JPH0336718A - Formation of passage for reaction device - Google Patents

Formation of passage for reaction device

Info

Publication number
JPH0336718A
JPH0336718A JP17112389A JP17112389A JPH0336718A JP H0336718 A JPH0336718 A JP H0336718A JP 17112389 A JP17112389 A JP 17112389A JP 17112389 A JP17112389 A JP 17112389A JP H0336718 A JPH0336718 A JP H0336718A
Authority
JP
Japan
Prior art keywords
flow path
point
passage
equal
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17112389A
Other languages
Japanese (ja)
Inventor
Hisashi Koaizawa
久 小相澤
Yukio Komura
幸夫 香村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP17112389A priority Critical patent/JPH0336718A/en
Publication of JPH0336718A publication Critical patent/JPH0336718A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a layer flow state to be maintained even at a carved part by setting the relationship among passage gaps of entrance and exit at a curved part of a passage within a reaction device and a passage gap between both solid surfaces from the entrance to the exit at the curved part to a specific relationship. CONSTITUTION:The starting point of a curved part 5A of a gas passage 5 are located on a line connecting points A and B and the ending point is located on a line connecting points C and D. Also, a passage gap at a parallel part of solid surfaces 1A and 3A at an entrance of the curved part 5A is set to l1, a passage gap between both solid surfaces 1A and 3A at a point, namely either the point C or D at the exit of the curved part 5A, located at the downstream side is set to l2, and a passage gap between a reaction container 1 and a susceptor 3 from the beginning of the curve at the curved part 5A to the end is set to l. Then, the following results. l is equal to or less than either l1 or l2 which is larger when l1 is not equal to l2. l is equal to or less than l1 or l2 when l1 is equal to l2. Also, the ratio of either smaller passage gas l1 or l2 to l is set to 0.5 to 1.5 when l1 is not equal to l2, while the ratio of l1 or l2 to l is set to 0.5 to 1.0 when l1 is equal to l2. These ratios are obtained by setting the smaller value of these two values as a denominator.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば気相成長装置の如き反応装置内におけ
る流路の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a flow path in a reaction device such as a vapor phase growth device.

[従来の技術] 第6図及び第7図は、従来の縦型気相成長装置を示した
ものである。図において、1は反応容器、2は該反応容
器1の上部に設けられたガス導入部、3は該反応容器1
内に設けられて上面に基板4を支持するサセプタ、5は
ガス導入部2に連続して反応容器1とサセプタ3との対
向部間に該反応容器1の内面を第1の固体面IA及びサ
セプタ3の表面を第2の固体面3Aとして形成されてい
るガス流路、5Aは反応容器1の肩部とサセプタ3の肩
部との間に形成されているガス流路5の曲がり部である
。6はサセプタ3を回転及び昇降自在に支持しているサ
セプタ駆動軸、7は反応容器1の下部に設けられた排気
管、8は反応容器1の上部外周に設けられている冷却ジ
ャケット、8A、8Bは冷却ジャケット8の冷却水入口
及び冷却水出口、9は冷却ジャケット8の外周に設けら
れた誘導加熱コイルである。なお、第1.第2の固体面
は前述したとは逆に、サセプタ3の表面を第1の固体面
、反応容器lの内面を第2の固体面とみてもよいことは
勿論である。
[Prior Art] FIGS. 6 and 7 show a conventional vertical vapor phase growth apparatus. In the figure, 1 is a reaction vessel, 2 is a gas introduction part provided at the top of the reaction vessel 1, and 3 is the reaction vessel 1.
A susceptor 5, which is provided in the interior and supports the substrate 4 on its upper surface, is connected to the gas introduction part 2, and the inner surface of the reaction vessel 1 is connected to the first solid surface IA and between the opposing parts of the reaction vessel 1 and the susceptor 3. A gas flow path is formed using the surface of the susceptor 3 as a second solid surface 3A, and 5A is a curved portion of the gas flow path 5 formed between the shoulder of the reaction vessel 1 and the shoulder of the susceptor 3. be. Reference numeral 6 denotes a susceptor drive shaft that supports the susceptor 3 so that it can rotate and move up and down; 7, an exhaust pipe provided at the lower part of the reaction container 1; 8, a cooling jacket provided on the outer periphery of the upper part of the reaction container 1; 8A; 8B is a cooling water inlet and a cooling water outlet of the cooling jacket 8, and 9 is an induction heating coil provided on the outer periphery of the cooling jacket 8. In addition, 1. Contrary to what has been described above, it goes without saying that the second solid surface may be regarded as the surface of the susceptor 3 as the first solid surface and the inner surface of the reaction vessel 1 as the second solid surface.

このような縦型気相成長装置では、原料ガスが反応容器
1の上部のガス導入部2より導入される。
In such a vertical vapor phase growth apparatus, source gas is introduced from the gas introduction section 2 at the upper part of the reaction vessel 1.

このガス導入部2は、サセプタ3側に向うにつれて徐々
に口径が大きくなるテーパ形に形成されている。該ガス
導入部2より導入された原料ガスはサセプタ3に当った
後、該サセプタ3の径方向に向きを変えて流れ、ガス流
路5の曲がり部5Aで流れの方向が90’曲げられる。
The gas introduction portion 2 is formed in a tapered shape whose diameter gradually increases toward the susceptor 3 side. After hitting the susceptor 3, the raw material gas introduced from the gas introduction section 2 changes its direction in the radial direction of the susceptor 3 and flows, and the direction of flow is bent by 90' at the bend 5A of the gas flow path 5.

この曲がり部5Aの入口における第1の固体面IAと第
2の固体面3Aとの流路間隔fltと、数曲がり部5A
の出口における第1の固体面IAと第2の固体面3Aと
の流路間隔22との関係は、従来特別な関係がなく 2
℃1≦J22のようになっていた。また、サセプタ3の
肩部の曲率半径Rsは、反応容器1の肩部の曲率半径R
rと、曲がり部5Aの流路間隔ぶとの関係がR8<< 
Rr −12となっていた。
The flow path interval flt between the first solid surface IA and the second solid surface 3A at the inlet of this bent portion 5A, and the number of bent portions 5A
Conventionally, there is no special relationship between the flow path spacing 22 between the first solid surface IA and the second solid surface 3A at the outlet of 2.
It was as follows: ℃1≦J22. The radius of curvature Rs of the shoulder of the susceptor 3 is the radius of curvature R of the shoulder of the reaction vessel 1.
The relationship between r and the flow path spacing of the bent portion 5A is R8<<
The Rr was -12.

また、サセプタ3の肩部は、円弧状にはなっておらず、
第8図に示すような面取り構造のものもあった。
Furthermore, the shoulder portion of the susceptor 3 is not arc-shaped;
There was also one with a chamfered structure as shown in FIG.

第9図及び第10図は、従来のバレル型気相成長装置の
例を示す。なお、前述した第6図乃至第8図と対応する
部分には同一符号を付けて示している。図において、I
Oはサセプタ3の上面に設けられたサセプタキャップ、
11は反応容器1内でガス導入部2に対して同軸状に設
けられて基端が該反応容器1の内壁に固定されている仕
切筒、12は仕切筒11を同軸状に包囲して配置されて
先端が反応容器1の内壁に固定されている流れ方向変換
容器、13は流れ方向変換容器12の上部に設けられて
いるガス流出口である。
FIG. 9 and FIG. 10 show an example of a conventional barrel type vapor phase growth apparatus. Note that parts corresponding to those in FIGS. 6 to 8 described above are designated by the same reference numerals. In the figure, I
O is a susceptor cap provided on the top surface of the susceptor 3;
Reference numeral 11 denotes a partition tube that is provided coaxially with respect to the gas introduction part 2 within the reaction vessel 1 and whose base end is fixed to the inner wall of the reaction vessel 1, and 12 is disposed coaxially surrounding the partition tube 11. 13 is a gas outlet provided at the upper part of the flow direction changing container 12.

この場合のガス流路5は、仕切筒11の表面と、流れ方
向変換容器12の表面とのいずれか一方を第1の固体面
、他方を第2の固体面として形成されている。
The gas flow path 5 in this case is formed such that one of the surface of the partition tube 11 and the surface of the flow direction conversion container 12 is a first solid surface, and the other is a second solid surface.

かかる気相成長装置で、ガス導入部2に導入された原料
ガスは、仕切筒11内に入り、該仕切筒11の先端と流
れ方向変換容器12の底部との間の第1の曲がり部5A
1で向きを1800変え、該仕切筒11と該流れ方向変
換容器12との間のガス流路5を逆向きに流れ、ガス流
出口13から反応容器1内に流出し、該ガス流出口13
における第2の曲がり部5A2で向きを再び180°変
え、サセプタキャップ10及びサセプタ3に沿って流れ
る。この場合には、仕切筒11と、流れ方向変換容器1
2と、反応容器1との三重構造により、原料ガスがサセ
プタ3の表面に均一に流れるようにしている。
In such a vapor phase growth apparatus, the raw material gas introduced into the gas introduction section 2 enters the partition tube 11 and passes through the first bent section 5A between the tip of the partition tube 11 and the bottom of the flow direction conversion container 12.
1, the direction is changed by 1800 degrees, the gas flows in the opposite direction through the gas flow path 5 between the partition tube 11 and the flow direction changing container 12, flows out into the reaction container 1 from the gas outlet 13, and flows into the reaction container 1 from the gas outlet 13.
The direction changes again by 180° at the second bending portion 5A2, and flows along the susceptor cap 10 and the susceptor 3. In this case, the partition tube 11 and the flow direction conversion container 1
The triple structure of the susceptor 2 and the reaction vessel 1 allows the raw material gas to flow uniformly over the surface of the susceptor 3.

[発明が解決しようとする課題] しかしながら、第6図乃至第8図に示すタイプの気相成
長装置のガス流路5では、サセプタ3の肩部の下流側で
該サセプタ3の表面に沿った原料ガスの流れが剥離して
渦14ができ、流れが乱れてしまう問題点があった。ま
た、この構造の場合には、曲がり部5Aの出口側の流路
間隔J2zが広く、原料ガスの流量が少ない場合、サセ
プタ3に沿って流れていた原料ガスが反応容器1の底部
ではね返り、上流側に逆流し、基板4の表面での気相成
長が均一にできず、良い製品が得にくい問題点があった
[Problems to be Solved by the Invention] However, in the gas flow path 5 of the type of vapor phase growth apparatus shown in FIGS. There was a problem in that the flow of the raw material gas was separated, creating a vortex 14, and the flow was disturbed. In addition, in the case of this structure, when the flow path interval J2z on the outlet side of the bent portion 5A is wide and the flow rate of the raw material gas is small, the raw material gas flowing along the susceptor 3 rebounds at the bottom of the reaction vessel 1. There was a problem in that the gas flows backward to the upstream side, making it impossible to achieve uniform vapor phase growth on the surface of the substrate 4, making it difficult to obtain a good product.

一方、第9図及び第10図に示すタイプの気相成長装置
のガス流路5では、第1の曲がり部5Alと第2の曲が
り部5A2とで、原料ガスの流れの剥離が生じて渦14
が発生し、流れが乱れてしまう問題点があった。
On the other hand, in the gas flow path 5 of the vapor phase growth apparatus of the type shown in FIGS. 9 and 10, separation of the raw material gas flow occurs at the first bending part 5Al and the second bending part 5A2, resulting in swirling. 14
There was a problem that this caused the flow to become turbulent.

以上のように、従来のいずれのタイプのガス流路5でも
曲がり部5A、5A1.5A2の出口側で流れの剥離が
生じ、渦14ができるため、原料ガスの急峻な切り換え
を必要とする製品の製造ができない問題点があった。
As described above, in any type of conventional gas flow path 5, flow separation occurs on the exit side of the bends 5A, 5A1, 5A2, and a vortex 14 is created, so products that require abrupt switching of raw material gas There was a problem that made it impossible to manufacture.

本発明の目的は、流体の流れが固体面から剥離するのを
防止できる反応装置用流路形成方法を提供することにあ
る。
An object of the present invention is to provide a method for forming a flow path for a reactor that can prevent the flow of fluid from separating from a solid surface.

[課題を解決するための手段] 上記の目的を達成するための本発明の詳細な説明すると
、本発明は反応装置内の第1の固体面と第2の固体面と
の間に曲がり部を有する流路を形或する反応装置用流路
形成方法において、前記曲がり部における前記流路の入
口の流路間隔を℃1゜出口の流路間隔をJ2zとしたと
き、前記曲がり部の入口から出口までの間の前記第1の
固体面と前記第2の固体面との間の流路間隔ぶは、ぶ1
≠12のときには該it、J2zのいずれか大きい方以
下、1+=f2zのときは該J21又は℃2以下であり
、且つ℃1≠12のときには該1l1、l2のいずれか
小さい方の流路間隔と該℃との比が0.5〜1.5、J
2+=、ezのときは該℃1又はJ22と該℃との比が
0.5〜1.0であることを特徴とする。なお、これら
の比は、2つの値のうち小さい方を分母として求める。
[Means for Solving the Problems] To explain in detail the present invention for achieving the above object, the present invention provides a curved portion between a first solid surface and a second solid surface in a reactor. In the method for forming a channel for a reactor, in which the channel spacing between the inlets of the channel at the bend is 1°C and the channel spacing at the outlet is J2z, from the inlet of the bend A flow path interval between the first solid surface and the second solid surface up to the outlet is 1
When ≠12, the flow path spacing is less than or equal to the larger of it and J2z, and when 1+=f2z, it is less than or equal to J21 or °C2, and when °C1≠12, the flow path spacing is the smaller of 1l1 and l2. and the ratio of 0.5 to 1.5, J
When 2+=, ez, the ratio of the temperature C1 or J22 to the temperature C is 0.5 to 1.0. Note that these ratios are determined using the smaller of the two values as the denominator.

[作用] 上記のように流路の曲がり部の入口、出口及び中間部の
流路間隔J2t、J2z、j2を定めると、これら流路
間隔が大きく変化せず、流体の流れが固体面から剥離す
るのを防止する。また、流体の流れの固体面からの剥離
があっても十分に小さくすることができる。従って、流
体は流路の曲がり部でも層流状態を保って流れるように
なる。
[Operation] If the flow path spacings J2t, J2z, and j2 at the inlet, outlet, and intermediate portion of the curved portion of the flow path are determined as described above, these flow path spacings will not change significantly, and the fluid flow will separate from the solid surface. prevent Furthermore, even if the fluid flow separates from the solid surface, it can be sufficiently reduced. Therefore, the fluid flows while maintaining a laminar flow state even at curved portions of the flow path.

また、このような流路によれば、流体の急峻な切り換え
が可能になる。
Further, such a flow path allows rapid switching of fluids.

[実施例] 以下、本発明の実施例を図面を参照して詳細に説明する
。なお、前述した第6図乃至第10図と対応する部分に
は、同一符号を付けて示している。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. Note that parts corresponding to those in FIGS. 6 to 10 described above are designated by the same reference numerals.

第1図は、従来の第6図に示すタイプの気層成長装置の
ガス流路5に本発明を適用した本発明の第1実施例を示
したものである。本実施例のガス流路5では、曲がり部
5Aの始まりがA点、B点を結ぶ線上にあり、曲がり部
の終りが0点、D点を結ぶ線上にある。また、曲がり部
5Aの入口における一方の固体面IAと他方の固体面3
Aの平行部における流路間隔をJ21、曲がり部5Aの
出口における曲がり部5Aの終りの0点、D点のうちい
ずれか下流側にある方の点における両回体面iA、3A
間の流路間隔をJ2zとする。この実施例では、ぶ2が
0.5J2t≦12≦1.5J21となるようにサセプ
タ3の肩部の曲率半径Rsと反応容器1の肩部の曲率半
径Rrとを選んでいる。このとき、B点は0点より下流
側にある方が好ましい。
FIG. 1 shows a first embodiment of the present invention in which the present invention is applied to a gas flow path 5 of a conventional vapor layer growth apparatus of the type shown in FIG. In the gas flow path 5 of this embodiment, the beginning of the bend 5A is on the line connecting point A and point B, and the end of the bend is on the line connecting point 0 and point D. Also, one solid surface IA and the other solid surface 3 at the entrance of the bending portion 5A
The flow path interval in the parallel part of A is J21, the 0 point at the end of the bending part 5A at the exit of the bending part 5A, and the both rotation body surfaces iA, 3A at whichever point is on the downstream side of the point D.
Let J2z be the channel interval between the two. In this embodiment, the radius of curvature Rs of the shoulder of the susceptor 3 and the radius of curvature Rr of the shoulder of the reaction vessel 1 are selected so that the radius of curvature 2 satisfies 0.5J2t≦12≦1.5J21. At this time, it is preferable that point B be located downstream of point 0.

また、ガス流路5の曲がり部5Aにおける曲がり始まり
から終りまでの反応容器1とサセプタ3との間の流路間
隔℃は、℃1と℃2のいずれか大きい方以下としている
。即ち、℃≦Max  (J2t。
Further, the flow path interval C between the reaction vessel 1 and the susceptor 3 from the beginning to the end of the bend in the bend portion 5A of the gas flow path 5 is set to be equal to or less than the larger of either C1 or C2. That is, °C≦Max (J2t.

fz)としている。fz).

また、本実施例ではfll、fllのいずれか小さい方
の間隔と1との比を0.5〜1.5としている。
Further, in this embodiment, the ratio of the smaller interval of either fll or fll to 1 is set to 0.5 to 1.5.

このようにすると、ガス流路5の曲がり部5Aでの流路
間隔が急激に、或いは大きく変化せず、原料ガスの流れ
の剥離が生じなくなり、層流状態を保って流せるように
なる。このため、原料ガスの急峻な切り換えが可能にな
る。
In this way, the flow path interval at the curved portion 5A of the gas flow path 5 does not change suddenly or greatly, separation of the raw material gas flow does not occur, and the flow can be maintained while maintaining a laminar flow state. Therefore, abrupt switching of the raw material gas becomes possible.

第2図は、従来の第6図に示すタイプの気層成長装置の
ガス流路5に本発明を適用した本発明の第2実施例を示
したものである。本実施例では、反応容器1の肩部にお
けるガス流路5の曲がり部5Aの曲面は2つの曲率半径
Rrl、 Rrjの面の合成(Rrl、 Rr2の交点
はX点にある)で形成し、サセプタ3の肩部におけるガ
ス流路5の曲がり部5Aの曲面は1つの曲率半径R8で
形成している。
FIG. 2 shows a second embodiment of the present invention in which the present invention is applied to the gas flow path 5 of a conventional vapor layer growth apparatus of the type shown in FIG. In this embodiment, the curved surface of the curved portion 5A of the gas flow path 5 at the shoulder of the reaction vessel 1 is formed by combining surfaces with two curvature radii Rrl and Rrj (the intersection of Rrl and Rr2 is at point X), The curved surface of the curved portion 5A of the gas flow path 5 at the shoulder portion of the susceptor 3 is formed with one radius of curvature R8.

この場合、Rr2はRr2=Rs +、92としている
In this case, Rr2 is Rr2=Rs+, 92.

この第2実施例でも9曲がり部5Aの入口から出口まで
の間の流路間隔ぶを11.fizのいずれか大きい方以
下とし、且つl1、J2zのいずれか小さい方の間隔と
ぶとの比を0.5以上としている。
In this second embodiment as well, the distance between the flow paths from the inlet to the outlet of the 9-bend portion 5A is set to 11. fiz, whichever is larger, and the ratio of the gap between l1 and J2z, whichever is smaller, is 0.5 or more.

このようにしても、第1実施例と同様の効果を得ること
ができる。
Even in this case, the same effects as in the first embodiment can be obtained.

もちろん、第1図及び第2図のどちらの場合も曲がり部
5Aの入口、出口で、反応容器lとサセプタ3とが平行
である必要はなく、テーパ状でもよい。このとき、(1
はどちらか上流側の曲がり始め点における第1の固体面
IAと第2の固体面3Aとの間の流路間隔であり、ぶ2
はどちらか下流側の曲がり終り点における第1の固体面
IAと第2の固体面3Aとの間の流路間隔である。
Of course, in both cases of FIG. 1 and FIG. 2, the reaction vessel 1 and the susceptor 3 do not need to be parallel at the inlet and outlet of the bent portion 5A, and may be tapered. At this time, (1
is the flow path interval between the first solid surface IA and the second solid surface 3A at the bending start point on either upstream side, and
is the channel spacing between the first solid surface IA and the second solid surface 3A at either downstream bend end point.

具体的には、反応容器lの内径90mmφ、サセプタ3
の外径72mmφのとき、J2+ = 8mm、 J2
2 = 9mm、  Rr =15mm、  Rs =
 6mmとした。このとき、0点とD点とはガス流路5
の流れ方向にみてほぼ同じ位置にしたが、D点が0点よ
りも下流側にしたが、サセプタ3と反応容器1の芯がず
れた場合(2a11〜3[[I!11)、流れの剥離が
少なかった。
Specifically, the inner diameter of the reaction vessel 1 is 90 mmφ, the susceptor 3
When the outer diameter of is 72mmφ, J2+ = 8mm, J2
2 = 9mm, Rr = 15mm, Rs =
It was set to 6 mm. At this time, the 0 point and the D point are the gas flow path 5.
Although the points D were placed at almost the same position as seen in the flow direction, the D point was placed downstream of the zero point. There was little peeling.

第3図は、従来の第9図に示すバレル型気相成長装置の
ガス流路5に本発明を適用した本発明の第3実施例を示
したものである。
FIG. 3 shows a third embodiment of the present invention in which the present invention is applied to the gas flow path 5 of the conventional barrel type vapor phase growth apparatus shown in FIG.

本実施例では、サセプタキャップ10上に固設されてい
て上面に縦断面がW状をなすW状凹面を有する下部流路
形成体15と、反応容器1の天井部に下向きに固設され
ていて前述した下部流路形成体15のW状凹面に所定間
隔で嵌り合う縦断面がW状をなすW状凸面を下面に有す
る上部流路形成体16との間にガス流路5が形成されて
いる。
In this embodiment, a lower channel forming body 15 is fixed on the susceptor cap 10 and has a W-shaped concave surface with a W-shaped longitudinal section on the upper surface, and a lower channel forming body 15 is fixed on the ceiling of the reaction vessel 1 in a downward direction. A gas flow path 5 is formed between the upper flow path forming body 16 having a W-shaped convex surface on the lower surface having a W-shaped longitudinal section that fits at a predetermined interval into the W-shaped concave surface of the lower flow path forming body 15 described above. ing.

この場合も、第1の曲がり部5Alと第2の曲がり部5
A2とで、流れが剥離しないようにする必要がある。
Also in this case, the first bent portion 5Al and the second bent portion 5
It is necessary to prevent the flow from separating from A2.

まず、第2の曲がり部5A2の詳細について第4図を参
照して説明する。反応容器1の曲がり始め点をA1曲が
り終り点をC1下部流路形成体15の曲がり始め点を8
1曲がり終り点をDとする。
First, details of the second bent portion 5A2 will be explained with reference to FIG. 4. The bending start point of the reaction vessel 1 is A1 The bending end point is C1 The bending start point of the lower flow path forming body 15 is 8
Let D be the end point of one bend.

この場合、下部流路形成体15の第2の曲がり部5A2
における曲面は、曲率半径の異なる2つの曲面の合成に
より形成されている。第2の曲がり部5A2における人
口の流路間隔を21、出口における流路間隔を、122
 、曲がり始め点から曲がり終り点までの間の流路間隔
を1とする。また、反応容器1の第2の曲がり部5A2
における曲率半径をR「、下部流路形成体15における
2つの合成曲面からなる第2の曲がり部5A2の曲率半
径をRcl、 Rc2とする。なお、E点は下部流路形
成体15の第2の曲がり部5A2における曲面を構成し
ている2つの曲率半径Rcl、 Rc2の交点である。
In this case, the second bent portion 5A2 of the lower flow path forming body 15
The curved surface in is formed by combining two curved surfaces with different radii of curvature. The population flow path interval at the second bend 5A2 is 21, and the flow path interval at the outlet is 122.
, the channel interval from the bending start point to the bending end point is 1. In addition, the second bent portion 5A2 of the reaction container 1
The radius of curvature in the lower channel forming body 15 is R', and the radius of curvature of the second curved portion 5A2 consisting of two composite curved surfaces in the lower channel forming body 15 is Rcl and Rc2. This is the intersection of the two radii of curvature Rcl and Rc2 that constitute the curved surface in the curved portion 5A2.

この場合、D点は0点よりも下流側とし、A点とB点は
流れ方向に対しほぼ同じ位置とした。
In this case, point D was located on the downstream side of point 0, and points A and B were located at approximately the same position in the flow direction.

更に、℃はflt、J2zのいずれか大きい方以下とし
、且つfls、fl2のいずれか小さい方の間隔とぶと
の比を0.5〜1.5としている。
Further, the temperature C is set to be less than or equal to the larger of flt and J2z, and the ratio of the interval between fls and fl2, whichever is smaller, is set to 0.5 to 1.5.

次に、第1の曲がり部5Alの詳細について第5図を参
照して説明する。下部流路形成体15の曲がり始め点を
01曲がり終り点を■、上部流路形成体16の曲がり始
め点をH1曲がり終り点をJとする。第1の曲がり部5
A1の入口における流路間隔を℃1、出口における流路
間隔をJ22とし、曲がり始め点から曲がり終り点まで
の間の流路間隔を2とする。また、上部流路形成体16
の第1の曲がり部5A1における凸形曲面の曲半径をR
r’、下部流路形成体15の第1の曲がり部5A1にお
ける凹形曲面の曲率半径をRc’とした。
Next, details of the first bent portion 5Al will be explained with reference to FIG. 5. The bending start point of the lower channel forming body 15 is 01, the bending end point is 2, the bending starting point of the upper channel forming body 16 is H1, and the bending end point is J. First bent part 5
The channel spacing at the inlet of A1 is 1° C., the channel spacing at the outlet is J22, and the channel spacing from the bending start point to the bending end point is 2. In addition, the upper flow path forming body 16
The radius of curvature of the convex curved surface at the first bent portion 5A1 is R
r', and the radius of curvature of the concave curved surface at the first bent portion 5A1 of the lower flow path forming body 15 was Rc'.

更に、G点とH点は流れ方向に対しほぼ同じ位置とし、
B点と1点も流れ方向に対しほぼ一致させた。Rc’と
Rr’との関係はRe’ =Rr’ + i 1とし、
fl1とJ2z及びぶとの関係はf11=flz =1
とした。即ち、J21=J22のときは、該ぶ1又は℃
2と℃との比が0.5〜1.0となるようにする。
Furthermore, point G and point H are at almost the same position in the flow direction,
Point B and one point were also made to almost coincide with each other in the flow direction. The relationship between Rc' and Rr' is Re' = Rr' + i 1,
The relationship between fl1, J2z and pig is f11=flz=1
And so. That is, when J21=J22, the difference is 1 or ℃
The ratio between temperature 2 and °C is set to be 0.5 to 1.0.

この場合の具体的数値例を示すと、次の通りである。Specific numerical examples in this case are as follows.

反応容器1の内径      200mmφ下部流路形
戒体15の最大外径(D点の外径)176圓φ 第4図のJ2t          10mm第4図の
ぶ2        12叫 Rcl                    12
mmRe2                   3
0mmRr                    
24圓第5図の1.t          10mm第
5図のfl 2         10mmR「′  
                6印Re’    
              16閤上記のようにする
ことで、1001/分の流量でほとんど流れの剥離が生
じなかった。
Inner diameter of reaction vessel 1: 200 mm φ Maximum outer diameter of lower channel type body 15 (outer diameter at point D) 176 mm φ J2t in Figure 4 10 mm Nobu 2 in Figure 4 12 Rcl 12
mmRe2 3
0mmRr
1 in Figure 5 of 24 circles. t 10mm fl in Fig. 5 2 10mmR ``'
6 mark Re'
By doing the above, almost no flow separation occurred at a flow rate of 1001/min.

J2tと22との関係は、特許請求の範囲内でほぼ同様
の結果が得られることを確認している。また、流量につ
いても、30017分までは、ガスの場合、従来よりも
十分によい結果が得られた。
Regarding the relationship between J2t and 22, it has been confirmed that substantially similar results can be obtained within the scope of the claims. In addition, regarding the flow rate, up to 30,017 minutes, in the case of gas, sufficiently better results than conventional ones were obtained.

[発明の効果] 以上説明したように本発明に係る反応装置用流路形成方
法では1.L+、 J2z、 J2の関係を前述した所
定の関係にしたので、流体の流れが固体面から剥離する
のを防止することができる。また、流体の流れの固体面
からの剥離があっても十分に小さくできる利点がある。
[Effects of the Invention] As explained above, the method for forming a flow path for a reactor according to the present invention has 1. Since the relationship between L+, J2z, and J2 is set to the predetermined relationship described above, it is possible to prevent the fluid flow from separating from the solid surface. Further, there is an advantage that even if there is separation of the fluid flow from the solid surface, it can be sufficiently minimized.

従って、本発明によれば、流体は流路の曲がり部でも層
流状態を保って流れるようになり、このため流体の急峻
な切り換えが可能になる利点がある。
Therefore, according to the present invention, the fluid flows while maintaining a laminar flow state even at curved portions of the flow path, which has the advantage of allowing steep fluid switching.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の方法を実施した気相成長装
置の流路における第1.第2実施例の要部拡大図、第3
図は本発明の方法を実施した気相成長装置の第3実施例
の縦断面図、第4図は第3図の第2の曲がり部の拡大断
面図、第5図は第3図の第1の曲がり部の拡大断面図、
第6図は従来の気相成長装置の縦断面図、第7図及び第
8図は第6図に示す曲がり部の2種の例を示す拡大断面
図、第9図は従来の気相成長装置の他の例の縦断面図、
第10図は第9図の要部拡大図である。 1・・・反応容器、IA・・・第1の固体面、2・・・
ガス導入部、3・・・サセプタ、3A・・・第2の固体
面、4・・・基板、5・・・ガス流路(流路)、5A・
・・曲がり部、5Al・・・第1の曲がり部、5A2・
・・第2の曲がり部、lO・・・サセプタキャップ、1
1・・・仕切筒、13・・・流れ方向変換容器、15・
・・下部流路形成体、16・・・上部流路形成体。 第 図 第 図 第 図 第 図 第 図 第 図
FIGS. 1 and 2 show the first section in the flow path of a vapor phase growth apparatus in which the method of the present invention is implemented. Enlarged view of the main parts of the second embodiment, 3rd
The figure is a vertical cross-sectional view of a third embodiment of a vapor phase growth apparatus that implements the method of the present invention, FIG. 4 is an enlarged cross-sectional view of the second bent part in FIG. 3, and FIG. An enlarged sectional view of the bent part of No. 1,
FIG. 6 is a longitudinal sectional view of a conventional vapor phase growth apparatus, FIGS. 7 and 8 are enlarged sectional views showing two examples of the bent portion shown in FIG. 6, and FIG. 9 is a conventional vapor phase growth apparatus. A longitudinal cross-sectional view of another example of the device,
FIG. 10 is an enlarged view of the main part of FIG. 9. 1... Reaction vessel, IA... First solid surface, 2...
Gas introduction part, 3... Susceptor, 3A... Second solid surface, 4... Substrate, 5... Gas flow path (flow path), 5A.
...Bent part, 5Al...First bend part, 5A2.
...Second bent part, lO...Susceptor cap, 1
1... Partition tube, 13... Flow direction conversion container, 15.
...Lower channel forming body, 16... Upper channel forming body. fig fig fig fig fig fig fig fig fig fig fig fig fig fig fig.

Claims (1)

【特許請求の範囲】[Claims] 反応装置内の第1の固体面と第2の固体面との間に曲が
り部を有する流路を形成する反応装置用流路形成方法に
おいて、前記曲がり部における前記流路の入口の流路間
隔をl_1、出口の流路間隔をl_2としたとき、前記
曲がり部の入口から出口までの間の前記第1の固体面と
前記第2の固体面との間の流路間隔lは、l_1≠l_
2のときには該l_1、l_2のいずれか大きい方以下
、l_1=l_2のときは該l_1又はl_2以下であ
り、且つl_1≠l_2のときには該l_1、l_2の
いずれか小さい方の流路間隔と該lとの比が0.5〜1
.5、l_1=l_2のときは該l_1又はl_2と該
lとの比が0.5〜1.0であることを特徴とする反応
装置用流路形成方法。
In a method for forming a channel for a reactor, which forms a channel having a bend between a first solid surface and a second solid surface in a reaction device, the channel spacing between the inlets of the channel at the bend. is l_1 and the flow path spacing at the outlet is l_2, the flow path spacing l between the first solid surface and the second solid surface between the entrance and the exit of the curved portion is l_1≠ l_
When l_1=l_2, it is less than or equal to l_1 or l_2, and when l_1≠l_2, the flow path spacing is the smaller of l_1, l_2 and l_2. The ratio is 0.5 to 1
.. 5. A method for forming a flow path for a reaction device, characterized in that when l_1=l_2, the ratio of l_1 or l_2 to l is 0.5 to 1.0.
JP17112389A 1989-07-04 1989-07-04 Formation of passage for reaction device Pending JPH0336718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17112389A JPH0336718A (en) 1989-07-04 1989-07-04 Formation of passage for reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17112389A JPH0336718A (en) 1989-07-04 1989-07-04 Formation of passage for reaction device

Publications (1)

Publication Number Publication Date
JPH0336718A true JPH0336718A (en) 1991-02-18

Family

ID=15917413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17112389A Pending JPH0336718A (en) 1989-07-04 1989-07-04 Formation of passage for reaction device

Country Status (1)

Country Link
JP (1) JPH0336718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250628A (en) * 2006-03-14 2007-09-27 Uv Craftory Co Ltd Chemical vapor growth apparatus, and gas flow apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250628A (en) * 2006-03-14 2007-09-27 Uv Craftory Co Ltd Chemical vapor growth apparatus, and gas flow apparatus

Similar Documents

Publication Publication Date Title
US3358749A (en) Interfacial surface generator and method of preparation thereof
JP6674933B2 (en) Process-enhanced microfluidic device
KR100383023B1 (en) Cyclone reactor
US4288235A (en) Low residence time solid-gas separation device and system
KR100375363B1 (en) Transfer nozzle assembly
EP0120506A3 (en) Metal powder and process for producing the same
JPS5811558B2 (en) Packing material consisting of a foil-like material with flow surfaces for &#34;troughs&#34; for mass and heat exchange
JP2727723B2 (en) Gas-liquid two-phase fluid distributor
JPH0336718A (en) Formation of passage for reaction device
JPH03260567A (en) Two-phase fluid distributor for gas and liquid
US4406407A (en) High flow low energy solid cone spray nozzle
US4205720A (en) Heat transfer conduit
SU677636A3 (en) Liquid-atomizing device
US3438614A (en) Tower packing
US4142963A (en) Penetration enhanced fluid mixing method for thermal hydrocarbon cracking
CN210963999U (en) Novel titanium-molybdenum-nickel tower device for butanone oxime
GB472629A (en) Improvements in process and apparatus for carrying out exothermic reactions
WO2004056714A1 (en) Burner for chemical vapour deposition of glass
CN208878530U (en) Micropore is vortexed double tube reactor
EP1531147A1 (en) Catalytic secondary reforming process and reactor for said process
JPH09113168A (en) Double tube type vaporizer
US2786546A (en) Apparatus for liquid-vapor separation
AU703683B2 (en) Using an improved expansion section as the inlet to the flue in a titanium dioxide process
JP2003517102A (en) Mixed gas generator
EP0471716A1 (en) Multi-stage vortex reactor.