JPH0336698A - Parking area congestion state deciding device - Google Patents
Parking area congestion state deciding deviceInfo
- Publication number
- JPH0336698A JPH0336698A JP17104889A JP17104889A JPH0336698A JP H0336698 A JPH0336698 A JP H0336698A JP 17104889 A JP17104889 A JP 17104889A JP 17104889 A JP17104889 A JP 17104889A JP H0336698 A JPH0336698 A JP H0336698A
- Authority
- JP
- Japan
- Prior art keywords
- road surface
- screen
- value
- brightness
- histogram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006185 dispersion Substances 0.000 abstract 4
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Landscapes
- Traffic Control Systems (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高速道路、有料道路、催し物会場等に設けら
れた駐車場に利用する駐車場混雑状態判別装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a parking lot congestion state determination device used in parking lots provided at expressways, toll roads, event venues, etc.
(従来の技術)
従来の駐車場混雑状態判別装置に使用されてν)る2値
画面作成方法は、作成した背景画像を時刻とともに更新
し、背景画像と新たに撮影した画像との画面差分を行い
、その差分信号を予め定められたしきい値により2値化
している。このように上記の2値画面作成方法でも、背
景画面を作成し、画面差分を行うことにより、2値画面
を得ることができる。(Prior art) The binary screen creation method used in conventional parking lot congestion state determination devices updates the created background image with time and calculates the screen difference between the background image and the newly captured image. The differential signal is then binarized using a predetermined threshold. In this way, even with the above binary screen creation method, a binary screen can be obtained by creating a background screen and performing screen difference.
(発明が解決しようとする課題)
しかしながら、上記の構成のように、移動物体を除去し
ながら背景画面を作成する方法では、駐車場のように車
両が長時間駐車する場合には、駐車車両を含む背景画面
となるため、全く駐車車両のない状態の背景画面を作成
することができず。(Problem to be Solved by the Invention) However, in the method of creating a background screen while removing moving objects as in the above configuration, when vehicles are parked for a long time such as in a parking lot, Because the background screen includes the following, it is not possible to create a background screen with no parked vehicles at all.
適切な2値画面が得られないという問題があった。There was a problem that an appropriate binary screen could not be obtained.
本発明は上記の問題を解決するもので、精度よく2値画
面が得られる駐車場混雑状態判別装置を提供するもので
ある。The present invention solves the above problems and provides a parking lot congestion state determination device that can obtain a binary screen with high accuracy.
(課題を解決するための手段)
上記の課題を解決するため、本発明は、路面輝度算出部
と2値化しきい値算出部を設けるものである。(Means for Solving the Problems) In order to solve the above problems, the present invention provides a road surface brightness calculation section and a binarization threshold calculation section.
(作 用)
上記の構成により、路面輝度算出部は、分割された方形
領域内の分散値を算出することによって。(Function) With the above configuration, the road surface brightness calculation unit calculates the variance value within the divided rectangular area.
路面輝度を算出し、2値化しきい値算出部は算出された
上記の路面輝度によって、最適な2値画面作成のための
しきい値を得ることができるため、精度のよい2値画面
を得ることができる。The road surface brightness is calculated, and the binarization threshold calculation unit can obtain an optimal threshold for creating a binary screen based on the calculated road surface brightness, thereby obtaining a highly accurate binary screen. be able to.
(実施例)
本発明の一実施例を第1図ないし第5図により説明する
。(Example) An example of the present invention will be described with reference to FIGS. 1 to 5.
第1図は、小さな方形領域に分割した、本発明による画
面の構成図で、方形領域R(i、j)lは。FIG. 1 is a block diagram of a screen according to the present invention divided into small rectangular areas, where the rectangular area R(i,j)l is.
横p×縦qの画素で構成され、―面2は、横n×縦mの
方形領域R(l l j) lで構成される。この画面
の分割数は、撮影に用いるカメラの設置高さ。It is composed of pixels of p width x height q, and -plane 2 is composed of a rectangular area R(l l j) l of n width x height m. The number of screen divisions is determined by the installation height of the camera used for shooting.
俯角、焦点距離等によって一義的に決定されるものであ
る。This is uniquely determined by the angle of depression, focal length, etc.
第2図は1本発明の処理手順を示すフロチャートである
。「分散値Bt(x−j)算出」3で、分割された方形
領域R(i、j)1内のヒストグラムを作威し、クラス
間分散値を算出(電子通信学会誌。FIG. 2 is a flowchart showing the processing procedure of the present invention. In "Calculation of variance value Bt (x-j)" 3, a histogram within the divided rectangular region R(i, j) 1 is created and the inter-class variance value is calculated (Journal of the Institute of Electronics and Communication Engineers).
大津展之二″判別および最小2乗規準に基づく自動しき
い値選定法” ’80/ 4 Voff、 J63−
DNo、4゜p349〜356) L 、分散値が最大
となる時の値を方形領域Rb l j) 1内の分散値
Bx(1+j)とする。Nobuji Otsu "Automatic threshold selection method based on discriminant and least squares criterion"'80/4 Voff, J63-
DNo., 4゜p349-356) L, the value when the variance value is maximum is set as the variance value Bx(1+j) in the rectangular area Rb l j) 1.
続いて、「しきい値Kst(L j)算出」4で、この
時の平均輝度値をしきい値に□(i、、i)として設定
する。r分散値B2(土、j)算出」5および「しきい
値に+n(i+ j)算出」6で、同一の方形領域R(
i、、iHにおけるしきい値に□(i、j)以下の輝度
について、上記と同様にヒストグラムを作威し、それぞ
れクラス間分散値B、(i、j)を算出し、しきい値K
lz(i、j〉を設定する。「全領域終了判定」7で、
全ての方形領域の分散値B(1*j)およびしきい値K
l+(11j)の算出が終了したが否かを判定し、未終
了の場合は、「分散値B(i、j)およびしきい値にヨ
(i、 j)の算出J 3,4.5および6を繰り返す
。Subsequently, in "Threshold value Kst (L j) calculation" 4, the average luminance value at this time is set as the threshold value □(i,,i). The same rectangular area R (
For the luminance below the threshold □(i, j) at i, , iH, create a histogram in the same way as above, calculate the interclass variance values B, (i, j), and set the threshold K
Set lz(i, j〉. In "All area completion judgment" 7,
Variance value B(1*j) and threshold value K of all rectangular areas
Determine whether the calculation of l + (11j) has been completed, and if it has not been completed, "Calculation of variance value B (i, j) and threshold value (i, j)" 3,4.5 and repeat 6.
次に分割された方形領域内の輝度の分布が小さい路面候
補を抽出するため、「基準しきい値B。Next, in order to extract road surface candidates with a small luminance distribution within the divided rectangular regions, "reference threshold B" is set.
と比較」8で、予め設定されているしきい値B。8, and the preset threshold value B.
と比較し、しきい値B、より小さい領域を抽出し、「ヒ
ストグラム作成」9で、K*1Cxe j)のヒストグ
ラムを作成する。次に、「全データ終了判定」10で、
全領域のデータについて終了したか否かを判定し、終了
するまでKmt(is j)の「ヒストグラム作成」9
を繰り返す。「路面輝度に、算出J 11で、得られた
Kmtbt j)のヒストグラムの中から、下限パーセ
ントしきい値PTLおよび上限パーセントしきい値PT
rIを用いて、路面候補以外の特異データを除去し、平
均路面輝度にヨおよび路面輝度標増偏差に□を算出し、
路面輝度に、を(Kll=KR+σXKIB)として設
定する。なお、σの値は、路面輝度の分布によって一義
的に決定されるものである。, a region smaller than the threshold value B is extracted, and a histogram of K*1Cxe j) is created in "histogram creation" 9. Next, in "All data completion judgment" 10,
Determine whether data in all areas has been completed, and continue "histogram creation" 9 of Kmt (is j) until completion.
repeat. "For the road surface brightness, from the histogram of Kmtbtj) obtained in calculation J11, the lower limit percentage threshold PTL and the upper limit percentage threshold PT are calculated.
Using rI, remove peculiar data other than road surface candidates, calculate y for the average road surface brightness and □ for the road surface brightness standard deviation,
The road surface brightness is set as (Kll=KR+σXKIB). Note that the value of σ is uniquely determined by the distribution of road surface brightness.
「基準しきい値TH,□と比較J 12は1分割された
方形領域の第1の分散値判定部で、予め設定されたしき
い値THoと比較し、TH,、より小さい時、分割され
た領域内の最終2値化しきい値として’ T Hb l
j) = K llを設定」13する。しきい値TH
□以上のとき、第2の分散値判定部であるr基準しきい
値TE01と比較J 14で予め設定されたしきい値T
H,,と比較し、TH,、より小さい時。``Comparison with standard threshold value TH, □'' 12 is the first variance value judgment unit of the divided rectangular area, which compares it with a preset threshold value THo, and if it is smaller than TH, then it is divided. ' T Hb l as the final binarization threshold in the area
j) = Set Kll''13. Threshold value TH
□In the above cases, the threshold value T preset in the comparison J14 with the r reference threshold value TE01 which is the second variance value determination section
When compared with H,, TH, is smaller.
しきい値としてr’rH(it j)=Kwt(is
j)を設定」15L、、TH112以上の時、しきい値
としてrTH(i、j)=に□(itj)を設定J 1
6する。As a threshold value r'rH(it j)=Kwt(is
j) 15L,, When TH is 112 or more, set □(itj) to rTH(i, j)= as the threshold J 1
6.
「全領域終了判定」17で、全領域について処理したか
否かを判定し、未終了の時は、分割された領域の2値化
しきい値の算出を繰り返す。In "all area completion determination" 17, it is determined whether or not all areas have been processed, and if the processing has not been completed, the calculation of the binarization threshold for the divided areas is repeated.
第3図は1分割された領域のヒストグラムとその時のク
ラス間分散値の一例を示す路面輝度分布図で、ヒストグ
ラムの極大点MP2とMP3の間においてクラス間分散
値が最大となる時のしきい値Kmt(L j)が得られ
ることになる。Figure 3 is a road surface brightness distribution diagram showing an example of the histogram of a divided area and the inter-class variance at that time. The value Kmt(L j) will be obtained.
第4図は、第3図で得られたしきい値KIl□(11j
)より大きい輝度を除いた領域内のヒストグラムよりク
ラス間分散を求めた時の路面輝度分布図。FIG. 4 shows the threshold value KIl□(11j
) Road surface brightness distribution map when the inter-class variance is calculated from the histogram in the area excluding the larger brightness.
ヒストグラムの極大点MPIとMP2の間において、ク
ラス間分散値が最大となる時のしきい値K a2C1l
j)が得られる。Threshold value K a2C1l when the inter-class variance value is maximum between the maximum points MPI and MP2 of the histogram
j) is obtained.
第5図は、路面輝度算出のためのヒストグラムの一例を
示すしきい値分布図であり、路面候補以外の領域データ
を除去するための下限パーセントしきい値PTい上限パ
ーセントしきい値PTrlにより、特異データを除いた
部分が斜線の部分である。FIG. 5 is a threshold distribution diagram showing an example of a histogram for calculating road surface brightness, in which the lower limit percentage threshold PT and the upper limit percentage threshold PTrl are used to remove area data other than road surface candidates. The area excluding the singular data is the shaded area.
(発明の効果)
以上説明したように、本発明によれば、画面を小さな方
形領域に分割し1分割された領域内の輝度分布のクラス
間分散値の小さいものを路面領域として抽出することに
より、路面輝度を算出できる。クラス間分散値の大小に
より2値化しきい値を選択して精度よく2値化しきい値
が得られ、常に駐車車両がある駐車場においても、的確
な背景画面が得られる。精度の高い駐車場混雑状態判別
装置が可能となる。(Effects of the Invention) As explained above, according to the present invention, by dividing the screen into small rectangular areas and extracting the small inter-class variance value of the luminance distribution within each divided area as the road surface area. , road surface brightness can be calculated. The binarization threshold value is selected based on the magnitude of the inter-class variance value, and the binarization threshold value is obtained with high accuracy, and an accurate background screen can be obtained even in a parking lot where there are always parked vehicles. A highly accurate parking lot congestion state determination device becomes possible.
第1図は本発明による駐車1ih混雑状態判別装置のC
RTR面の分割状態を示す平面図、第2図は2値化しき
い値算出処理の手順を示す処理フローチャート、第3図
は分割された領域のヒストグラムとその時のクラス間分
散値の一例を示す路面輝度分布図、第4図は第3図から
分割された領域のしきい値Kmx(1+ J)より大き
い輝度を除いた時のヒストグラムとクラス間分散を示す
路面輝度分布図、第5図は路面輝度算出時のヒストグラ
ムの一例を示すしきい値分布図である。
1 ・・・方形領域R(IIj)、 2・・・画面。Figure 1 shows C of the parking 1ih congestion state determination device according to the present invention.
A plan view showing the division state of the RTR surface, Fig. 2 is a processing flowchart showing the procedure of the binarization threshold calculation process, and Fig. 3 is a road surface showing an example of the histogram of the divided area and the inter-class variance value at that time. Brightness distribution map. Figure 4 is a road surface brightness distribution diagram showing the histogram and inter-class variance when brightness greater than the threshold value Kmx (1 + J) of the divided areas is removed from Figure 3. Figure 5 is a road surface brightness distribution diagram. FIG. 7 is a threshold distribution diagram showing an example of a histogram when calculating brightness. 1... Rectangular area R(IIj), 2... Screen.
Claims (1)
域内の輝度ヒストグラムから分散値B(i、j)を算出
することによってしきい値K_s(i、j)を設定し、
算出した分散値B(i、j)のヒストグラムから路面輝
度を算出し、車両の特徴を保存しつつ、路面、影等の雑
音を除去するように方形領域内の2値化しきい値を設定
したことを特徴とする駐車場混雑状態判別装置。Divide the grayscale image into small rectangular areas, and set a threshold value K_s(i, j) by calculating the variance value B(i, j) from the brightness histogram in the divided rectangular areas;
The road surface brightness was calculated from the histogram of the calculated variance value B(i, j), and a binarization threshold within the rectangular area was set to remove noise from the road surface, shadows, etc. while preserving the characteristics of the vehicle. A parking lot congestion state determination device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17104889A JPH0336698A (en) | 1989-07-04 | 1989-07-04 | Parking area congestion state deciding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17104889A JPH0336698A (en) | 1989-07-04 | 1989-07-04 | Parking area congestion state deciding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0336698A true JPH0336698A (en) | 1991-02-18 |
Family
ID=15916117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17104889A Pending JPH0336698A (en) | 1989-07-04 | 1989-07-04 | Parking area congestion state deciding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0336698A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013229022A (en) * | 2012-04-23 | 2013-11-07 | Xerox Corp | Real-time video triggering for traffic surveillance and photo enforcement applications using near-infrared video acquisition |
JP5390636B2 (en) * | 2009-12-16 | 2014-01-15 | パイオニア株式会社 | Signal recognition apparatus, signal recognition method, and signal recognition program |
-
1989
- 1989-07-04 JP JP17104889A patent/JPH0336698A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5390636B2 (en) * | 2009-12-16 | 2014-01-15 | パイオニア株式会社 | Signal recognition apparatus, signal recognition method, and signal recognition program |
JP2013229022A (en) * | 2012-04-23 | 2013-11-07 | Xerox Corp | Real-time video triggering for traffic surveillance and photo enforcement applications using near-infrared video acquisition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108549874B (en) | Target detection method, target detection equipment and computer-readable storage medium | |
CN107330376B (en) | Lane line identification method and system | |
CN105373794B (en) | A kind of licence plate recognition method | |
CN103324930B (en) | A kind of registration number character dividing method based on grey level histogram binaryzation | |
CN107392139A (en) | A kind of method for detecting lane lines and terminal device based on Hough transformation | |
JPH10513288A (en) | Automatic lane identification for machine-visible traffic detection | |
CN112652015B (en) | BIM-based pavement disease marking method and device | |
CN108171695A (en) | A kind of express highway pavement detection method based on image procossing | |
CN105869174B (en) | A kind of Sky Scene image partition method | |
CN107341810B (en) | Vehicle automatic identification method and device and electronic equipment | |
CN107909007B (en) | lane line detection method and device | |
CN117041484B (en) | People stream dense area monitoring method and system based on Internet of things | |
Li et al. | A lane marking detection and tracking algorithm based on sub-regions | |
CN103886609B (en) | Vehicle tracking method based on particle filtering and LBP features | |
CN102081799B (en) | Method for detecting change of SAR images based on neighborhood similarity and double-window filtering | |
CN109187548A (en) | A kind of rock cranny recognition methods | |
CN103971347A (en) | Method and device for treating shadow in video image | |
CN107832732B (en) | Lane line detection method based on treble traversal | |
JPH10149449A (en) | Picture division method, picture identification method, picture division device and picture identification device | |
CN106778822B (en) | Image straight line detection method based on funnel transformation | |
JPH0336698A (en) | Parking area congestion state deciding device | |
CN116030430A (en) | Rail identification method, device, equipment and storage medium | |
CN108629226B (en) | Vehicle detection method and system based on image layering technology | |
CN112785550B (en) | Image quality value determining method and device, storage medium and electronic device | |
CN111754565B (en) | Image processing method and device |