to solve the problems of disturbance of the magnetic field and generation of repulsive force between adjacent magnets.

これにより上述の電波吸収体を多数寄せ集めて電波吸収
壁を構成すること可能となる。またこの磁石粉末あるい
は磁石小片をバインダーで結合したものは、固型磁石を
配列して、本発明の吸収壁を構成する際、目地材として
使用できる上、吸収帯を設置または塗布する壁面全体を
被う継目のない連続にした磁石面に構成できる。
This makes it possible to construct a radio wave absorption wall by gathering a large number of the radio wave absorbers described above. In addition, this magnet powder or magnet pieces bound together with a binder can be used as a joint material when arranging solid magnets to construct the absorption wall of the present invention, and can also be used as a joint material for the entire wall surface on which the absorption band is installed or coated. It can be constructed into a continuous magnet surface with no overlapping seams.

このように構成した電波吸収体並びに電波吸収壁は、フ
ェライトの厚さと、フェライトと磁石間に介在する上述
の導体板、またはスペーサーの厚さを変化させて任意の
整合周波数特性に可変出来るわけである。
The radio wave absorber and radio wave absorbing wall configured in this way can be varied to any matching frequency characteristic by changing the thickness of the ferrite and the thickness of the above-mentioned conductive plate or spacer interposed between the ferrite and the magnet. be.

さらに、整合周波数特性を変更する手段として、上述の
構成による電波吸収体や電波吸収壁において、これらの
表面に垂直に直流磁界や交流磁界を印加し、磁石の保磁
力を制御し、フェライトをさらに積層するか、削り落と
してフェライト厚を変化させる方法で任意の整合周波数
特性を実現する。
Furthermore, as a means of changing the matching frequency characteristics, a DC magnetic field or an AC magnetic field is applied perpendicularly to the surface of the radio wave absorber or radio wave absorbing wall configured as described above, and the coercive force of the magnet is controlled to further increase the ferrite content. Any matched frequency characteristics can be achieved by varying the ferrite thickness by stacking or scraping.

この方法は磁石の保磁力の低下を補正することにも有効
な手段である。
This method is also an effective means for correcting a decrease in the coercive force of the magnet.

以上の構成法におけるフェライトは、出来るだけ広帯域
にわたり任意の整合周波数特性を実現させるために、フ
ェライトの復素比透磁率の周波数分散特性において、比
透磁率の実部が1となる周波数を出来るだけ低くするよ
うにフェライトを製造するか、または、このようなフェ
ライト材を選択する方法により広帯域化を達成できる。
In order to realize arbitrary matching frequency characteristics over as wide a band as possible, the ferrite in the above configuration method is designed to reduce the frequency at which the real part of the relative permeability is 1 as much as possible in the frequency dispersion characteristics of the complex relative magnetic permeability of the ferrite. A wide band can be achieved by manufacturing ferrite or selecting such a ferrite material so as to have a low resistance.

(作用) 以上の構成法により、フェライトに印加される磁界は導
体の厚さあるいは、スペーサーの厚さに左右され、導体
板あるいはスペーサーの厚さを変えて磁界強度を制御で
きる。この電波吸収機構は、磁石による静磁界でスピン
を制御し、それに応じてフェライトの厚さも変えること
により、電波吸収条件を満たす透磁率特性、すなわち複
素比透磁率の実部が1となる周波数を変更して整合周波
数を変えるもので、電波エネルギーを広範囲の周波数に
わたり熱に変換し吸収できる作用がある。
(Function) With the above configuration method, the magnetic field applied to the ferrite depends on the thickness of the conductor or spacer, and the magnetic field strength can be controlled by changing the thickness of the conductor plate or spacer. This radio wave absorption mechanism controls the spin using a static magnetic field from a magnet, and changes the thickness of the ferrite accordingly to determine the magnetic permeability characteristic that satisfies the radio wave absorption conditions, that is, the frequency at which the real part of the complex relative magnetic permeability is 1. It changes the matching frequency by changing it, and has the effect of converting and absorbing radio wave energy into heat over a wide range of frequencies.

(実施例) 以下、本発明の構成を図面に示す実施例に基すいて詳述
する。第1図は本発明の電波吸収体の一実*例の斜視図
である。第一図では、前面からフェライト(1)、導波
板(2)、磁石(3)のように配置しである。ここで磁
石(3)は整合を取ろうとする高周波側上限の周波数に
よって定まる最大限の磁界を保持するように着磁しであ
る。磁石(3)の磁界は最大限に着磁しておき、導体板
(2〉の厚さを変えることでフェライト(1)に印加さ
れる磁界強度を制御して、かつフェライト(1)の厚さ
を変えて、整合周波数特性を可変させるものである。す
なわち、これは、例えば、高周波のUHF帯で整合を取
る場合は、VHF帯に比べ、フェライト厚を薄くかつ強
い静磁界を加える必要があるが、これに対し、VHF帯
で整合が取れる吸収体を構成するためには、フェライト
庫は厚くし、かつ加える静磁界も弱くすれば良いという
原理に基ずいている。第7図はこの関係を示す一例でN
i−Zn系のフェライト材を用いた場合の実測データで
ある。縦軸が電波吸収量を表す定在波比、すなわちVS
WRを、横軸が整合周波数を表している。例えば、第7
図中7−Aのグラフは、磁界を印加しない場合で、フェ
ライトの厚さd =6. 2 [mml、  周波数f
=0.18[GH2]で定在波比が最小値となり、整合
が最もよく取れた状態を示している。これに対してグラ
フ7−Bは、フェライト厚d=3 rmmlの場合で、
磁石表面の印加磁界約710 [Gauss]で、周波
数約0.35 [G)IZIで最も優れた整合状態にあ
ることが分かる。つまりフェライトに静磁界を印加しな
い状態の整合周波数に対し、磁界を印加し、フェライト
厚を薄くすると整合周波数が高周波側へ移行してゆくこ
とが分かる。結局この原理を具体化するためには、第1
図において整合周波数特性を変更する場合は、導波板(
2)とフェライト(1)の厚さを変えたものを磁石に張
りつければよい。この場合の設計指針は、フェライト厚
と印加磁界の関係がほぼ直線関係にあることを示す設計
チャートを用いて、所望の整合周波数を実現することが
出来る。
(Example) Hereinafter, the structure of the present invention will be described in detail based on an example shown in the drawings. FIG. 1 is a perspective view of an example of the radio wave absorber of the present invention. In Figure 1, the ferrite (1), waveguide plate (2), and magnet (3) are arranged from the front. Here, the magnet (3) is magnetized so as to maintain the maximum magnetic field determined by the upper limit frequency on the high frequency side for which matching is to be achieved. The magnetic field of the magnet (3) is magnetized to the maximum, and the magnetic field strength applied to the ferrite (1) is controlled by changing the thickness of the conductor plate (2), and the thickness of the ferrite (1) is controlled. This means that, for example, when matching in the high frequency UHF band, it is necessary to use a thinner ferrite and apply a stronger static magnetic field than in the VHF band. However, in order to construct an absorber that can be matched in the VHF band, it is based on the principle that the ferrite chamber should be made thicker and the applied static magnetic field should be made weaker.Figure 7 shows this. An example showing the relationship is N
This is actual measurement data when using i-Zn-based ferrite material. The vertical axis represents the standing wave ratio, which represents the amount of radio wave absorption, that is, VS
In WR, the horizontal axis represents the matching frequency. For example, the seventh
The graph 7-A in the figure shows the case where no magnetic field is applied, and the thickness of the ferrite is d = 6. 2 [mml, frequency f
The standing wave ratio becomes the minimum value at =0.18 [GH2], indicating a state where matching is best achieved. On the other hand, graph 7-B shows the case where the ferrite thickness d=3 rmml,
It can be seen that the best matching state is obtained when the magnetic field applied to the magnet surface is about 710 [Gauss] and the frequency is about 0.35 [G)IZI. In other words, it can be seen that when a magnetic field is applied to the ferrite and the ferrite thickness is made thinner, the matching frequency shifts to the higher frequency side compared to the matching frequency when no static magnetic field is applied to the ferrite. Ultimately, in order to embody this principle, the first step is to
When changing the matching frequency characteristics in the figure, use the waveguide (
2) and ferrite (1) with different thicknesses can be attached to a magnet. In this case, the design guideline is to realize a desired matching frequency using a design chart showing that the relationship between the ferrite thickness and the applied magnetic field is approximately linear.

ところで、この構成で、磁石(3)に通常の磁石板を用
いると第1図のような電波吸収体を用いる場合は問題な
いが、これを多数集めて張り巡らした電波吸収壁を構成
する場合は、隣接磁石間に反発力が作用したり、磁石境
界近傍の磁石分布が乱れるという問題が発生する。第2
図は、この問題を解決するために、磁石(3)として、
サマリウムコバルト磁石材などを砕いて、粉末状、粒子
状、細片状などにしたものを基板導体上に吸引させた後
バインダーを塗布または吹きつけ固めたもの、ならびに
、バインダーとこれらの磁石を混合し塗料化した磁石材
を基板(4)の上に吹きつけあるいは塗布し、かつ、こ
の磁石面に磁界を垂直に印加しつつ構成した塗料化磁石
(5)を用いた実施例である。この塗料化磁石を用いれ
ば、広範囲にわたり壁面全体を被う継目のない連続した
単体の磁石面を構成でき、前述の問題点を解決できる。
By the way, in this configuration, if a normal magnetic plate is used as the magnet (3), there is no problem when using a radio wave absorber as shown in Figure 1, but when a large number of these are assembled to form a radio wave absorbing wall. This causes problems such as repulsive force acting between adjacent magnets and disturbance of magnet distribution near the magnet boundary. Second
The figure shows that in order to solve this problem, as a magnet (3),
Samarium cobalt magnet materials, etc., are crushed into powder, particles, or pieces, which are sucked onto a substrate conductor, and then a binder is applied or sprayed to harden them, and binder and these magnets are mixed. In this embodiment, a painted magnet (5) is constructed by spraying or coating a painted magnet material onto a substrate (4) and applying a magnetic field perpendicularly to the magnet surface. By using this painted magnet, it is possible to construct a seamless, continuous, single magnet surface that covers the entire wall surface over a wide area, and the above-mentioned problems can be solved.

バインダーとしては、エポキシ樹脂系、酢酸ビニール樹
脂系、シアノアクリレート系などを用途や塗装基板の性
質によって使い分ければよい。磁石粉末ないし粒子、細
片寸法は細かくし過ぎると保磁力が低下するため塗装や
吹き付けに支障のない範囲で大きく選ぶ。
As the binder, epoxy resin type, vinyl acetate resin type, cyanoacrylate type, etc. may be used depending on the purpose and the properties of the coated substrate. If the size of the magnetic powder, particles, or pieces is too small, the coercive force will decrease, so choose a size that is as large as possible without interfering with painting or spraying.

また第2図では、第1図の導体板(2)と磁石(3)の
間に誘電体などのスペーサー(6)をはさみ導体板(2
)を薄くして軽量化をはかっている。
In addition, in Figure 2, a spacer (6) such as a dielectric material is sandwiched between the conductor plate (2) and the magnet (3) in Figure 1.
) to reduce weight.

二のスペーサー(6〉の肉厚の変化によりフェライト(
1)に作用する磁界強度を制御する。勿論導体板(2)
の厚みを変更することも可能である。
Ferrite (
1) Control the magnetic field strength that acts on. Of course conductor plate (2)
It is also possible to change the thickness.

スペーサー(6)としては、重量の軽いものなら、プラ
スチックや、発泡スチロールをはじめ、繊維類いずれも
使用することができ、またビル壁面であればコンクリー
ト材でもよい。このスペーサー(6)と導体板(2)と
フェライト(1)ならびに塗料化磁石(5)とは、シア
ノアクリレート系などの強力接着剤や発泡スチロールス
ペーサーに対しては酢酸ビニール系接着剤を用いて固着
される。また、これら相互の接着剤は細かい凹凸面や鋸
歯状の面として剥離落下を防止′する構造にして接着力
を強化している。勿論、第一図、第二図で強磁界を必要
とするときは、導体板(2)やスペーサー(6)は無く
てよい。
As the spacer (6), any lightweight material such as plastic, styrofoam, or fibers can be used, and if it is a wall of a building, concrete may be used. The spacer (6), conductor plate (2), ferrite (1), and painted magnet (5) are fixed using a strong adhesive such as cyanoacrylate or vinyl acetate adhesive for the styrofoam spacer. be done. Furthermore, these mutual adhesives are structured to have finely uneven surfaces or serrated surfaces to prevent them from peeling off and falling, thereby strengthening their adhesion. Of course, when a strong magnetic field is required in Figures 1 and 2, the conductor plate (2) and spacer (6) may be omitted.

第3図は、第1図の磁石(3)の部分を円板状磁石(7
)と上述の塗料化磁石(5)を目地部分に用いた磁石面
構成の一例である。ここでは隣接磁石側面の磁界の相互
作用を最小限にするため円板状磁石を用いて磁石どうし
が点接触する方法をとった一例である。勿論、この円板
状磁石(7)を層状に重ねたり、塗料化磁石(5)をこ
れら磁石を被うように塗布し、磁界を強化、均一化する
ことが出来る。目地材としては、サマリウムコバルト磁
石材の他、安価なフェライト磁石粉末などが利用出来る
。このような磁石板を用いて第1図、第2図に示すよう
に構成すれば静磁界を効果的にフェライトに附与するこ
とが出来、電波吸収体構成に有利である。
In Figure 3, the magnet (3) in Figure 1 is replaced with a disc-shaped magnet (7).
) and the above-mentioned painted magnet (5) are used as joint parts. This is an example of a method in which disk-shaped magnets are used and the magnets are in point contact with each other in order to minimize the interaction of magnetic fields on the side surfaces of adjacent magnets. Of course, the magnetic field can be strengthened and made uniform by stacking the disc-shaped magnets (7) in layers or by coating the coated magnets (5) so as to cover these magnets. In addition to samarium cobalt magnet material, inexpensive ferrite magnet powder can be used as the joint material. If such a magnet plate is used and constructed as shown in FIGS. 1 and 2, a static magnetic field can be effectively imparted to the ferrite, which is advantageous for the construction of a radio wave absorber.

第4図は、塗料化磁石を建造物の壁面に塗布し、本発明
における電波吸収体を貼り合わせ、電波吸収壁を構成し
た一実施例の斜視図である。この実施例では、フェライ
ト(1)、導体板(2)、スペーサー(6)、塗料化磁
石(5〉は、それぞれ相互に接着されている。
FIG. 4 is a perspective view of an embodiment in which a magnet coated with paint is applied to the wall of a building and a radio wave absorber according to the present invention is bonded thereto to form a radio wave absorbing wall. In this embodiment, the ferrite (1), the conductor plate (2), the spacer (6), and the coated magnet (5>) are each bonded to each other.

この場合の施工法は、(イ)建造物の壁面(8)に塗料
化磁石(5)を塗布する。塗布する厚さを厚くすればそ
れだけ強い磁界強度が得られる。また、塗装表面は多少
ランダムであっても、塗料化磁石(5)を構成する接着
剤などのバインダーが乾かぬうちにプラスチック板など
のスペーサー(6)を塗料化磁石(5)の表面にあてが
うことで一定の厚さを保つことが出来る。
The construction method in this case is (a) applying a paint-containing magnet (5) to the wall surface (8) of the building. The thicker the coating, the stronger the magnetic field strength. Also, even if the painted surface is somewhat random, apply a spacer (6) such as a plastic plate to the surface of the painted magnet (5) before the binder such as adhesive that makes up the painted magnet (5) dries. This allows you to maintain a constant thickness.

(ロ)次にスペーサー(6)の表面に導体板(2)を仮
にあてがう。
(b) Next, temporarily apply the conductive plate (2) to the surface of the spacer (6).

(ハ)ここで、塗料化磁石(5)が導体板(2)の表面
に対して効率よく垂゛直に磁化されるように、第5図の
側面図で示す方法で直流磁界を印加する。
(c) Here, in order to efficiently magnetize the painted magnet (5) perpendicularly to the surface of the conductor plate (2), apply a DC magnetic field in the manner shown in the side view of Fig. 5. .

すなわち第5図は磁性コア(9)とコイル(10〉から
成る着磁用磁石(11〉で一定磁界が印加できるよう磁
性コア(9)に支柱(12)を取り付け、キャスタ(1
3)で導体板(2)の表面を一定の間隔を保って滑らか
に移動できるようにしである。
In other words, in Fig. 5, a pole (12) is attached to the magnetic core (9) so that a constant magnetic field can be applied by a magnetizing magnet (11>) consisting of a magnetic core (9) and a coil (10>), and a caster (1
3) so that the surface of the conductor plate (2) can be moved smoothly while maintaining a constant interval.

(ニ)この操作の後、導体表面の磁界の強さをガウスメ
ーターで測定する。この結果、もし所望の磁界が得られ
ず強すぎる場合は、仮りにあてがった導体板(2)をは
がし、導体板(2)かスペーサー(6)をさらに厚くす
る。磁界か弱すぎる場合は、スペーサーを研磨するなど
して薄くするか、着磁用磁石(11)のコイル(10)
に交流を流し、塗料化磁石(5)の着磁力を弱める方法
を取゛る。
(d) After this operation, measure the strength of the magnetic field on the conductor surface with a Gaussmeter. As a result, if the desired magnetic field is not obtained and is too strong, the temporarily applied conductor plate (2) is removed and the conductor plate (2) or spacer (6) is made thicker. If the magnetic field is too weak, try polishing the spacer to make it thinner, or remove the coil (10) of the magnetizing magnet (11).
A method is used to weaken the magnetizing force of the paint magnet (5) by passing an alternating current through the magnet.

(ホ〉この結果、所望の磁界が得られたならば、フェラ
イト(1)を導体板(2)の表面に接着し、本発明の電
波吸収壁の施工が完了する。
(E) As a result, if the desired magnetic field is obtained, the ferrite (1) is adhered to the surface of the conductor plate (2), and the construction of the radio wave absorbing wall of the present invention is completed.

さて、第8図は、第7図のそれぞれのVSWR特性に対
応する復業比透磁率μr=μr l−jμrIsの周波
数分布特性の実測例である。第7図と比較すると比透磁
率の実部μr′がほぼlの周波数でよく整合がとれてい
ることが分かる。つまり理論的に導出される完全整合条
件はμr″=1.μr* 1 > > 1であり、上記
実測例はこの条件と合致している。従って、磁界を印加
しない場合の比透磁率が1となる周波数ができるだけ低
周波となる材料を製造するか、または既存のフェライト
材料からそのような条件を満たす材料を選択すれば、そ
れよりも高周波領域においては、磁界を印加しかつフェ
ライト厚を薄くすることにより、広い周波数範囲にわた
って任意に整合を取ることが出来る電波吸収体が出来る
。またフェライト厚と印加磁界が定まった場合、所望の
整合周波数領域を出来るだけ広帯域なものとするには、
比透磁率が1となる周波数近傍における比透磁率実部の
グラフの勾配が緩やかになる材料を用いればよいことが
第7図と第8図の照合から明かである。なお、上記の実
施例は、本発明の好適な実施の例ではあるが、これに限
定されるものではなく、本発明の要旨を逸脱しない範囲
において種々の変形実施が可能である。
Now, FIG. 8 shows an actual measurement example of the frequency distribution characteristics of the return relative magnetic permeability μr=μr l−jμrIs corresponding to each of the VSWR characteristics shown in FIG. 7. Comparing with FIG. 7, it can be seen that the real part μr' of the relative magnetic permeability is well matched at approximately the frequency of l. In other words, the theoretically derived perfect matching condition is μr″=1.μr* 1 >> 1, and the above actual measurement example matches this condition. Therefore, the relative permeability when no magnetic field is applied is 1. By manufacturing a material whose frequency is as low as possible, or by selecting a material that satisfies such conditions from existing ferrite materials, it is possible to apply a magnetic field and reduce the ferrite thickness in a higher frequency region. By doing this, a radio wave absorber can be created that can be matched arbitrarily over a wide frequency range.Also, when the ferrite thickness and applied magnetic field are determined, in order to make the desired matching frequency range as wide as possible,
It is clear from a comparison between FIGS. 7 and 8 that a material in which the slope of the graph of the real part of the relative magnetic permeability in the vicinity of the frequency at which the relative magnetic permeability becomes 1 is gentle should be used. Although the above-described embodiments are preferred embodiments of the present invention, the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

(発明の効果) 本発明は、以上のようにフェライトに印加する静磁界の
制御法を比較的簡単な方法で解決し、またこの方法によ
りフェライト電波吸収壁を構成する場合、隣接磁石間に
発生する反発力や不均一磁界の問題を、円形磁石を用い
接触面を最小限にしたり、塗料化磁石を用い壁面全体を
被単体の磁石で形成すること、また磁石に目地材として
これを用いることによって、つまり実質的に単一磁石を
構成することによって解決している。また、本発明はフ
ェライトの背面に導体を介在して磁石を配置したり、こ
の導体と磁石の間に非導体からなるスペーサーを介在さ
せ、この導体やスペーサーの厚さを変えることによって
、フェライトに印加される磁界強度を磁石を変えずに変
化させ、フェライト厚の変更と相撲って、整合周波数特
性を任意に変化させ得る。
(Effects of the Invention) As described above, the present invention solves the method of controlling the static magnetic field applied to ferrite in a relatively simple manner, and when configuring a ferrite radio wave absorption wall using this method, the To solve the problem of repulsive force and non-uniform magnetic field, it is possible to minimize the contact surface by using circular magnets, to form the entire wall surface with a single magnet using painted magnets, or to use it as a joint material for magnets. The problem is solved by essentially configuring a single magnet. In addition, the present invention can be applied to ferrite by arranging a magnet on the back side of ferrite with a conductor interposed between them, interposing a spacer made of a non-conductor between the conductor and the magnet, and changing the thickness of the conductor or spacer. By varying the applied magnetic field strength without changing the magnet, and in conjunction with varying the ferrite thickness, the matching frequency characteristics can be arbitrarily varied.

また、本発明は一旦壁面に取り付けた電波吸収壁の整合
周波数を変更する方法として、電波吸収壁表面上から着
磁用磁石により、直流磁界や交流磁界を印加して保磁力
を増強したり弱めたりして制御し、それに応じて、フェ
ライトを積層して厚くするか、または、削り落として薄
くすることにより、フェライト電波吸収壁面全体を取り
壊すこと、なく任意の整合用周波数特性を実現し得る。
In addition, the present invention provides a method for changing the matching frequency of a radio wave absorbing wall once attached to a wall, by applying a DC magnetic field or an alternating current magnetic field from the surface of the radio wave absorbing wall using a magnetizing magnet to increase or weaken the coercive force. By laminating the ferrite to make it thicker or scraping it to make it thinner, it is possible to achieve any matching frequency characteristic without destroying the entire ferrite radio wave absorption wall surface.

以上のように、従来のフェライト電波吸収体は、所望の
整合用周波数特性を、実現することがきわめて困難で、
材料の組成や焼成条件等を検討し、試行錯誤的に設計し
ていた電波吸収体を、本発明では、同一材料で比較的簡
単に広帯域にわたり任意の整合用周波数特性を実現でき
る電波吸収体ならびに電波吸収壁の構成法と製造法を提
供するもので、きわめて顕著な実用効果を有している。
As mentioned above, it is extremely difficult to achieve the desired matching frequency characteristics with conventional ferrite radio wave absorbers.
The radio wave absorber was designed by trial and error after considering material composition, firing conditions, etc., but with the present invention, we have developed a radio wave absorber and a radio wave absorber that can relatively easily achieve arbitrary matching frequency characteristics over a wide band using the same material. It provides a method for constructing and manufacturing a radio wave absorbing wall, and has extremely significant practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例でフェライトと磁石間に導
体板を介在させた電波吸収体の構造を示す一実施例の斜
視図。 第2図は、本発明の非導体のスペーサーを用いた電波吸
収体の構造を示す一実施例の斜視図。 第3図は、本発明の磁石面の構成法を示す一実施例の斜
視図。 第4図は本発明の電波吸収壁の施工法を示す一実施例の
斜視図。 第5図は、本発明による電波吸収体の着磁法の一実施例
を示す正面図。 第6図は、従来のフェライト電波吸収体の構造を示す斜
視図。 第7図は、本発明の原理を示す電波吸収体の■SWR特
性図の実施例。 第8図は、第10図に対応する比透磁率特性の周波数分
散特性図。 1・・・フェライト 3・・・磁石 5・・・塗料化磁石 7・・・円盤状磁石 9・・・磁性コア 11・・・着磁用磁6 13・・・キャスタ 2・・・導体板 4・・・基板 6・・・スペーサー 8・・・壁面 10・・・コイル 12・・・支柱
FIG. 1 is a perspective view of an embodiment of the present invention showing the structure of a radio wave absorber in which a conductive plate is interposed between a ferrite and a magnet. FIG. 2 is a perspective view of an embodiment of the structure of a radio wave absorber using a non-conductor spacer according to the present invention. FIG. 3 is a perspective view of an embodiment showing a method of constructing a magnet surface according to the present invention. FIG. 4 is a perspective view of one embodiment of the construction method of the radio wave absorbing wall of the present invention. FIG. 5 is a front view showing an embodiment of the method of magnetizing a radio wave absorber according to the present invention. FIG. 6 is a perspective view showing the structure of a conventional ferrite radio wave absorber. FIG. 7 is an example of an SWR characteristic diagram of a radio wave absorber showing the principle of the present invention. FIG. 8 is a frequency dispersion characteristic diagram of relative permeability characteristics corresponding to FIG. 10. 1... Ferrite 3... Magnet 5... Painted magnet 7... Disc-shaped magnet 9... Magnetic core 11... Magnetizing magnet 6 13... Caster 2... Conductor plate 4... Board 6... Spacer 8... Wall surface 10... Coil 12... Support

Claims (10)

【特許請求の範囲】[Claims] (1)フエライトの背面に導体を介在して磁石を配置し
て成る電波吸収体。
(1) A radio wave absorber made by arranging a magnet on the back surface of ferrite with a conductor interposed.
(2)請求項1記載の電波吸収体において、導体板と磁
石の間に非導体からなるスペーサを介在させたことを特
徴とする電波吸収体。
(2) The radio wave absorber according to claim 1, characterized in that a spacer made of a non-conductor is interposed between the conductor plate and the magnet.
(3)前記磁石は、磁石粉末あるいは磁石小片をバイン
ダーで連結したものであることを特徴とする請求項1ま
たは2記載の電波吸収体。
(3) The radio wave absorber according to claim 1 or 2, wherein the magnet is a combination of magnet powder or small magnet pieces connected with a binder.
(4)請求項1ないし3のいずれかに記載の電波吸収体
を寄せ集めて構成した電波吸収壁。
(4) A radio wave absorbing wall constructed by assembling the radio wave absorbers according to any one of claims 1 to 3.
(5)請求項4記載の電波吸収体壁を構成する磁石の間
に磁石粉末あるいは磁石小片を混入した目地材を充填し
たことを特徴とする電波吸収壁。
(5) A radio wave absorbing wall characterized in that a joint material containing magnet powder or small pieces of magnet is filled between the magnets constituting the radio wave absorbing wall according to claim 4.
(6)請求項4記載の電波吸収壁において、磁石は磁石
粉末や磁石小片をバインダーで連結し、壁面全体を被う
継目のない連続した単体の磁石であることを特徴とする
電波吸収壁。
(6) The radio wave absorbing wall according to claim 4, wherein the magnet is a seamless, continuous single magnet that covers the entire wall surface by connecting magnet powder or small pieces of magnet with a binder.
(7)請求項1記載の電波吸収体において、導体とフェ
ライトの厚さを調節することによって整合周波数特性を
変更させることを特徴とする電波吸収体の整合周波数の
可変方法。
(7) A method of varying the matching frequency of the radio wave absorber according to claim 1, characterized in that the matching frequency characteristic is changed by adjusting the thickness of the conductor and the ferrite.
(8)請求項2記載の電波吸収体において、フェライト
の厚さと導体もしくはスペーサーあるいは双方の厚さを
調節することによつて整合周波数を変更させることを特
徴とする電波吸収体の整合周波数特性の可変方法。
(8) In the radio wave absorber according to claim 2, the matching frequency characteristic of the radio wave absorber is characterized in that the matching frequency is changed by adjusting the thickness of the ferrite and the thickness of the conductor or the spacer or both. Variable method.
(9)電波吸収壁の表面から、直流磁界または交流磁界
を印加し磁石の保磁力を制御して吸収壁表面のフェライ
トを積層するかまたは削り落としてフェライト厚を変化
させて、可変することを特徴とする電波吸収壁。
(9) Applying a direct current or alternating magnetic field to the surface of the radio wave absorption wall to control the coercive force of the magnet and layering or scraping off the ferrite on the surface of the absorption wall to vary the ferrite thickness. Features a radio wave absorption wall.
(10)請求項1のフェライトとして、比透磁率の周波
数分散特性において、比透磁率の実部が1となる周波数
が最低周波数となるようなフェライトを製造し、これを
用いて広帯域にわたり整合特性を可変出来ることを特徴
とする電波吸収体。
(10) As the ferrite according to claim 1, a ferrite is produced whose frequency dispersion characteristic of relative magnetic permeability is such that the lowest frequency is the frequency at which the real part of the relative magnetic permeability is 1, and using this ferrite, matching characteristics are obtained over a wide band. A radio wave absorber characterized by being able to vary the
JP17272789A 1989-07-04 1989-07-04 Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic Pending JPH0336795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17272789A JPH0336795A (en) 1989-07-04 1989-07-04 Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17272789A JPH0336795A (en) 1989-07-04 1989-07-04 Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic

Publications (1)

Publication Number Publication Date
JPH0336795A true JPH0336795A (en) 1991-02-18

Family

ID=15947211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17272789A Pending JPH0336795A (en) 1989-07-04 1989-07-04 Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic

Country Status (1)

Country Link
JP (1) JPH0336795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085243A (en) * 2017-05-18 2017-08-22 淮南矿业(集团)有限责任公司 A kind of assay method and drawing formation system of filling-in field strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107085243A (en) * 2017-05-18 2017-08-22 淮南矿业(集团)有限责任公司 A kind of assay method and drawing formation system of filling-in field strength

Similar Documents

Publication Publication Date Title
CN105431979B (en) Powder coating method and device for absorbing electromagnetic interference (EMI)
CN103474775B (en) Phased array antenna based on dynamic regulation and control artificial electromagnetic structure material
Liu et al. A tunable ring-type magnetoelectric inductor
CN110504553A (en) A kind of multilayer ultra-wide band wave-absorber that electrically lossy material is compound with magnetic material
JP2010538494A (en) Bias gap inductor and manufacturing method thereof
JPS57195327A (en) Magnetic recording medium
GB1074898A (en) Improvements in devices for absorbing elector-magnetic waves
CN109378591A (en) A kind of angle it is insensitive can conformal broadband reflection type linear polarization converter
JPH0336795A (en) Radio wave absorber, radio wave absorption wall using same and varying method for matching frequency characteristic
CN101518964B (en) Polarization independent high performance adjustable compound microwave absorption material
CN104972710A (en) Electromagnetic wave absorption apparatus and preparation method thereof
CN214280217U (en) Wave-absorbing metamaterial
CN204796033U (en) Inhale super material of ripples and inhale ripples device
JP3162692B2 (en) Inductors and transformers
JPH0974297A (en) Radio wave absorber
JP2007059456A (en) Wave absorber
CN105938748B (en) Composite magnetic sheet and the magnetic medium antenna for using the composite magnetic sheet
JPH0344100A (en) Wave absorber, variation of matching frequency characteristic and improving method for grazing incidence characteristic thereof, and manufacture thereof
Fetisov et al. Circular magnetoelectric heterostructure based inductor tuned with magnetic and electric fields
JPH0946128A (en) Electromagnetic wave absorber, electromagnetic wave absorbing member and electromagnetic wave absorbing method
JPH06283878A (en) Radio wave absorber
Nikitin et al. Modeling of magnetoelectric effect in multiferroic antenna
KR100291802B1 (en) Screen sheet for obstructing electromagnetic wave and magnetic field and method for making the same
CN217485711U (en) Wave absorber unit structure with adjustable frequency points and wave absorbing device
CN216312062U (en) Broadband pyramid wave-absorbing material