JPH0336565A - Developing device - Google Patents

Developing device

Info

Publication number
JPH0336565A
JPH0336565A JP1169888A JP16988889A JPH0336565A JP H0336565 A JPH0336565 A JP H0336565A JP 1169888 A JP1169888 A JP 1169888A JP 16988889 A JP16988889 A JP 16988889A JP H0336565 A JPH0336565 A JP H0336565A
Authority
JP
Japan
Prior art keywords
particles
toner
sleeve
particle size
regular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169888A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
展之 伊東
Tooru Kuzumi
徹 葛見
Hiroaki Tsuchiya
土屋 廣明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1169888A priority Critical patent/JPH0336565A/en
Publication of JPH0336565A publication Critical patent/JPH0336565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To add appropriate triboelectric quantity to toner by making the sharp protrusion on the surface of a recessed part blunter than that on the surface of a projecting part in a recessed and projecting part formed on the surface of a sleeve and setting a specified relation between the mean grain diameter of the toner and the diameter of the recessed part. CONSTITUTION:A developing device 3 is provided with a non-magnetic sleeve 7 which rotates on the outer side of a magnet 8. The surface of the sleeve 7 is formed to have the protruding surface which is roughed with the sharp protrusion at fine pitch by making a shapeless grain having a sharp angle collide with the surface of the sleeve 7 and to have the corrugated recessed and projecting part at large pitch by coming into collision with the shaped grain having the smooth surface, whose mean grain diameter is larger than that of the shapeless grain, and the protruding surface of the recessed part is blunter than that of the projecting part. The recessed part is formed so as to satisfy the relation of a formula I. In the formula I, d means the grain diameter of toner and X means the diameter of the recessed part. Provided that unit for both of them is mum. Thus the toner is prevented from being unevenly applied on the sleeve 7 and the appropriate triboelectric quantity is added to the toner.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、情報記録装置等の画像形成機器に適用される
現像剤担持体と、該現像剤担持体を備えた現像装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a developer carrier applied to image forming equipment such as an information recording device, and a developing device equipped with the developer carrier.

[従来の技術〕 従来、−成分系磁性現像剤をスリーブ状等の現像剤担持
体(以下、単に「スリーブ」と称す。)の表面にて担持
しながら上記現像剤を現像領域まで搬送する際、上記ス
リーブの表面な粗面化するとその搬送性が向上すること
が知られている。かかるスリーブ表面の粗面化する方法
としては、例えば特開昭57−66455号公報に開示
されているように、スリーブ表面を角状粉粒子のように
鋭利な角をもつ不定形ツラスト粒子(以下不定形粒子と
いう)でブラスト処理する方法がある。この方法によれ
ば、上記粗面化された表面によって一成分現像剤を撹拌
して適度なWr電状態にしつつ、該現像剤のスリーブ上
へのコーティングも安定するという優れた点を有してい
る。
[Prior Art] Conventionally, when carrying a -component magnetic developer on the surface of a sleeve-shaped developer carrier (hereinafter simply referred to as a "sleeve"), the developer is transported to a developing area. It is known that roughening the surface of the sleeve improves its transportability. As a method for roughening the sleeve surface, for example, as disclosed in Japanese Patent Application Laid-Open No. 57-66455, the sleeve surface can be roughened with amorphous tough particles (hereinafter referred to as angular powder particles) having sharp corners, such as angular powder particles. There is a method of blasting using irregularly shaped particles. This method has the advantage that the roughened surface agitates the one-component developer to bring it into an appropriate Wr electrical state, and also stabilizes the coating of the developer onto the sleeve. There is.

[発明が解決しようとする課題J (A)ところか、ステンレス鋼(SO5305)製のス
リーブ上に粒度#400(粒度の規格は、 JIS R
6001研摩材のものに依る。以下同じ)の不定形粒子
のみでブラスト処理をした表面粗面化スリーブを使用し
て、現像剤たるトナー粒子を用いて連続複写試験を行っ
たところ以下ののどとくの問題となる現象が生じた。
[Problem to be solved by the invention J.
Depends on the 6001 abrasive. When a continuous copying test was conducted using a surface-roughened sleeve that had been blasted with only amorphous particles (the same applies hereafter) and toner particles as a developer, the following phenomenon that caused the throat problem occurred. .

常温常湿環境において連続複写動作を続けた際5000
枚の複写時に画像濃度が1.3から1.2へと低下して
いた。また、低温低湿環境において、連続複写動作を続
けたところ、 5ooo枚のときに画像濃度か1.3か
ら1.1へと低下していた。
5000 when continuously copying in a room temperature and humidity environment
When copying a sheet, the image density decreased from 1.3 to 1.2. Furthermore, when continuous copying operation was continued in a low temperature and low humidity environment, the image density decreased from 1.3 to 1.1 when 500 sheets were printed.

つまり、トナーに付与される摩擦帯電による電荷(以下
トリボと記す)が十分でないために上述のような画像濃
度の低下か生じたものと考えられる。−殻内に低温低湿
環境においてはトナーのトリボは高くなる傾向を示すか
、このような環境にあっても上述のように画像濃度の低
下を示し、トリボが不足していることが判る。
In other words, it is considered that the above-mentioned decrease in image density occurs because the triboelectric charge (hereinafter referred to as triboelectric charge) applied to the toner is not sufficient. - In a low-temperature, low-humidity environment inside the shell, the toner triboelectricity tends to increase, or even in such an environment, the image density decreases as described above, indicating a lack of triboelectricity.

(B)一方、ステンレス鋼(SUS :105)製のス
リーブを上述の不定形粒子の替わりに粒度井400の球
形粒あるいは粒状粉粒子のように滑らかな表面を有する
定形ブラスト粒子(以下定形粒子という)のみでブラス
ト処理したスリーブを使用しトナー粒子を用いて連続複
写試験を行なったところ以下の現象が生じた。
(B) On the other hand, a sleeve made of stainless steel (SUS: 105) was used instead of the above-mentioned irregularly shaped particles to produce fixed blast particles (hereinafter referred to as fixed particles) having a smooth surface like the spherical particles or granular powder particles of particle size well 400. ) When a continuous copying test was carried out using toner particles using a sleeve that had been blasted with only 100% of the material, the following phenomenon occurred.

常温常湿環境において連続複写動作を続けた際、 5o
oo枚のときに画像濃度が1.35と良好であった。ま
た、低温低湿環境において連続複写動作を続けたところ
5000枚のときに画像濃度が1.3と良好であった。
5o when continuous copying operation is continued in an environment of normal temperature and humidity.
The image density was good at 1.35 when oo sheets were used. Further, when continuous copying operation was continued in a low temperature and low humidity environment, the image density was as good as 1.3 when 5000 copies were made.

しかし、スリーブ上のトナーの塗布むらか発生した。す
なわち、この場合においては、トリボの付与は十分にさ
れているが、低温低湿環境においてざらにトリボが高く
なりトナーの塗布むらが発生したものと考えられる。
However, uneven application of toner on the sleeve occurred. That is, in this case, although sufficient triboelectricity was applied, it is thought that in a low temperature, low humidity environment, triboelectricity became higher and uneven toner application occurred.

(C)また、特開昭58−11974のようにステンレ
ス鋼csus :105)製のスリーブを粒度#600
の不定形粒子でブラスト処理をした後、該不定形粒子よ
りも径の小さい粒度#800の定形粒子である球形粒子
でブラスト処理したスリーブを使用し、トナー粒子を用
いて連続複写試験を行なったところ、以下の現象を生じ
た。
(C) Also, as in JP-A-58-11974, a sleeve made of stainless steel (CSUS: 105) with grain size #600 is used.
After blasting with irregularly shaped particles, a continuous copying test was conducted using toner particles using a sleeve that had been blasted with spherical particles, which are regular particles with a particle size of #800 smaller than the irregularly shaped particles. However, the following phenomenon occurred.

常温常温下において連続複写動作を続けた際、5000
枚のときに画像濃度が1.3と良好であった。
5000 when continuous copying operation is continued at room temperature
The image density was 1.3, which was good.

また、低温低湿環境において連続複写動作を続けたとこ
ろ、 5ooo枚のとに画像濃度は1.25と良好であ
ったかトナーの塗布むらが発生してしまった。
Further, when continuous copying operation was continued in a low-temperature, low-humidity environment, the image density was good at 1.25 after 500 sheets, but uneven toner application occurred.

したがって、不定形粒子のみのブラスト処理の場合にお
けるトリボ不足は改善されたか、低温低湿環境における
トリボの抑制かなされていないことか判る。
Therefore, it can be seen that the lack of tribo in the case of blasting only irregularly shaped particles has been improved, or that tribo has not been suppressed in a low-temperature, low-humidity environment.

(D)さらにまた、ステンレス鋼(SLIS :1O5
)製スリーブを(A)と同様の粒度#4゛00の不定形
粒子と(B)と同様の粒度井400の定形粒子をl:l
の割合で混合した粒子でブラスト処理するという方法が
特願昭62−196570で提案されている。この方法
によれば画像濃度とスリーブへのトナー塗布については
良好な結果か得られたが、粒子の管理が繁雑となる欠点
かある。すなわち、不定形粒子と定形粒子の形状、材質
による強度の差から、使用寿命が異なることと、両者の
分離ができないことなどの理由から交換サイクルが決め
難いという点と、砥粒の形状、重量、粒度分布が違うの
で。
(D) Furthermore, stainless steel (SLIS: 1O5
) sleeve with irregularly shaped particles of particle size #400 similar to (A) and regular particles of particle size #400 similar to (B).
A method of blasting with particles mixed at a ratio of Although good results have been obtained with this method in terms of image density and toner application to the sleeve, it has the disadvantage that particle management is complicated. In other words, the use life is different due to the difference in strength depending on the shape and material of irregularly shaped particles and regular shaped particles, the replacement cycle is difficult to determine because the two cannot be separated, and the shape and weight of the abrasive grains , because the particle size distribution is different.

混合比を維持するために、定期的に混合作業としての均
一分散化を行なう必要があり、煩わしい上、砥粒寿命を
縮める原因ともなること。以上の点て実用上採用しにく
い、という問題かあった。
In order to maintain the mixing ratio, it is necessary to periodically perform a uniform dispersion as a mixing operation, which is not only troublesome but also causes a shortening of the life of the abrasive grains. Due to the above points, there was a problem that it was difficult to adopt it practically.

本発明は、上述の問題を解決し、スリーツ上のトナーの
塗布むらを防止しつつ適切なトリボ量を付与し環境に依
らず安定した画像を得ることのできる現像装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a developing device that can prevent uneven application of toner on the sleeves, provide an appropriate amount of triboelectric, and obtain a stable image regardless of the environment. do.

[課題を解決するための手段] 本発明によれば、上記目的は、 現像剤を担持しながら無端移動可能な表面を有する現像
剤担持体を備えた現像装置において、上記現像剤担持体
の表面は、鋭利な角をもつ不定形粒子を衝突させること
によって細かなピッチの鋭利な突起をもって粗面化され
た突起表面か。
[Means for Solving the Problems] According to the present invention, the above object is to provide a developing device equipped with a developer carrier having an endlessly movable surface while carrying a developer. Is the protrusion surface roughened with sharp protrusions at a fine pitch by colliding irregularly shaped particles with sharp edges?

上記不定形粒子の平均粒径よりも大なる平均粒径の滑ら
かな表面をもつ定形粒子の衝突を受けて大きなピッチの
波状の凹凸部をもつように形成されて上記突起表面は凸
部におけるよりも凹部において鈍化されており、 上記凹部は、上記現像剤の粒径d(マイクロメートル)
と上記凹部の直径×(マイクロメートル)の関係が、 40<  d  X  x ”2 <20Oとなるよう
に形成されている、 ことにより達成される。
The above-mentioned protrusion surface is formed to have wavy irregularities with a large pitch due to the collision of regular particles having smooth surfaces with an average particle diameter larger than the average particle diameter of the irregular-shaped particles. The developer is also blunted in the recess, and the recess has a particle size d (micrometer) of the developer.
This is achieved by forming the relationship between and the diameter of the recess x (micrometers) as follows: 40<dXx''2<20O.

[作用] 上記のごとく本発明では、スリーブ表面に形成された凹
凸部の凸部における突起表面は、凹部の表面に比べて鋭
利なのでトナーとの接触頻度が少なくなりトリボの付3
を抑制し、凹部における表面は鋭利な突起が凸部の表面
に比べて鈍化されているためトナーとの接触頻度が増し
てトリボを積極的に付与する。したかって、トナーに付
与するトリボの量を適切なものにする。
[Function] As described above, in the present invention, the protrusion surface of the convex part of the concavo-convex part formed on the sleeve surface is sharper than the surface of the concave part, so that the frequency of contact with the toner is reduced, and triboadhesion is reduced.
Since the sharp protrusions on the surface of the concave portion are blunted compared to the surface of the convex portion, the frequency of contact with the toner is increased, and the triboform is actively applied. Therefore, the amount of tribo added to the toner should be appropriate.

さらに、トナーの平均粒径d(μ塵)と上記凹部の直f
%x(+目)の関係を調べた結果、40<dX x ”
2< 200となるように設定すれば、トナーの平均粒
径が小さくなる程上記凹部の直径を大きくすることとな
る。したかって、上記凹部を形成するための定形粒子の
平均粒径を大きくすることとなり、その結果スリーブ表
面の単位面積当りに衝突する定形粒子の数が減少して、
 −h記突起表面に対する上記凹部の面積の割合が減少
する。つまり、高いトリボを得やすい小径のトナーに対
しては、上記凹部の割合を減らしてトリボ付与の抑制を
行なう、また逆に、トナーの平均粒径が大きくなる程上
記凹部の直径を小さくすることになるので、定形粒子の
平均粒径を小さくすることとなる。したがって、スリー
ブ表面の単位面積当りに衝突する定形粒子の数が増加し
て、上記突起表面に対する上記凹部の面積の割合か増加
する。かくして、トリボか低くなる傾向にある大径のト
ナーに対しては上記凹部の割合を増やしてトリボ付与を
積極的に行なわしめる。このような関係において、 4
0> d x )c ””とすれば、トリボ付与を抑制
しすぎることがなく、d X x ”” <200とす
ればトリボを過剰に付与することが判明した。
Furthermore, the average particle diameter d (μ dust) of the toner and the diameter f of the recessed portion
As a result of investigating the relationship between %x (+ eyes), 40<dX x”
If it is set so that 2<200, the smaller the average particle size of the toner, the larger the diameter of the recessed portion will be. Therefore, the average particle size of the regular particles used to form the recesses is increased, and as a result, the number of regular particles that collide per unit area of the sleeve surface is reduced.
- The ratio of the area of the recess to the surface of the projection h is reduced. In other words, for small-diameter toner that tends to obtain high tribo, the ratio of the concave portions is reduced to suppress tribo. Conversely, the larger the average particle size of the toner, the smaller the diameter of the concave portions. Therefore, the average particle size of the regular particles is reduced. Therefore, the number of regular particles colliding per unit area of the sleeve surface increases, and the ratio of the area of the recess to the surface of the protrusion increases. Thus, for large-diameter toner particles that tend to have low triboelectricity, the proportion of the recessed portions is increased to positively impart triboelectricity. In such a relationship, 4
It has been found that if d

[第一実施例] 以下添付図面にもとづいて本発明の詳細な説明する。[First example] The present invention will be described in detail below based on the accompanying drawings.

第1図は本発明の第一実施例としての現像装置をもつ画
像形成装置の概要構成図である。
FIG. 1 is a schematic diagram of an image forming apparatus having a developing device as a first embodiment of the present invention.

同図において、lは潜像保持部材で通常は感光体く以下
「感光ドラム」と称す)、2は静電潜像形成部、3はH
I像を顕画像化するところの現像装置、4は顕画像化さ
れた感光ドラム上のトナー像を転写材へ転写させる転写
分離部、5は感光ドラム上の残トナーをクリーニングす
るためのクリーニング部である。
In the figure, 1 is a latent image holding member (usually a photoconductor (hereinafter referred to as "photosensitive drum")), 2 is an electrostatic latent image forming section, and 3 is H
A developing device for converting the I image into a visible image, 4 a transfer separation unit for transferring the visualized toner image on the photosensitive drum to a transfer material, and 5 a cleaning unit for cleaning residual toner on the photosensitive drum. It is.

かかる画像形成装置は、以下のごとく機能する。Such an image forming apparatus functions as follows.

先ず、感光トラムl上には静電潜像形成部2によって潜
像が形成される。さらに感光ドラム1は矢印Aの方向に
回転して上記潜像の形成された領域か現像装置3に達す
る。現像装置3はトナーを入れる容器であるホッパー1
oと、該ホッパー10からトナーを現像剤担持体たるス
リーブ7の近傍へ送ることとトナーの流動性を高める攪
拌手段9と、固定されたマグネット8と、さらには該マ
グネット8の外側を回転する非磁性のスリーブ7とか設
けられているが1本発明はこれに限定されない。
First, a latent image is formed on the photosensitive tram l by the electrostatic latent image forming section 2. Further, the photosensitive drum 1 rotates in the direction of arrow A and reaches the developing device 3 in the area where the latent image is formed. The developing device 3 includes a hopper 1 which is a container for storing toner.
o, a stirring means 9 that sends the toner from the hopper 10 to the vicinity of the sleeve 7 serving as a developer carrier and improves the fluidity of the toner, a fixed magnet 8, and further rotates the outside of the magnet 8. Although a non-magnetic sleeve 7 is provided, the present invention is not limited thereto.

また、スリーブ7上のトナー層の厚みは、対向磁極N1
とともに規制する磁性ブレード6によって規制される。
Further, the thickness of the toner layer on the sleeve 7 is the same as that of the opposing magnetic pole N1.
It is regulated by a magnetic blade 6 which also regulates it.

スリーブ7上では感光トラムlとの対向位置で現像磁極
Slによってトナーは穂立ちし、感光ドラム1上の潜像
とスリーブ7との間の電界(好ましくはACのような振
動電界〉によりスリーブ7上のトナーは感光ドラムlへ
飛翔し顕画像化する。このときトナーが飛翔し易い様に
スリーブ7に現像バイアス(直流でも良いが本例交番電
界)をバイアス’[i 11で印加する。顕画像化され
た感光トラムl上のトナー像は転写分離部4において転
写材(図示せず)へと転写され、該転写材上のトナー像
は定着fil(図示せず)にて定着される。一方感光ト
ジムl上の残トナーはクリーニング部5でその表面がク
リーニングされ、次の潜像形成に備える。
On the sleeve 7, the toner stands in spikes due to the developing magnetic pole Sl at a position facing the photosensitive drum 1, and the sleeve 7 is caused by an electric field (preferably an oscillating electric field such as AC) between the latent image on the photosensitive drum 1 and the sleeve 7. The upper toner flies to the photosensitive drum 1 and becomes a visible image. At this time, a developing bias (direct current may be used, but in this case, an alternating electric field) is applied to the sleeve 7 at bias '[i 11] so that the toner can easily fly. The imaged toner image on the photosensitive tram 1 is transferred to a transfer material (not shown) in a transfer separation section 4, and the toner image on the transfer material is fixed by a fixing film (not shown). On the other hand, the surface of the remaining toner on the photosensitive todium 1 is cleaned by a cleaning section 5 in preparation for the next latent image formation.

次に、以上のととくの画像形成装置における、マグネッ
ト及びスリーブについて説明する。
Next, the magnet and sleeve in the above-described particular image forming apparatus will be explained.

先ず、マグネット8は、円柱体で図示の各様の磁極強さ
はスリーブ7表面上で、N+:1000[gaussl
、S、:1o00[gaussl、N、:750 [g
aussl、S、:550[gaussJ 、スリーブ
7と感光ドラムlとの最短の間隙か0.25膳園、スリ
ーブ7と磁性ブレード6との間隙か0.25mmになる
ように保持した。またバイアス電源11としてACにD
Cを重畳させたものを用いて、その電圧V□(ピーク対
ピーク)が1400V、周波数fか1800HzのAC
に120VのDCを重畳させて現像を行いA4サイズ紙
で毎分80枚のスピード複写処理を行った。また、感光
ドラムlは^−3iであり暗部電位が40口v1明部電
位が70Vとなるように設定した。
First, the magnet 8 is a cylindrical body with various magnetic pole strengths shown on the surface of the sleeve 7, N+: 1000 [gaussl
, S, :1o00 [gaussl, N, :750 [g
The shortest gap between the sleeve 7 and the photosensitive drum 1 was 0.25 mm, and the shortest gap between the sleeve 7 and the magnetic blade 6 was 0.25 mm. Also, as a bias power supply 11,
AC with a voltage V□ (peak-to-peak) of 1400 V and a frequency f of 1800 Hz.
Developing was carried out by superimposing 120 V DC on the image forming apparatus, and copying was performed at a speed of 80 sheets per minute on A4 size paper. Further, the photosensitive drum 1 was set to be ^-3i, and the dark area potential was set to 40V1, and the bright area potential was set to 70V.

またスリーブ7の材質はステンレス鋼(5US305)
で外径を32m−としその表面にブラスト処理した。該
スリーブ7はステンレス鋼の他、アルミニウム、チタン
鋼でもよい。
The material of the sleeve 7 is stainless steel (5US305).
The outer diameter was set to 32 m and its surface was blasted. The sleeve 7 may be made of stainless steel, aluminum, or titanium steel.

本実施例のスリーブ表面のブラスト条件は不定形粒子(
角状粉粒子のように鋭利な角をもつ粒子)として$40
0(平均粒径35〜45IL■JIS R6001研摩
材の粒度規格に依る。以下、粒径に関しては該粒度規格
に依るものとする。)のA411.03を用い12rp
mで回転しているスリーブに対しこのスリーブから距離
150mm離れた直径7■のノズルにより空気圧3.5
kg/cm”で30秒間吹き付け、ノズルはスリーブの
軸と平行に30C園の距離を往復移動させる。その後洗
浄工程でスリーブ表面は洗浄・乾燥される。このときの
スリーブの表面粗さを第2図に示す。
In this example, the blasting conditions for the sleeve surface were as follows: irregularly shaped particles (
Particles with sharp edges such as angular powder particles) $40
12rp using A411.03 with an average particle size of 35 to 45 IL (according to the JIS R6001 abrasive particle size standard. Hereinafter, the particle size will depend on the particle size standard.)
A nozzle with a diameter of 7 mm located 150 mm away from the sleeve generates an air pressure of 3.5 m.
kg/cm" for 30 seconds, and the nozzle is moved back and forth parallel to the axis of the sleeve over a distance of 30C. After that, the sleeve surface is cleaned and dried in the cleaning process. At this time, the surface roughness of the sleeve is As shown in the figure.

さらにその後、定形粒子(球形粒あるいは粒状粉粒子の
ように表面が滑らかな粒子)として#100(平均粒径
150〜iaoμm)のガラスピーズ(FGB)を用い
空気圧3.0kg/cm”で処理時間を30秒間にして
その他の条件を不定形と同様にしてブラスト処理した。
Furthermore, after that, glass beads (FGB) of #100 (average particle size 150 to iao μm) were used as regular particles (spherical particles or particles with smooth surfaces such as granular powder particles), and the treatment time was set at an air pressure of 3.0 kg/cm. Blasting was carried out for 30 seconds under the same conditions as for the amorphous shape.

その後は前述の通り洗浄工程を経た。第3図に本実施例
スリーブの表面粗さ状態を示す。
After that, the cleaning process was carried out as described above. FIG. 3 shows the surface roughness of the sleeve of this embodiment.

次に上述のような処理法の現像装置と平均粒径11pm
  (コールタ−カウンター法による体積平均値。以下
トナー粒径に関して同様とする。)の磁性トナーを用い
て複写動作を行なったところ、間欠複写及び連続複写に
おいて濃度の変動は少なく常温常湿下ではいずれも約1
.35の画像濃度か得られた。また、低温低湿下ではい
ずれも1.3の画像濃度が得られ、さらにスリーブ表面
へのトナーの塗布むらの発生はなかった。
Next, a developing device using the above-mentioned processing method and an average particle size of 11 pm were used.
(Volume average value determined by the Coulter Counter method. The same applies to the toner particle size hereinafter.) When copying was performed using magnetic toner, there was little variation in density during intermittent copying and continuous copying, and there was no change at room temperature and humidity. Also about 1
.. An image density of 35 was obtained. Further, an image density of 1.3 was obtained in all cases under low temperature and low humidity conditions, and there was no occurrence of uneven application of toner to the sleeve surface.

上記処理後のスリーブの表面観察を行なったところ、そ
の表面は以下のような構造が確認された。すなわち、不
定形粒子による細かい目のブラスト面の約70%〜80
%の領域に太き目の定形粒子により直径40JLm〜5
0ILmの凹部が形成されかつ凹部には不定形ブラスト
の細かい目が保存されていることが確認された。定形粒
子の衝撃を受けなかった20%〜30%の部分の不定形
ブラスト面は尖鋭な微細突起が多数みられたが、定形粒
子の衝突を受けた70%〜80%の部分の不定形ブラス
ト面は尖鋭な微細突起がやや滑らかになっていた。この
ことはこの表面が微細突起を維持しつつ、その尖鋭さの
違う部分が混在していることを示している。
When the surface of the sleeve after the above treatment was observed, the following structure was confirmed on the surface. That is, approximately 70% to 80% of the finely blasted surface is made of irregularly shaped particles.
The diameter is 40JLm to 5% due to the thick regular particles in the area.
It was confirmed that a recess of 0ILm was formed and that the fine mesh of irregularly shaped blast was preserved in the recess. Many sharp microprotrusions were observed on the 20% to 30% portion of the amorphous blast surface that was not impacted by the regular particles, but on the 70% to 80% portion that was impacted by the regular particles. The surface was slightly smooth with sharp microscopic projections. This indicates that while this surface maintains fine protrusions, there are also parts with different sharpness.

次に第一実施例をもとに行なった実験例■〜■について
説明する。■〜■の各実験例は定形粒子の粒径を変えて
第一実施例との比較を行なったものである。基本的な条
件は第一実施例と共通である。
Next, experimental examples (1) to (4) conducted based on the first embodiment will be explained. Each of the experimental examples ① to ② was compared with the first example by changing the particle size of the regular particles. The basic conditions are the same as in the first embodiment.

〈実験例■〉 本実験例はツラスト処理において定形粒子として不定形
粒子と同じ粒径の#400(平均粒径40〜50IL醸
)のガラスピーズを用い、その他のブラスト処理条件や
現像装置の構成は第一実施例と同一である。以上の条件
において連続複写動作(sooo枚)を行なったところ
画像濃度は常温常湿下で!、35、低温低湿下では1.
30であった。また、スリーブへのトナー塗布むらは発
生しなかった。このとき用いたスリーブ表面を観察した
ところ、−見不定形ブラスト処理のみと変わらぬ状態だ
か、若干金属光沢が増していた。さらに詳細に見てみる
と、不定形ブラスト処理表面の約90%に定形粒子が衝
突した形跡かあり、凹部の直径は約20〜30ル■であ
った。また、凹部において不定形ブラスト処理による鋭
利な突起表面が滑らかになっていることなどが判った。
<Experimental example ■> In this experimental example, glass beads of #400 (average particle size 40 to 50 IL), which have the same particle size as the amorphous particles, were used as the regular particles in the blasting process, and other blasting conditions and the configuration of the developing device were used. is the same as the first embodiment. When I made continuous copies (sooo many copies) under the above conditions, the image density was at room temperature and humidity! , 35, under low temperature and low humidity 1.
It was 30. Moreover, uneven toner application to the sleeve did not occur. When the surface of the sleeve used at this time was observed, it was found that the metallic luster had increased slightly, although it appeared to be in the same condition as when only the irregular shape blasting treatment had been performed. Looking more closely, it was found that approximately 90% of the irregularly shaped blasted surface had evidence of collision with regular particles, and the diameter of the recesses was approximately 20 to 30 l. It was also found that the surfaces of sharp protrusions in the recesses were smoothed due to irregular shape blasting.

残りの10%の表面には、不定形ブラスト処理特有の先
鋭な微細突起が存在していた。
On the remaining 10% of the surface, there were sharp microscopic protrusions that are unique to irregular-shaped blasting.

〈実験例■) 本実験例は、定形粒子として不定形粒子よりも小さな粒
径の$700(平均粒径約251Lm )のガラスピー
ズを用いたところか第一実験例と異なるものである。そ
の他のブラスト処理条件や現像装置の構成は第一実施例
と同一である0本実験例装置で連続複写動作を行なった
ところ1画像源度は常温常湿下で1.35、低温低湿下
では1.30であった。しかし、スリーブへのトナー塗
布むらか発生した。
<Experimental Example ■> This experimental example differs from the first experimental example in that glass beads of $700 (average particle diameter of about 251 Lm), which are smaller in diameter than the irregular particles, are used as regular particles. Other blasting conditions and the configuration of the developing device are the same as in the first example.When continuous copying was performed using this experimental example device, the image density was 1.35 at room temperature and normal humidity, and at low temperature and low humidity. It was 1.30. However, uneven toner application to the sleeve occurred.

このとき用いたスリーブ表面を観察したところ、第一実
験例の#400のガラスピーズの場合より金属光沢が増
していた。さらに詳細に見てみると不定形ブラスト処理
表面のほぼ全域に定形粒子か衝突した形跡があり、凹部
の直径約5〜logmであった。また、凹部において不
定形ブラスト処理によって鋭利な突起表面が滑らかにな
っている部分が存在することなどが判った。
When the surface of the sleeve used at this time was observed, it was found that the metallic luster had increased compared to the #400 glass beads of the first experimental example. Looking more closely, there was evidence that regular particles had collided over almost the entire area of the irregularly shaped blasted surface, and the diameter of the recesses was approximately 5 to log m. It was also found that there were some parts of the recesses where the sharp protrusions had been smoothed by the irregular blasting process.

〈実験例■) 本実験例は、定形粒子として不定形粒子より大きな径の
#30(平均粒径約6001Lw、 )のガラスピーズ
を用いたところか第一実験例と異なる。その他のブラス
ト処理条件や現像装置の構成は第一実施例と同一である
0本実験例装置において連続複写動作を行なったところ
、画像濃度は常温常湿下てl、30、低温低湿下では、
 1.25であった。また、スリーブへのトナー塗布む
らは発生しなかった。このとき用いたスリーブ表面を観
察したところ、不定形ブラスト処理表面の約30%に定
形粒子か衝突した形跡があり、凹部の直径は約150〜
20(1%■であった。また、該凹部において不定形ブ
ラスト処Jlによる鋭利な突起表面が滑らかになってい
ることが判った。残り約70%の表面には、不定形ブラ
スト処理特有の尖鋭な微細突起が存在していた。
<Experimental Example ■> This experimental example differs from the first experimental example in that glass beads of #30 (average particle diameter of approximately 6001 Lw), which have a larger diameter than the irregularly shaped particles, were used as the regular particles. Other blasting conditions and the configuration of the developing device were the same as in the first example. When continuous copying was performed using this experimental example device, the image density was 1,30 at normal temperature and normal humidity, and 1,30 at low temperature and low humidity.
It was 1.25. Moreover, uneven toner application to the sleeve did not occur. When the surface of the sleeve used at this time was observed, it was found that approximately 30% of the irregularly shaped blasted surface had evidence of collision with regular particles, and the diameter of the recesses was approximately 150 to 100 mm.
20 (1% ■). It was also found that the sharp protruding surfaces in the recesses due to the irregular shape blasting process Jl were smoothed. The remaining approximately 70% of the surface was coated with the irregular shape blasting process unique to the irregular shape blasting process. Sharp microscopic projections were present.

(実験例■〉 本実験例は、定形粒子として不定形粒子よりも大きい粒
径の井10(平均粒径約1700gm )のガラスピー
ズを用いたところか第一実験例と異なる。
(Experimental Example ■) This experimental example differs from the first experimental example in that glass beads with a diameter of 10 (average particle size of about 1700 gm), which is larger than the irregularly shaped particles, are used as the regular particles.

その他のブラスト処理条件や現像装置の構成は、第一実
施例と同一である0本実験例装置において連続複写動作
を行なったところ1画像源度は常温常湿下で1.20.
低温低湿下では1.15と不定形ツラスト処理のみの場
合と同様に低下していた。また、スリーブへのトナー塗
布むらは発生しなかった。このとき用いたスリーブ表面
なM察したところ、不定形ブラスト処理表面の約10%
未満に、定形粒子が衝突した形跡があり、凹部の直径は
約400〜500μ■であった。該凹部において不定形
ブラスト処理による鋭利な突起表面か滑らかになってい
ることなどが判った。残り90%以上の表面には、不定
形ブラスト処理特有の尖鋭な微細突起か存在していた0
表1に第−実施例及び実験例■〜■の結果を示す、なお
、定形ブラスト領域とは定形粒子が衝突した領域のこと
である。
The other blasting conditions and the configuration of the developing device were the same as in the first embodiment. When continuous copying was performed using the experimental device, the image density per image was 1.20 at room temperature and humidity.
Under low temperature and low humidity conditions, it was 1.15, which was the same decrease as in the case of only amorphous thrust treatment. Moreover, uneven toner application to the sleeve did not occur. According to the surface of the sleeve used at this time, approximately 10% of the irregularly shaped blasted surface
There was evidence that regular particles had collided with each other, and the diameter of the recess was approximately 400 to 500 μι. It was found that the sharp protrusion surfaces in the recesses were smoothed due to the amorphous blasting process. On the remaining 90% or more of the surface, there were sharp microprotrusions unique to irregular-shaped blasting.
Table 1 shows the results of Example 1 and Experimental Examples (1) to (2). Note that the regular blast region is the region where the regular particles collided.

以上の■〜■の実験例よりトナー粒径か、平均11μ量
のときの凹部の大きさの最も好適な範囲は40〜80g
mであることが判った。
From the above experimental examples from ■ to ■, the most suitable range for the toner particle size or the size of the recess when the average amount is 11μ is 40 to 80g.
It turned out to be m.

また、不定形粒子と定形粒子の粒径に関しては、定形粒
子の粒径の方が不定形粒子の粒径よりも大きい方が好結
果か得られることが判った。
Regarding the particle sizes of irregularly shaped particles and fixedly shaped particles, it has been found that better results can be obtained when the particle size of the fixedly shaped particles is larger than that of the irregularly shaped particles.

さらに、定形粒子を衝突させる領域(定形ブラスト領域
)は10%以上90%以下の場合が良く、画像濃度及び
トナー塗布の良好な結果を得るためのスリーブ表面性は
一部に尖鋭的な微細突起を有し、一部に鈍化した微細突
起を有するのかよいことか判った。
Furthermore, the area where the regular particles collide (standard blast area) is preferably 10% or more and 90% or less, and in order to obtain good image density and toner application results, the sleeve surface properties are such that some parts have sharp fine protrusions. It was found that there were some fine protrusions that were blunted.

全面が鈍化した突起もしくは定形処理のみか行なわれた
スリーブ表面はトナー粒子とスリーブ表面の接触か活発
に行なわれトナーのトリボは高まるものの、その高まり
を抑制する手段かなく、部に異常に高いトリボのトナー
粒子か存在するとこれかスリーブ表面に鏡映力により吸
着し、画像形成時に飛翔しづらくなり、これがトナー塗
布むらの旅回になるものと考えられる。また、全面が尖
鋭的な微細突起のみのスリーブ表面はトナー粒子を機械
的に捕獲しやすく、このためトナー粒子の移動かさまた
げられスリーブとトナーとの接触頻度が少なく、トナー
への十分なトリボ付与ができないものと考えられる。し
たがって、不定形ブラスト後の定形ブラスト(重ね打ち
処理)はトナー粒子へのトリボ付与機能とトリボ過剰付
与防止の両機能を有しているものと考える。
If the entire surface of the sleeve has been blunted or has only been shaped, the contact between the toner particles and the sleeve surface will be active, and the toner triboelectricity will increase. It is thought that if some toner particles are present, they will be adsorbed to the sleeve surface by reflection force, making it difficult for them to fly during image formation, and this will cause uneven toner application. In addition, the sleeve surface, which has only sharp micro-protrusions on the entire surface, easily captures toner particles mechanically, which prevents the movement of toner particles, reduces the frequency of contact between the sleeve and toner, and provides sufficient triboelectricity to the toner. It is considered that this is not possible. Therefore, it is considered that the regular blasting (overlapping treatment) after the irregular blasting has both the function of imparting triboelectricity to the toner particles and the function of preventing excessive triboelectricity.

[第二実施例] 次にトナー粒子と凹部の大きさとの関係を調べるために
行なった本発明の第二実施例について説明する。本発明
は定形粒子として#3oのガラスピーズを用いたもので
実験例■に対応するものであるか、トナーとして実験例
■で用いたものよりも小径の粒径5ル鵬の磁性トナーを
使用したところが実験例■と異なるものである(実験例
■は粒径11kLmのトナーを使用した)、他の条件は
第一実験例■と同様にして複写動作を行なった。なお、
凹部の直径は150〜200.鵬で定形ツラスト領域は
30%である。
[Second Example] Next, a second example of the present invention, which was carried out to investigate the relationship between toner particles and the size of the recessed portion, will be described. The present invention uses #3o glass beads as regular particles, which corresponds to Experimental Example (2), or uses a magnetic toner with a particle size of 5μ, which is smaller than that used in Experimental Example (■), as a toner. This is different from Experimental Example (2) (in Experimental Example (2), a toner with a particle size of 11 kLm was used), except that the copying operation was carried out under the same conditions as in the first Experimental Example (2). In addition,
The diameter of the recess is 150 to 200 mm. In Peng, the regular thrust area is 30%.

その結果、間欠複写、連続複写において濃度変動は少な
く画像濃度は常温常湿下で、いずれも1、コ5、低温低
湿下でいずれも1.30と実験例■よりも良い結果が得
られ、低温低湿でのスリーブへのトナー塗布むらもなく
良好であった。
As a result, there was little density variation in intermittent copying and continuous copying, and the image density was 1 and 5 at normal temperature and humidity, and 1.30 at low temperature and low humidity, which was better than experimental example ①. Even at low temperature and low humidity, toner application to the sleeve was uneven and good.

次に第二実施例をもとに定形粒子の粒径を変えて行なっ
た実験例■〜@について説明する。
Next, experimental examples ① to @ in which the particle size of the regular particles was changed based on the second example will be explained.

〈実験例■〉 本実験例は定形粒子として不定形粒子と同径の#400
のガラスピーズを使ったところが第二実施例と異なる。
<Experimental example ■> In this experimental example, #400 particles with the same diameter as the irregularly shaped particles were used as regular particles.
This embodiment differs from the second embodiment in that glass beads are used.

その他の処理条件は第二実施例と同一にしてブラスト処
理をした0本実験例は、実験例■と定形粒子の粒径が同
一である。このブラスト処理(凹部の直径は20〜30
μmで、定形ブラスト領域は90%である。)を行なっ
たスリーブを用いて第二実施例と同条件で複写動作を行
なった結果、間欠複写、連続複写において、濃度変動が
少なく画像濃度は常温常湿下でいずれも1.35、低温
低湿下でいずれも1.30と実験例■と同様な結果であ
ったか低温低湿下でのスリーブへのトナー塗布むらが発
生したところが実験例■と異なる。
In this experimental example, which was subjected to blasting under the same processing conditions as in the second example, the particle size of the regular particles was the same as in experimental example (2). This blasting process (the diameter of the recess is 20 to 30
In μm, the regular blast area is 90%. ) was used to perform copying operations under the same conditions as in the second example. As a result, in intermittent copying and continuous copying, there was little variation in density, and the image density was 1.35 at room temperature and normal humidity, and 1.35 at low temperature and low humidity. Both results were 1.30, which was the same as in Experimental Example (2).However, the difference from Experimental Example (2) was that uneven toner application to the sleeve occurred under low temperature and low humidity conditions.

〈実験例■〉 本実験例は、定形粒子として不定形粒子より大径の#l
Oのガラスピーズを使ったところが第二実施例と異なる
。その他の処理条件を第二実施例と同一にしてブラスト
処理をした。本実験例は実験例■と定形粒子の粒径が同
一である。このブラスト処J!!(凹部の直径は400
〜500 gmで、定形ブラスト領域は10%未満であ
る。)を行なったスリーブを用いて第二実施例と同一条
件で複写動作を行なった結果、連続複写において濃度変
動が少なく画像濃度は、常温常湿下で1.35、低温低
湿下でいずれも1.30と実験例■よりも良い結果が得
られ、低温低湿下で°のスリーブへのトナー塗布むらは
発生しなかった。
<Experimental example■> In this experimental example, #l, which has a larger diameter than irregularly shaped particles, is used as a regular particle.
This embodiment differs from the second embodiment in that O glass beads are used. Blasting was carried out under the same conditions as in the second example. In this experimental example, the particle size of the regular particles is the same as in experimental example ①. This blast place J! ! (The diameter of the recess is 400
At ~500 gm, the shaped blast area is less than 10%. ) Copying was performed using the sleeve under the same conditions as in the second example, and as a result, there was little variation in density during continuous copying, and the image density was 1.35 at room temperature and humidity, and 1 at low temperature and low humidity. .30, a better result than Experimental Example ① was obtained, and uneven toner application to the ° sleeve did not occur under low temperature and low humidity conditions.

以上の結果を表2に示す。The above results are shown in Table 2.

表2から明らかなように、トナー粒径が平均5川■のと
きの最も好適な凹部の直径は150〜200μ■の範囲
であることが判かった。また、さらに同様の実験を行な
った結果、100〜f50 p、mの範囲であれば好適
であることが判った。
As is clear from Table 2, it was found that the most suitable diameter of the concave portion was in the range of 150 to 200 μm when the average toner particle size was 5 μm. Moreover, as a result of further similar experiments, it was found that a range of 100 to f50 p,m is suitable.

次に、トナー粒径と凹部の直径の関係についてさらに詳
しく調べるために行なった第三実施例について説明する
Next, a third example will be described in which the relationship between the toner particle size and the diameter of the recessed portion was investigated in more detail.

[第三実施例] 本実施例は、使用するトナーの粒径か平均15IL11
のもので、不定形粒子として#800のもの。
[Third Example] In this example, the average particle size of the toner used was 15IL11.
#800 irregularly shaped particles.

定形粒子に#40口のもの用いたところが第−実施例及
び第二実施例と異なるものである。また1本実施例のス
リーブ表面の凹部は直径が20〜30IL■で、定形ブ
ラスト領域は90%であり、実験例■及び実験例■と同
一である。
This example differs from the first and second examples in that #40 size particles were used as the regular shaped particles. Further, the diameter of the concave portion on the sleeve surface of this embodiment is 20 to 30 IL (2), and the regular blast area is 90%, which is the same as in Experimental Example (2) and Experimental Example (2).

本実施例によるスリーブを用いて間欠複写及び連続複写
を行なったところ、濃度の変動は少なく常温常湿下では
いずれも約1.35の画像濃度が得られ、また、低温低
湿下ではいずれも1.30の画像濃度が得られた。この
結果は、実験例■及び実験例■と同様であった。また、
低温低湿下でのスリーブ表面へのトナーの塗布むらの発
生はなく実験例■よりも良い結果が得られた。
When intermittent copying and continuous copying were performed using the sleeve according to this example, image densities of about 1.35 were obtained in both cases at room temperature and normal humidity with little variation in density, and in both cases at low temperature and low humidity. An image density of .30 was obtained. This result was similar to Experimental Example (2) and Experimental Example (2). Also,
There was no occurrence of uneven toner application on the sleeve surface under low temperature and low humidity conditions, and better results were obtained than in Experimental Example ①.

次に第三実施例をもとに行なった実験例■〜■について
説明する。
Next, experimental examples (1) to (4) conducted based on the third embodiment will be explained.

〈実験例■〉 本実験例は、定形粒子として#700のガラスピーズを
使ったところが第三実施例と異なる。その他の処理条件
を第三実施例と同一にしてブラスト処理をした。本実験
例は、実験例■と定形粒子の粒径が同一である。このよ
うなブラスト処理(凹部の直径は5〜10.園で、定形
ブラスト領域は約100%である。)を行なったスリー
ブを用い、複写動作を行なったところ、間欠複写、連続
複写において濃度変動少なく画像濃度は、常温常湿下で
いずれも1.35、低温低湿下でいずれも1.30と実
験例■と同様であったが、低温低湿下でのスリーブへの
トナー塗布むらの発生がなく実験例■よりも良い結果か
得られた。
<Experimental Example ■> This experimental example differs from the third example in that #700 glass beads were used as the regular particles. Blasting was carried out under the same conditions as in the third example. In this experimental example, the particle size of the regular particles is the same as in experimental example (2). When copying was performed using a sleeve that had been subjected to such blasting (the diameter of the concave portion was 5 to 10 mm, and the regular blast area was approximately 100%), density fluctuations were observed during intermittent copying and continuous copying. The image density was 1.35 in both cases at room temperature and normal humidity, and 1.30 in both cases at low temperature and low humidity, which was the same as in Experimental Example ■, but uneven toner application to the sleeve occurred under low temperature and low humidity conditions. However, better results were obtained than in Experimental Example ■.

く実験例■〉 本実験例は、定形粒子として#30のガラスピーズを使
い、その他の処理条件を第三実施例と同一にしてブラス
ト処理をした0本実験例は、実験例■及び第二実施例に
対応するものである。このようなブラスト処理(凹部の
直径は150〜200 ILw。
Experimental example ■〉 In this experimental example, #30 glass beads were used as regular particles, and blasting was performed under the same processing conditions as in the third example. This corresponds to the example. Such blasting treatment (the diameter of the recess is 150-200 ILw.

で、定形ブラスト領域は30%である。)を行なったス
リーブを用い第三実施例と同一条件で複写動作を行なっ
たところ、連続複写において画像濃度は常温常温下で1
.20、低温低湿下で1.15と実験例■及び第二実施
例よりも悪い結果であったが、低温低湿下でのスリーブ
へのトナー塗布むらの発生はなかった。
The regular blast area is 30%. ) was used to perform copying operations under the same conditions as in the third example, and the image density was 1 at room temperature during continuous copying.
.. 20. The result was 1.15 under low temperature and low humidity, which was worse than Experimental Example ① and the second example, but there was no occurrence of uneven toner application to the sleeve under low temperature and low humidity.

以上の結果を表3に示す。The above results are shown in Table 3.

以上の実験例■〜■より、凹部の大きさの最も好適な範
囲は15p■トナーを用いた場合は、20〜30μ層で
あり、さらに同様の実験を行なった結果lO〜30井■
の範囲であれば好結果が得られることが判った。
From the above experimental examples ■~■, the most suitable range for the size of the recess is a 20~30μ layer when using 15p■ toner, and the results of further similar experiments revealed that the size of the recesses is 20~30μ layer.
It has been found that good results can be obtained within this range.

以上の第一実施例ないし第三実施例、及び実験例■〜■
までの結果をまとめてグラフ化したものが第4図である
The above first to third examples and experimental examples ■ to ■
Figure 4 is a graph summarizing the results up to this point.

第4図の結果から、トナー粒径と凹部の大きさとの関係
は40< d 「7< 200の範囲であれば使用可能
であり、7o<a、rマ〈100の範囲であればさらに
好適であるということが判った。
From the results shown in Fig. 4, the relationship between the toner particle size and the size of the recess is 40<d, 7<200, which is usable, and 7o<a, rma<100, which is more preferable. It turned out that it was.

また、処理時間、空気圧を固定した場合、より小さな定
形ブラスト粒子で仕上げたスリーブを使用した方が大き
な定形ブラスト粒子の場合より高トリボとなることか判
った。この理由は定形粒子か小さくなる程、単位面積当
りに衝突する粒子の数が増し、定形ブラスト処理部の面
積が増すことによるものである。
It was also found that when processing time and air pressure were fixed, the use of a sleeve finished with smaller regular blast particles resulted in higher triboelectricity than the case with larger regular blast particles. The reason for this is that the smaller the regular particles are, the more particles collide per unit area, and the area of the regular blasting section increases.

大きな粒子のを使用する場合、処理時間を長くすること
によって、小さな粒子の場合と同等の定形ブラスト面積
か得られるが効率が悪い、一方、小さすぎると定形ブラ
スト領域が大きくなりすぎやすく、定形ブラストのみの
処理と同じになり、トナーの塗布むらを生じる。したが
って、処理時間、空気圧が同一ならば、そして高トリボ
になりやすい小さいトナーを使用するならば、大きな定
形粒子を使用するのがよい。
When using large particles, by increasing the processing time, you can obtain the same fixed blast area as with small particles, but it is less efficient; on the other hand, if the particles are too small, the fixed blast area tends to be too large, and The process is the same as that of chisel and causes uneven toner application. Therefore, if the processing time and air pressure are the same, and if a small toner that is prone to high triboelectricity is used, it is better to use larger regular particles.

なお、第一実施例ないし第三実施例、及び実験例■〜■
の結果から明らかなように、定形粒子を衝突させる領域
(定形ブラスト領域)は10%〜gO%の場合が好まし
いことが判った。
In addition, the first to third examples, and experimental examples ■ to ■
As is clear from the results, it was found that the area where the regular particles collide (the regular blast area) is preferably 10% to gO%.

く実験例■〉 以上のように、処理時間、空気圧を固定とした場合には
、定形粒子の粒径を変えることで、ブラスト領域を変え
ることかできたか、定形粒子の粒径を固定して、空気圧
(射出圧)を変えてもブラスト領域を変えることができ
る。このことを確かめるために、次に示す実験例■を行
なった。本実験例は、不定形粒子の粒径が井400、定
形粒子の粒径が#100の第一実施例と同様のものを使
用し、射出圧を3.0kg/cm”から5.0kg/c
m2にして比較を行なったものである。
Experimental Example■> As mentioned above, when the processing time and air pressure are fixed, is it possible to change the blast area by changing the particle size of the regular particles? , the blast area can also be changed by changing the air pressure (injection pressure). In order to confirm this, the following experimental example (2) was conducted. In this experimental example, the same particles as in the first example were used, in which the irregularly shaped particles had a particle size of #400 and the regular shaped particles had a particle size of #100, and the injection pressure was changed from 3.0 kg/cm'' to 5.0 kg/cm''. c.
The comparison was made using m2.

この結果、凹部は約501Lmから約120μ朧に拡大
し、プラスト領域はほぼ100%となった。これは、第
4図より使用可能領域であるか衡突部分は完全な平滑面
となり低温低湿下でトナーの塗布むらか生じてしまった
。このように、射出圧によってブラスト領域を変えるこ
とができたか、射出圧が高すぎると突起表面を完全に平
滑化してしまい好結果は得られない。
As a result, the recess expanded from about 501 Lm to about 120 μm, and the plastic area became almost 100%. This is because, as shown in FIG. 4, this is a usable area.The bumping portion was a completely smooth surface, and uneven toner application occurred under low temperature and low humidity conditions. In this way, the blast area could be changed by the injection pressure, or if the injection pressure was too high, the protrusion surface would be completely smoothed and good results would not be obtained.

以上のように画像濃度及びトナーの塗布に好結果を得る
には、凹部を完全に平滑−とすることなくやや鈍化した
微細突起部分を残し、トナーのトリボを適度に保つ必要
があることが判る。
As described above, it is clear that in order to obtain good results in image density and toner application, it is necessary to maintain an appropriate level of toner triboelectricity by leaving a slightly dulled fine protrusion area without making the recesses completely smooth. .

ただし1粒径15μmを越えるトナーの場合、複写画像
の細線部で飛びちりが目立ち、濃度むらが生じるように
なった。これは、トナーの表面積が大きく、各トナーへ
均一なトリボを与えることが難しいことや、トナー粒径
自体が大きすぎる点がある。また、粒径4ル■未満のト
ナーは、生産効率が悪い点、現在の普通紙の繊維間へ入
り込んでしまい、定着しにくい点、このトナーに合わせ
たスリーブ(細かな粗し)か耐摩耗性という点で製造し
にくい点があり、4〜)51Lmの粒径のトナーが好ま
しい。
However, in the case of toner with a particle size of more than 15 μm, scattering became noticeable in the fine line portions of the copied image, causing density unevenness. This is because the surface area of the toner is large, making it difficult to provide uniform triboelectricity to each toner, and the toner particle size itself is too large. In addition, toner with a particle size of less than 4 mm has poor production efficiency, gets into the fibers of current plain paper, and is difficult to fix. Since it is difficult to manufacture in terms of properties, a toner having a particle size of 4 to 51 Lm is preferable.

なお、不定形粒子としては、炭化珪素粒子、アルミナ粒
子、三酸化鉄粒子、二酸化チタン粒子のいづれかを利用
し、また定形粒子としてはガラスピーズ、鋼球、フェラ
イト球、偏平フェライト粒子のいづれかを利用すればよ
いが、これらに限るものではない。
In addition, as irregularly shaped particles, use any one of silicon carbide particles, alumina particles, iron trioxide particles, and titanium dioxide particles, and as fixed particles, use any one of glass beads, steel balls, ferrite balls, and flat ferrite particles. However, it is not limited to these.

また、現像剤担持体としては1円筒状のものに限らず、
円柱状のもの、ベルト状のものが使用でき、磁石自体の
ローラも使用できる。
In addition, the developer carrier is not limited to a cylindrical one;
A cylindrical type or a belt type can be used, and a roller of the magnet itself can also be used.

また、上述の実施例では、現像部に、スリーブ、ドラム
間隙よりも薄い現像剤層を搬送したが、本発明はスリー
ブ、トラム間隙と等しいかそれより厚い現像剤層を現像
部に搬送する現像装置にも適用できる。
Furthermore, in the above-described embodiment, a developer layer that is thinner than the gap between the sleeve and the drum is conveyed to the developing section, but in the present invention, a developer layer that is equal to or thicker than the gap between the sleeve and the tram is conveyed to the developing section. It can also be applied to equipment.

[発明の効果」 以上、説明したように本発明によれば、スリーブ外表面
に不定形粒子により微細に粗面化処理を施し、さらに定
形粒子を衝突させて凸部の突起表面に比べて鈍化された
突起表面を有する凹部を形成することにより、鋭利な突
起表面と鈍化された突起表面か混在し、トナーに適正な
トリボを付与することができる。したがって、本発明の
現像剤担持体を現像スリーブとして組み込むことにより
、現像剤を確実に搬送し現像能力を長期にわたって維持
でき、トナーの塗布むらを発生させずに連続複写動作に
おいても常に良好な画像を提供でき、環境に依らず安定
した画像を提供することができる。         
   (以下余白)
[Effects of the Invention] As explained above, according to the present invention, the outer surface of the sleeve is finely roughened using irregularly shaped particles, and furthermore, the irregularly shaped particles are caused to collide with each other to make the surface of the protrusions of the convex portions rougher. By forming a concave portion having a roughened protrusion surface, sharp protrusion surfaces and blunt protrusion surfaces coexist, thereby making it possible to impart appropriate triboelectricity to the toner. Therefore, by incorporating the developer carrier of the present invention as a developing sleeve, it is possible to reliably transport the developer and maintain the developing ability over a long period of time, and it is possible to always maintain good images even during continuous copying operations without causing uneven toner application. It is possible to provide stable images regardless of the environment.
(Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例装置を示す概略構成図、第
2図は第一・実施例装置の現像剤担持体の不定形粒子の
みで処理した表面を示す図、第3図は第2図の現像剤相
持体を定形粒子で処理した表面を示す図、第4図は第二
実験例の結果のトナーの平均粒径と平滑された凹部の直
径の関係を示す図である。 3・・・・・・現像装置
FIG. 1 is a schematic configuration diagram showing the apparatus of the first embodiment of the present invention, FIG. 2 is a diagram showing the surface of the developer carrier of the first embodiment apparatus treated with only irregularly shaped particles, and FIG. FIG. 2 is a diagram showing the surface of the developer carrier treated with regular particles, and FIG. 4 is a diagram showing the relationship between the average particle diameter of the toner and the diameter of the smoothed recesses as a result of the second experimental example. 3...Developing device

Claims (5)

【特許請求の範囲】[Claims] (1)現像剤を担持しながら無端移動可能な表面を有す
る現像剤担持体を備えた現像装置において、 上記現像剤担持体の表面は、鋭利な角をもつ不定形粒子
を衝突させることによって細かなピッチの鋭利な突起を
もって粗面化された突起表面が、上記不定形粒子の平均
粒径よりも大なる平均粒径の滑らかな表面をもつ定形粒
子の衝突を受けて大きなピッチの波状の凹凸部をもつよ
うに形成されて上記突起表面は凸部におけるよりも凹部
において鈍化されており、 上記凹部は、上記現像剤の平均粒径d(マイクロメート
ル)と上記凹部の直径x(マイクロメートル)の関係が
、該凹部の直径xの平方根と上記粒径dを乗じたものが
40よりも大きく200未満となる関係を有して形成さ
れている、 ことを特徴とする現像装置。
(1) In a developing device equipped with a developer carrier having an endlessly movable surface while carrying developer, the surface of the developer carrier is finely divided by colliding amorphous particles with sharp corners. The protrusion surface, which is roughened with sharp protrusions at a large pitch, becomes wavy and uneven at a large pitch due to the collision of regular particles with a smooth surface and an average particle diameter larger than the average particle diameter of the irregularly shaped particles. The surface of the protrusion is more blunted in the recessed part than in the convex part, and the recessed part has an average particle diameter d (micrometers) of the developer and a diameter x (micrometer) of the recessed part. A developing device characterized in that the relationship is such that the product of the square root of the diameter x of the recess and the particle size d is greater than 40 and less than 200.
(2)使用する現像剤の平均粒径を小さくするほど、定
形粒子の平均粒径を大きくすることとする請求項(1)
に記載の現像装置。
(2) Claim (1) wherein the smaller the average particle size of the developer used, the larger the average particle size of the regular shaped particles.
The developing device described in .
(3)定形粒子の平均粒径は不定形粒子の平均粒径より
も大きいこととする請求項(1)に記載の現像装置。
(3) The developing device according to claim 1, wherein the average particle size of the regular particles is larger than the average particle size of the irregular particles.
(4)現像剤の平均粒径が4〜15マイクロメートルで
あることとする請求項(1)に記載の現像装置。
(4) The developing device according to claim 1, wherein the developer has an average particle size of 4 to 15 micrometers.
(5)定形粒子を衝突させる領域は、不定形粒子によっ
て形成された突起表面の10パーセント以上90パーセ
ント以下の領域であることとする請求項(1)に記載の
現像装置。
(5) The developing device according to claim 1, wherein the region in which the regular-shaped particles collide is an area that is 10% or more and 90% or less of the surface of the protrusion formed by the irregularly-shaped particles.
JP1169888A 1989-07-03 1989-07-03 Developing device Pending JPH0336565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169888A JPH0336565A (en) 1989-07-03 1989-07-03 Developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169888A JPH0336565A (en) 1989-07-03 1989-07-03 Developing device

Publications (1)

Publication Number Publication Date
JPH0336565A true JPH0336565A (en) 1991-02-18

Family

ID=15894819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169888A Pending JPH0336565A (en) 1989-07-03 1989-07-03 Developing device

Country Status (1)

Country Link
JP (1) JPH0336565A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974286A (en) * 1995-10-26 1999-10-26 Canon Kabushiki Kaisha Toner supply container and a toner supply mechanism having a toner supply container, to be set to a hopper opening or to a supply portion having a hopper opening
US6014536A (en) * 1995-10-26 2000-01-11 Canon Kabushiki Kaisha Toner supply mechanism having locking means for locking a shutter member and a toner supply container having projections for releasable locking a hopper shutter member
USRE48846E1 (en) 2010-08-26 2021-12-07 Afiniti, Ltd. Estimating agent performance in a call routing center system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974286A (en) * 1995-10-26 1999-10-26 Canon Kabushiki Kaisha Toner supply container and a toner supply mechanism having a toner supply container, to be set to a hopper opening or to a supply portion having a hopper opening
US6014536A (en) * 1995-10-26 2000-01-11 Canon Kabushiki Kaisha Toner supply mechanism having locking means for locking a shutter member and a toner supply container having projections for releasable locking a hopper shutter member
USRE48846E1 (en) 2010-08-26 2021-12-07 Afiniti, Ltd. Estimating agent performance in a call routing center system

Similar Documents

Publication Publication Date Title
EP0478317B1 (en) Apparatus for developing electrostatic latent image and developing roller therefor
US5086728A (en) Developing apparatus
US5310615A (en) Image forming method
JPH0132506B2 (en)
US5298950A (en) Image forming apparatus
US4870461A (en) Developing device and developer carrying member usable therewith
JPH0336565A (en) Developing device
JP2517649B2 (en) Powder developer conveying member, method of manufacturing the same, and developing device having the same
US5227849A (en) Developing apparatus and developer carrying member usable therewith
JPH0384570A (en) Developing device
JPH0245189B2 (en)
JPH0336562A (en) Developing device
JPH02204764A (en) Developing device
JP2951773B2 (en) Developing device and developing roller used therein
JPH0314192B2 (en)
JPH0336564A (en) Developing device
JP4630425B2 (en) Developing apparatus and method for producing developer carrier used in the apparatus
JPH0336567A (en) Developing device
JPH0220118B2 (en)
JPH0519632A (en) Developing device
JP2000206776A (en) Developing device
JPH0336563A (en) Developing device
JPH0336566A (en) Developing device
JPH04162060A (en) Developing device
JPH0962028A (en) Image forming method