JPH0336508B2 - - Google Patents

Info

Publication number
JPH0336508B2
JPH0336508B2 JP6283085A JP6283085A JPH0336508B2 JP H0336508 B2 JPH0336508 B2 JP H0336508B2 JP 6283085 A JP6283085 A JP 6283085A JP 6283085 A JP6283085 A JP 6283085A JP H0336508 B2 JPH0336508 B2 JP H0336508B2
Authority
JP
Japan
Prior art keywords
electric field
cells
conductive path
fine particles
polarizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6283085A
Other languages
Japanese (ja)
Other versions
JPS61219386A (en
Inventor
Mitsugi Senda
Tadaaki Sumya
Atsuo Mizukami
Tadaatsu Yonetani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6283085A priority Critical patent/JPS61219386A/en
Publication of JPS61219386A publication Critical patent/JPS61219386A/en
Publication of JPH0336508B2 publication Critical patent/JPH0336508B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は複数の分極性微粒体、特に、細胞を
不均一電界内において互いに接触状態に集合させ
る方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method and apparatus for assembling a plurality of polarizable microparticles, particularly cells, in contact with each other in a non-uniform electric field.

技術背景 一般に、生体細胞を電界中におくと細胞膜部分
に電気二重層が形成され、即ち、分極される。従
来、このような分極性微粒体を不均一電界内に置
いて電束密度もしくは電気変位が極大となる極点
に向けて移動、即ち、誘電泳動させ、該極点にお
いて分極性微粒体を互いに接触状態に集合させる
ことが知られている。
Technical Background Generally, when living cells are placed in an electric field, an electric double layer is formed in the cell membrane, that is, the cell membrane becomes polarized. Conventionally, such polarizable microparticles are placed in a nonuniform electric field and moved toward a pole point where the electric flux density or electric displacement is maximum, that is, dielectrophoresed, and the polarizable microparticles are brought into contact with each other at the pole point. It is known that it aggregates in

上記集合方法を用いる一具体例として誘電泳動
を利用する電気的細胞融合法が公知である。即
ち、マンニトール溶液等の非電解質溶液に細胞を
懸濁し、この懸濁液を、例えば、平板状電極−棒
状電極あるいは棒状電極−棒状電極間等に形成さ
れる不均一電界内に置くと、該溶液中の各細胞が
誘電泳動し、当該不均一電界における電気変位が
極大となる棒状電極の先端部およびその表面に数
珠状に連なり、次いで、接触細胞に適当な電気パ
ルスによる刺激を加えて細胞融合が成就される。
As a specific example of using the above assembly method, an electrical cell fusion method using dielectrophoresis is known. That is, when cells are suspended in a non-electrolyte solution such as a mannitol solution and this suspension is placed in a non-uniform electric field formed, for example, between a flat electrode and a rod electrode or between rod electrodes, the Each cell in the solution undergoes dielectrophoresis and is connected in a beaded manner at the tip and surface of the rod-shaped electrode where the electric displacement in the non-uniform electric field is maximum, and then the cells in contact are stimulated with an appropriate electric pulse to separate the cells. Fusion is accomplished.

しかしながら、上記従来の方法においては、接
触状態に集合させようとする分極性微粒体が電極
表面に直接接触する方式のものであるため、電極
表面が汚損され、当該電界の強さを一定に維持す
ることが出来ず、連続的に安定して集合操作を行
うことが困難であつた。特に、細胞融合等におい
て細胞の集合操作を行うときには、電極表面の汚
損のみならず、電極表面に直接接触する細胞が破
損する危険性が大いにあつた。また、互いに接触
させられた細胞対の組み合わせは不規則的なもの
であり、たとえば、異種細胞AおよびBの細胞融
合を行うにあたり、電極表面の近傍に配列される
細胞の組み合わせは、A−A、B−B、A−B等
が不規則に現れ、所要の細胞対A−Bのみを得難
く、このため、たとえば、顕微鏡等を使用して所
要の細胞対A−Bを選別するようにしており、こ
のような余分の選別工程が必要なため融合操作全
体の作業能率が良くなかつた。
However, in the conventional method described above, the polarizable fine particles to be brought into contact are brought into direct contact with the electrode surface, which results in the electrode surface being contaminated and maintaining the electric field strength constant. Therefore, it was difficult to perform the collective operation continuously and stably. In particular, when performing cell aggregation operations such as cell fusion, there is a great risk of not only contaminating the electrode surface but also damaging cells that come into direct contact with the electrode surface. Furthermore, the combinations of cell pairs brought into contact with each other are irregular; for example, when performing cell fusion of heterogeneous cells A and B, the combination of cells arranged near the electrode surface is A-A. , B-B, A-B, etc. appear irregularly, making it difficult to obtain only the required cell pair A-B. Therefore, for example, a microscope or the like is used to select the required cell pair A-B. The necessity of such an extra sorting step made the overall fusion operation less efficient.

解決しようとする課題 この発明は、上述した種々の問題点を解消する
ためになされたものであり、原理的に、電界発生
用の一対の電極間の中間部に電気変位あるいは電
束密度が極大となる極大点を形成する一方、該極
点の少なくとも2つ以上の相対向する側方位置か
ら当該不均一電界内にそれぞれ接触させようとす
る分極性微粒体を装入して、各電極表面から離間
した極点において所望の組み合わせの分極性微粒
体群を得るようにした分極性微粒体の集合方法を
提供しようとするものである。
Problems to be Solved This invention was made to solve the various problems mentioned above, and in principle, electric displacement or electric flux density is maximized at the intermediate portion between a pair of electrodes for generating an electric field. While forming a maximum point where It is an object of the present invention to provide a method for assembling polarizable fine particles by which a desired combination of polarizable fine particles can be obtained at distant pole points.

更に、この発明は、電気絶縁性の容器内に設置
された電界発生用の一対の平板状電極間に電気絶
縁体を介在させて該電極間の中間部において断面
積が極小となる導通路を形成し、これにより該導
通路の狭隘部に電気変位あるいは電束密度が極大
となる極大点を形成する一方、上記導通路におけ
る狭隘部の相対向する側方位置にそれぞれ分極性
微粒体の装入口部を形成した分極性微粒体の集合
装置を提供しようとするものである。
Furthermore, the present invention provides a conductive path with an extremely small cross-sectional area at the intermediate portion between the electrodes by interposing an electrical insulator between a pair of flat electrodes for generating an electric field installed in an electrically insulating container. This forms a local maximum point at which the electric displacement or electric flux density is maximum in the narrow part of the conductive path, and at the same time, a polarizable fine particle is provided at opposite side positions of the narrow part of the conductive path. It is an object of the present invention to provide a collecting device for polarizable fine particles having an inlet portion formed therein.

なお、この発明は、特に、異種細胞融合用とし
て非常に有用なものであるが、これに限らず、マ
イクロカプセルにDNA(デオキシリボ核酸)等の
所要の物質を封入し、このマイクロカプセルと細
胞とを溶液内で互いに接触させて該細胞に上記物
質を導入する、いわゆる、カプセル法による物質
の導入とか、溶液中での細胞へのDNA−ベクタ
ーの導入等に有用なものである。
Although this invention is very useful especially for the fusion of different types of cells, it is not limited to this, but it is possible to encapsulate a necessary substance such as DNA (deoxyribonucleic acid) in a microcapsule, and combine the microcapsule with a cell. It is useful for the introduction of a substance by the so-called capsule method, in which the above substances are brought into contact with each other in a solution, and for the introduction of a DNA-vector into cells in a solution.

この明細書において細胞とは、前後の文章から
矛盾のない限り、完全な細胞のみならず、細胞融
合の目的で予め所定の処理を施した細胞、たとえ
ば、プロトプラストなどを包含するものとする。
In this specification, cells include not only complete cells but also cells that have been subjected to a predetermined treatment for the purpose of cell fusion, such as protoplasts, unless there is a contradiction from the surrounding text.

又、用語“細胞融合”は便宜上、細胞と、例え
ばDNAを封入したマイクロカプセルとの融合、
さらには細胞へのDNA−ベクターの導入をも意
味するものとする。このマイクロカプセルは、人
工および天然のいずれのものであつてもよい。
In addition, the term "cell fusion" is used for convenience to refer to the fusion of cells and, for example, microcapsules encapsulating DNA.
Furthermore, it also refers to the introduction of a DNA-vector into cells. The microcapsules may be either artificial or natural.

実施例 この発明を、実施例を示す添付図面とともに説
明する。なお、この実施例は植物プロトプラスト
の集合および融合に適用するものである。
Embodiments The present invention will be described with reference to the accompanying drawings showing embodiments. Note that this example is applied to the assembly and fusion of plant protoplasts.

第1図および第2図において、1はアクリル樹
脂により外形が略矩形板状に一体成形された枠体
である。この枠体1の対向する2つの長辺側壁に
それぞれ対称形の4角錐台形状の突起部2−1,
2−2が互いに対向するように形成されている。
両突起部2−1,2−2のテーパー面3,3およ
び先端面4は断面積が枠体1の中心部で最小とな
るテーパー状の導通路5を形成している。なお、
突起部2−1,2−2は枠体1とは個別のものと
してもよい。また、これらの突起部2−1,2−
2はアクリル樹脂に限らず、高電気絶縁性のテフ
ロン(米国デユポン社の商品名)、マイラ(米国
デユポン社の商品名)等、他の合成プラスツチツ
ク材またはセラミツクス、マイカ等から形成した
ものであつてもよい。
1 and 2, reference numeral 1 denotes a frame integrally molded from acrylic resin into a substantially rectangular plate shape. Symmetrical four-sided truncated pyramid-shaped protrusions 2-1 on two opposing long side walls of the frame 1,
2-2 are formed to face each other.
The tapered surfaces 3, 3 and the tip surfaces 4 of both the protrusions 2-1, 2-2 form a tapered conduction path 5 whose cross-sectional area is minimum at the center of the frame 1. In addition,
The protrusions 2-1 and 2-2 may be separate from the frame 1. In addition, these protrusions 2-1, 2-
2 is not limited to acrylic resin, but is made of other synthetic plastic materials such as highly electrically insulating Teflon (trade name of DuPont, USA), Mylar (trade name of DuPont, USA), ceramics, mica, etc. It's okay.

上記枠体1の底面1−1には電気絶縁性の透明
ガラス板8が接着される一方、上面1−2には電
気絶縁材料から成る蓋体9が取り付けられる。こ
のようにして、枠体1の側壁と透明ガラス板8と
蓋体9とにより対称形の2つの密閉チヤンバ6−
1,6−2が形成されている。両密閉チヤンバ6
−1,6−2は枠体1の中央部で収束する導通路
5を介して接続されている。導通路5における断
面積の極小となる部分を狭隘部7という。第1図
および第2図に示すように、この狭隘部7の長さ
l、幅dおよび高さhは集合させようとする細胞
に応じて適宜な寸法とされる。
An electrically insulating transparent glass plate 8 is adhered to the bottom surface 1-1 of the frame 1, while a lid 9 made of an electrically insulating material is attached to the top surface 1-2. In this way, the side walls of the frame 1, the transparent glass plate 8 and the lid 9 create two symmetrical sealed chambers 6-
1, 6-2 are formed. Double sealed chamber 6
-1 and 6-2 are connected via a conductive path 5 that converges at the center of the frame 1. A portion of the conductive path 5 where the cross-sectional area is minimal is referred to as a narrow portion 7. As shown in FIGS. 1 and 2, the length 1, width d, and height h of this narrow portion 7 are set appropriately depending on the cells to be aggregated.

上記密閉チヤンバ6−1,6−2内に互いに平
行にかつ対向状に平板電極11−1,11−2が
設置される。両平板電極11−1,11−2は共
に白金(Pt)から形成され、それらの平面形状
および面積は同等とされる。なお、電極材料とし
て、たとえば、ステンレス、銀−塩化銀、あるい
はアザブリツジ等の液絡電極などを使用するよう
にしてもよい。そして、両平板電極11−1,1
1−2は詳細に後述するように電界発生用交流
(AC)電源回路13と接続され、該交流電源回路
13から交流電圧が印加されると、平板電極11
−1,11−2間におけるチヤンバ6−1,6−
2および導通路5の内部領域に電界を発生する。
この電界は枠体1、透明ガラス板8および蓋体9
により該チヤンバ6−1,6−2および導通路5
の内部領域に有効に閉じ込められるとともに電気
絶縁体の突起部2−1,2−2により、第3図に
示すように導通路5における断面積が最小もしく
は極小となる位置で電束密度あるいは電気変位が
極大となる。このようにして、密閉チヤンバ6−
1,6−2および導通路5の内部領域に不均一電
界が形成される。
Flat plate electrodes 11-1, 11-2 are installed in the sealed chambers 6-1, 6-2 in parallel and facing each other. Both plate electrodes 11-1 and 11-2 are both made of platinum (Pt), and have the same planar shape and area. Note that as the electrode material, for example, stainless steel, silver-silver chloride, or a liquid junction electrode such as Azabritsu may be used. And both flat plate electrodes 11-1, 1
1-2 is connected to an alternating current (AC) power supply circuit 13 for electric field generation, as will be described in detail later, and when an AC voltage is applied from the AC power supply circuit 13, the plate electrode 11
Chamber 6-1, 6- between -1, 11-2
2 and the internal region of the conductive path 5.
This electric field is applied to the frame 1, the transparent glass plate 8 and the lid 9.
The chambers 6-1, 6-2 and the conductive path 5
As shown in FIG. 3, electric flux density or electricity The displacement becomes maximum. In this way, the sealed chamber 6-
A non-uniform electric field is formed in the internal region of the conductive path 5 and the conductive path 5.

上記密閉チヤンバ6−1,6−2の側壁部にそ
れぞれの細胞装入口21−1,21−2が設けら
れる。そして、各装入口21−1,21−2にそ
れぞれコンジツト22−1,22−2が接続され
るとともに図示しないポンプによりバルブ23−
1,23−2を介して細胞懸濁液が注入されるよ
うになつている。さらに、導通路5の狭隘部7を
形成する一方の突起部、たとえば、2−1の先端
面に融合細胞取出口25が設けらる。この取出口
25にコンジツト26が接続され、図示しないポ
ンプによりバルブ27を介して融合細胞が取り出
されるようになつている。融合しようとする細胞
は、好ましくは、浸透圧および比重調整用として
マンニトール、ソルビトール、グルコースまたは
シユクロース等と、細胞安定性および伝導度調整
剤として塩化カルシユウム(CaCl2)等並びに
pH緩衝塩等を含む電解質溶液に懸濁され、懸濁
液の状態で上記不均一電界内に導入される。
Cell loading ports 21-1 and 21-2 are provided in the side walls of the sealed chambers 6-1 and 6-2, respectively. Conduits 22-1 and 22-2 are connected to each charging port 21-1 and 21-2, respectively, and a valve 23-2 is connected by a pump (not shown).
The cell suspension is injected through 1 and 23-2. Further, a fused cell outlet 25 is provided on the distal end surface of one of the protrusions forming the narrow portion 7 of the conductive path 5, for example 2-1. A conduit 26 is connected to this outlet 25, and the fused cells are taken out via a valve 27 by a pump (not shown). The cells to be fused are preferably treated with mannitol, sorbitol, glucose, sucrose, etc. for adjusting osmotic pressure and specific gravity, and calcium chloride (CaCl 2 ), etc. as a cell stability and conductivity adjusting agent.
It is suspended in an electrolyte solution containing a pH buffer salt and the like, and introduced into the above-mentioned non-uniform electric field in a suspension state.

一方、上記対向平板電極11−1,11−2
は、リード線12およびスイツチ手段14を介し
て交流(AC)電源回路13と接続されるととも
にリード線12およびスイツチ手段16を介して
パルス発生器15と接続される。両スイツチ手段
14および16は、たとえば、トランジスタ等か
ら成る電子スイツチが用いられ、公知の方法によ
り制御回路17に設定された所定のタイムチヤー
トに従つてオン・オフ制御される。この構成によ
り、交流電源回路13からスイツチ手段14を介
して平板電極11−1,11−2に周波数約10K
Hz〜500KHz、ピーク電圧約5V〜2000V(ボルト)
の正弦波交流電圧が約1秒〜600秒間加えられ、
前述したようにチヤンバ6−1,6−2および導
通路5の内部領域に、該導通路5の狭隘部7にお
いて電気変位を最大もしくは極大とする不均一電
界が形成される。なお、交流電源回路13の出力
波形は正弦波に限らず、三角波、方形波あるいは
鋸歯状波等であつてもよい。また、上記狭隘部7
に細胞が接触状態に集合した後、パルス発生器1
5からスイツチ手段16を介して平板電極11−
1,11−2にパルス幅約1.0μsec(マイクロ秒)
〜10msec(ミリ秒)、ピーク電圧約10V(ボルト)
〜5KV(キロボルト)の方形状パルスが約1m
sec(ミリ秒)〜数msec(数ミリ秒)の間隔で1〜
数回加えられる。このようにして、上記狭隘部7
に集合した細胞対に電気パルスによる刺激が加え
られ、公知の成長過程をもつて細胞融合が成就さ
れる。なお、このパルス発生器15の出力パルス
は上記交流電源回路13の出力電圧に重畳して平
板電極11−1,11−2に加えるようにしても
よい。これにより、細胞融合処理の所要時間の短
縮化を図ることができる。
On the other hand, the above-mentioned opposing flat plate electrodes 11-1, 11-2
is connected to an alternating current (AC) power supply circuit 13 via a lead wire 12 and a switch means 14, and to a pulse generator 15 via a lead wire 12 and a switch means 16. Both switch means 14 and 16 are electronic switches made of, for example, transistors, and are controlled to be turned on and off in accordance with a predetermined time chart set in the control circuit 17 by a known method. With this configuration, a frequency of approximately 10K is supplied from the AC power supply circuit 13 to the flat plate electrodes 11-1 and 11-2 via the switch means 14.
Hz~500KHz, peak voltage about 5V~2000V (volts)
A sine wave alternating voltage of is applied for about 1 second to 600 seconds,
As described above, a non-uniform electric field is formed in the internal regions of the chambers 6-1, 6-2 and the conductive path 5 so that the electric displacement is maximized at the narrow portion 7 of the conductive path 5. Note that the output waveform of the AC power supply circuit 13 is not limited to a sine wave, but may be a triangular wave, a square wave, a sawtooth wave, or the like. In addition, the narrow part 7
After the cells have assembled in contact with each other, the pulse generator 1
5 to the flat plate electrode 11- via the switch means 16.
1, 11-2 pulse width approximately 1.0μsec (microseconds)
~10msec (milliseconds), peak voltage approximately 10V (volts)
~5KV (kilovolt) rectangular pulse approximately 1m
1 to 1 at intervals of sec (milliseconds) to several msec (several milliseconds)
Added several times. In this way, the narrow part 7
Stimulation by electrical pulses is applied to the assembled cell pairs, and cell fusion is achieved through a known growth process. Note that the output pulses of the pulse generator 15 may be superimposed on the output voltage of the AC power supply circuit 13 and applied to the plate electrodes 11-1 and 11-2. Thereby, the time required for cell fusion processing can be shortened.

次に、上記構成の装置を使用して異種細胞A、
Bの融合を行う操作について説明する。
Next, using the apparatus with the above configuration, the heterologous cells A,
The operation for merging B will be explained.

まず、バルブ23−1を開いて装入口21−1
からチヤンバ6−1内に細胞Aを懸濁した懸濁液
を注入するとともにバルブ23−2を開いて装入
口21−2からチヤンバ6−2に上記懸濁液と同
様の細胞Bを懸濁した懸濁液を注入する。
First, open the valve 23-1 and open the charging port 21-1.
Inject a suspension of cells A into the chamber 6-1 from above, open the valve 23-2, and suspend cells B similar to the above suspension into the chamber 6-2 from the charging port 21-2. Inject the suspension.

次いで、制御回路17により公知の方法でスイ
ツチ手段14を閉じ、交流電源回路13から該ス
イツチ手段14を介して平板電極11−1,11
−2間に、たとえば、周波数約100KHz(キロヘ
ルツ)、ピーク電圧約40V〜80Vの正弦波、三角
波または方形波等の交流電圧を印加する。この場
合、電極間距離は2ミリメートル(mm)であつ
た。両平板電極11−1,11−2、枠体1およ
び突起部2−1,2−2により区画された領域、
即ち、密閉チヤンバ6−1,6−2および導通路
5の内部領域には該導通路5の狭隘部7における
電気変位を最大とする不均一電界が形成される。
以下に、この狭隘部7における電気変位の最大と
なる部分を極大点という。なお、上記装置の平板
電極間距離、平板電極寸法、導通路寸法は次のと
おりであつた。: 平板電極間距離;2.0mm、 平板電極寸法(幅×高さ);0.8mm×0.5mm、 導通路寸法(d×h×l);(0.1〜0.25mm)×(0.5
mm)×(0.01mm) 上記不均一電界がチヤンバ6−1,6−2およ
び導通路5内の細胞A、Bに作用すると、各細胞
A、Bの細胞膜部分に電気二重層が誘起され、即
ち、分極される。これらの分極された細胞A、B
は当該不均一電場のエネルギーに基づき狭隘部7
の極大点に向かつて移動、いわゆる、誘電泳動す
る。ある瞬時における誘電泳動の様子を模擬的に
第3図に示す。即ち、チヤンバ6−1内の細胞A
は平板電極11−1側から極大点に向かつて移動
する一方、チヤンバ6−2内の細胞Bは上記細胞
Aの移動方向とは逆方向に平板電極11−2側か
ら極大点に向かつて移動する。そして、互いに近
接した細胞A、Bは各細胞の異極性の分極電荷間
に作用するクーロン力に基づき互いに吸引され、
接触状態となる。この様子は、当該装置の透明ガ
ラス板8側に設置した図示しない顕微鏡を介して
観察することができる。
Next, the control circuit 17 closes the switch means 14 in a known manner, and the flat electrodes 11-1, 11 are connected from the AC power supply circuit 13 through the switch means 14.
For example, an alternating voltage such as a sine wave, a triangular wave, or a square wave with a frequency of about 100 KHz (kilohertz) and a peak voltage of about 40 V to 80 V is applied between -2. In this case, the interelectrode distance was 2 millimeters (mm). A region partitioned by both flat plate electrodes 11-1, 11-2, frame 1 and projections 2-1, 2-2,
That is, a non-uniform electric field is formed in the internal regions of the sealed chambers 6-1, 6-2 and the conductive path 5, which maximizes the electrical displacement in the narrow portion 7 of the conductive path 5.
Hereinafter, the portion where the electrical displacement is maximum in this narrow portion 7 will be referred to as a local maximum point. The distance between the flat electrodes, the dimensions of the flat electrodes, and the dimensions of the conductive path of the above device were as follows. : Distance between flat electrodes: 2.0 mm, flat electrode dimensions (width x height): 0.8 mm x 0.5 mm, conduction path dimensions (d x h x l): (0.1 to 0.25 mm) x (0.5
mm)×(0.01mm) When the above-mentioned non-uniform electric field acts on the cells A and B in the chambers 6-1 and 6-2 and the conduction path 5, an electric double layer is induced in the cell membrane portion of each cell A and B, That is, it is polarized. These polarized cells A, B
is the narrow part 7 based on the energy of the non-uniform electric field.
It moves toward the maximum point of , so-called dielectrophoresis. FIG. 3 shows a simulated state of dielectrophoresis at a certain instant. That is, cell A in chamber 6-1
moves toward the maximum point from the flat electrode 11-1 side, while cell B in the chamber 6-2 moves toward the maximum point from the flat electrode 11-2 side in the opposite direction to the moving direction of the cell A. do. Cells A and B that are close to each other are attracted to each other based on the Coulomb force that acts between the polarized charges of different polarities in each cell.
It becomes a contact state. This state can be observed through a microscope (not shown) installed on the transparent glass plate 8 side of the apparatus.

なお、上記狭隘部7において細胞A、Bが3個
以上数珠状に連ねられる、たとえば、細胞対A−
A−B−B、A−A−A−B、A−B−B等が生
じるようなときには、上記不均一電界発生用の交
流電圧印加時間を適宜調節することにより1個の
細胞Aと1個の細胞Bとから成る細胞対A−Bを
得ることができる。
In addition, in the narrow part 7, three or more cells A and B are arranged in a rosary shape, for example, a cell pair A-
When A-B-B, A-A-A-B, A-B-B, etc. occur, one cell A and one cell It is possible to obtain a cell pair A-B consisting of cells B and B.

次いで、スイツチ手段16を閉じ、パルス発生
器15から該スイツチ手段16を介して平板電極
11−1,11−2間にピーク電圧約50V〜
200V、パルス幅約20msec〜200μsecの方形状パ
ルスを1秒〜数秒の間隔をもつて1〜数回印加す
る。これにより、細胞懸濁溶液を介して導通路5
の狭隘部7に集合した細胞対A−Bに電気パルス
刺激が加わり、これらの細胞対A−Bはそれぞれ
融合する。
Next, the switch means 16 is closed, and a peak voltage of approximately 50 V to 50 V is applied from the pulse generator 15 to the flat electrodes 11-1 and 11-2 via the switch means 16.
A rectangular pulse of 200 V and a pulse width of about 20 msec to 200 μsec is applied once to several times at intervals of 1 second to several seconds. This allows the conduction path 5 to pass through the cell suspension solution.
Electrical pulse stimulation is applied to the cell pair A-B gathered in the narrow part 7 of the cell, and these cell pairs A-B fuse, respectively.

次ぎに、バルブ27を開き、図示しないポンプ
よりそれぞれコンジツト22−1および22−2
を介して細胞AおよびBの懸濁液をチヤンバ6−
1,6−2内に導入する。これで細胞融合操作の
1サイクルが完了する。
Next, the valve 27 is opened, and the conduits 22-1 and 22-2 are pumped by a pump (not shown), respectively.
Transfer the suspension of cells A and B through chamber 6-
1,6-2. This completes one cycle of the cell fusion operation.

その後、再び上述したように、不均一電界の発
生、細胞A、Bの集合、細胞対A−Bへの電気刺
激の印加、融合細胞の取り出しおよび新しい細胞
A、Bの導入操作を繰り返し行う。
Thereafter, as described above, the operations of generating a nonuniform electric field, gathering cells A and B, applying electrical stimulation to the cell pair A-B, taking out the fused cells, and introducing new cells A and B are repeated.

なお、上述したと同様にして、3個以上の細胞
を集合させて融合することもできる。
Note that three or more cells can also be aggregated and fused in the same manner as described above.

次ぎに、上記装置の幾つかの変形例を第4図〜
第8図とともに説明する。なお、これらの図面に
おいて、第1図および第2図の装置における構成
部分と等価の部分には同一符号を付してその説明
を省略する。
Next, some modifications of the above device are shown in FIGS.
This will be explained with reference to FIG. In these drawings, the same reference numerals are given to the same parts as those in the apparatus shown in FIGS. 1 and 2, and the explanation thereof will be omitted.

第4図の装置は、突起部2−1,2−2に代
え、複数の貫通孔31を有する電気絶縁板体30
を平等電界発生用平板電極11−1,11−2間
に設置して構成したものである。各貫通孔31
は、上記突起部2−1,2−2により形成される
導通路5と同様、中央部で断面積が最小もしくは
極小となるテーパー面を形成している。このよう
にして、両平板電極11−1,11−2間に電圧
を印加した際に各貫通孔31の狭隘部32で電気
変位が極大となる。又、両平板電極11−1,1
1−2と当該電気絶縁板体30との間部はチヤン
バ6−1,6−2として使用される。この構成に
より異種細胞の細胞融合を効能率に行うことがで
きる。
The device shown in FIG. 4 uses an electrically insulating plate 30 having a plurality of through holes 31 instead of the protrusions 2-1 and 2-2.
is installed between flat plate electrodes 11-1 and 11-2 for generating an equal electric field. Each through hole 31
As with the conductive path 5 formed by the projections 2-1 and 2-2, a tapered surface is formed in which the cross-sectional area becomes minimum or extremely small at the center. In this way, when a voltage is applied between both flat plate electrodes 11-1 and 11-2, the electrical displacement becomes maximum at the narrow portion 32 of each through hole 31. Moreover, both flat plate electrodes 11-1, 1
The area between the electrically insulating plate 30 and the electrically insulating plate 30 is used as chambers 6-1 and 6-2. With this configuration, cell fusion of different types of cells can be performed efficiently.

上記電気絶縁板体30および平板電極11−
1,11−2は、第5図に示すように、水平状に
配置するようにしてもよい。これにより、融合細
胞の自重を有効に利用して下側のチヤンバ6−1
に誘導し、該チヤンバ6−1を融合細胞の取り出
し用コンジツトとしても兼用することができる。
The electrical insulating plate 30 and the flat electrode 11-
1 and 11-2 may be arranged horizontally as shown in FIG. As a result, the weight of the fused cells can be effectively utilized to lower the chamber 6-1.
The chamber 6-1 can also be used as a conduit for removing fused cells.

また、第6図および第7図に示すように、電気
絶縁板体33の下端部34を凸状に形成し、該下
端部36と当該装置の底面部の透明ガラス板8と
で中央部の断面積が最小もしくは極小となる導通
路35を形成するようにしてもよい。この電気絶
縁板体33は融合しようとする細胞の大きさに応
じて白抜き矢印で示すように上・下に移動調整可
能とされる。これにより第7図の表面に沿つて
上・下方向に、即ち、当該狭隘部37において水
平にかつ単層状に整列して互いに接触した直鎖状
の複数の細胞群を生成することができる。
Further, as shown in FIGS. 6 and 7, the lower end 34 of the electrically insulating plate 33 is formed into a convex shape, and the lower end 36 and the transparent glass plate 8 on the bottom of the device form a central part. The conductive path 35 may be formed to have a minimum or extremely small cross-sectional area. This electrically insulating plate 33 can be adjusted to move up or down as indicated by the white arrow, depending on the size of the cells to be fused. This makes it possible to generate a plurality of linear cell groups that are aligned horizontally and in a single layer in the narrow portion 37 in the upward and downward directions along the surface of FIG. 7, and are in contact with each other.

さらに、第8図の装置においては、上記透明ガ
ラス板8に代えて、貫通長穴39を有する電気絶
縁板38が設置されるとともに該貫通長穴39の
下側開口を閉塞するように電極板41が設置され
る。上記貫通長穴39の上側開口40は上記電気
絶縁板体33の下端部34の凸状部と相似形態と
され、該開口40に下端部34の凸状部を突入さ
せることにより当該貫通長穴39が密閉され、こ
の密閉部は細胞取り出し用コンジツトとして使用
される。細胞集合用の不均一電界は第6図および
第7図の装置におけると同様にして対向平板電極
11−1,11−2間に電圧を印加することによ
り形成される一方、細胞融合誘発用の電圧は平板
電極11−1および11−2と電極板41との間
に印加される。
Furthermore, in the apparatus shown in FIG. 8, an electrically insulating plate 38 having a through hole 39 is installed in place of the transparent glass plate 8, and an electrode plate is installed so as to close the lower opening of the through hole 39. 41 will be installed. The upper opening 40 of the elongated through hole 39 has a shape similar to the convex portion of the lower end portion 34 of the electrically insulating plate 33, and the convex portion of the lower end portion 34 is inserted into the opening 40 to form the elongated through hole. 39 is sealed, and this sealed part is used as a conduit for cell removal. A non-uniform electric field for cell aggregation is formed by applying a voltage between the opposing flat electrodes 11-1 and 11-2 in the same manner as in the apparatus shown in FIGS. A voltage is applied between the flat electrodes 11-1 and 11-2 and the electrode plate 41.

なお、上述した実施例において、チヤンバ6−
1,6−2は好ましくは溶液装填を容易にすべく
密閉状とされるが、蓋体の無い解放状のものとし
てもよい。
In addition, in the embodiment described above, the chamber 6-
1 and 6-2 are preferably sealed to facilitate solution loading, but may be open without a lid.

上述した実施例において、対向電極間に交流電
圧に代えて直流電圧を印加して不均一電界を形成
し、負の平板電極側のチヤンバに負電荷を有する
ベクターを装入する一方、正の平板電極側のチヤ
ンバに細胞を装入し、細胞を導通路5の狭隘部7
に向けて誘電泳動させる一方、負電荷を有するベ
クターを直流電界に基づき狭隘部7に向けて電気
泳動させる。このようにして、狭隘部7において
細胞とベクターを互いに接触させて該細胞にベク
ターを導入することができる。
In the embodiment described above, a DC voltage is applied instead of an AC voltage between opposing electrodes to form a non-uniform electric field, and a vector having a negative charge is charged into a chamber on the negative flat plate electrode side, while a vector with a negative charge is charged in the chamber on the negative flat plate electrode side. Cells are loaded into the chamber on the electrode side, and the cells are placed in the narrow part 7 of the conduction path 5.
On the other hand, a negatively charged vector is electrophoresed toward the narrow part 7 based on a DC electric field. In this way, the cell and the vector can be brought into contact with each other in the narrow region 7, and the vector can be introduced into the cell.

また、チヤンバ6−1と6−2にそれぞれ細胞
と所定の物質、例えば、DNA等が封入されたマ
イクロカプセルを装入し、前述した異種の細胞融
合と同様にして細胞とマイクロカプセルとを互い
に接触させ、次いで両者を融合させて該細胞に所
定の物質を導入することもできる。
Further, microcapsules containing cells and a predetermined substance such as DNA are charged into chambers 6-1 and 6-2, respectively, and the cells and microcapsules are fused together in the same manner as in the cell fusion of different types described above. A predetermined substance can also be introduced into the cell by bringing them into contact and then fusing the two.

発明の効果 この発明によれば、対向電極間領域の中間位置
に電気変位または電束密度が最大もしくは極大と
なる極大点を形成し、上記極大点の相対向する側
方位置から装入した分極性微粒体を該不均一電界
に基づき誘電泳動させて該極大点で互いに接触さ
せるものであるから、従来方式のものにおけるよ
うに誘電泳動される分極性微粒体が直接電極に接
触することもなく、したがつて、電極を汚損する
こともなく安定した不均一電界を形成でき、それ
だけ安定した集合操作を行うことができる。特
に、分極性微粒体が細胞である場合、電極の汚損
を防止できるのみならず、細胞自体の傷損を有効
に防止することができる。
Effects of the Invention According to the present invention, a maximum point where the electric displacement or electric flux density is maximum or maximum is formed at the intermediate position of the region between opposing electrodes, and the portion charged from the side position opposite to the maximum point is formed. Since the polar fine particles are dielectrophoresed based on the non-uniform electric field and brought into contact with each other at the maximum point, the polarized fine particles being dielectrophoresed do not come into direct contact with the electrode as in the conventional method. Therefore, a stable non-uniform electric field can be formed without contaminating the electrodes, and a more stable collective operation can be performed. In particular, when the polarizable fine particles are cells, it is possible not only to prevent the electrode from being contaminated but also to effectively prevent damage to the cells themselves.

また、異種の分極性微粒体を種類毎に極大点の
相対向する側方位置から極大点に向けて集合する
ようにしたから、確実に互いに接触した所定の組
み合わせの分極性微粒体群を得ることができる。
特に、互いに異なつた2種の細胞を融合するのに
用いた場合、極大点の相対向する側方位置から種
類毎に細胞を当該不均一電界内に装入すれば異種
の組み合わせの細胞対のみが得られ、したがつ
て、選別作業を必要としないので高能率に異種細
胞の融合を達成することができる。
In addition, since different types of polarizable particles are gathered from opposite side positions of their maximum points toward the maximum point, it is possible to obtain a predetermined combination of polarizable particles that are in contact with each other. be able to.
In particular, when used to fuse two different types of cells, if cells of each type are introduced into the nonuniform electric field from opposite lateral positions of the maximum point, only pairs of cells of different types can be combined. Therefore, since no sorting work is required, fusion of heterologous cells can be achieved with high efficiency.

なお、本発明は、細胞融合に限らず、他の分極
性微粒体の集合操作、例えば、マイクロカプセル
法による細胞への所定物質の導入とか、DNA−
ベクターの導入等に使用すれば非常に高能率に導
入操作を達成することができる。
Note that the present invention is not limited to cell fusion, but also applies to other aggregation operations of polarizable fine particles, such as introduction of a predetermined substance into cells by microcapsule method, DNA-
If used for vector introduction, etc., the introduction operation can be achieved with extremely high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の装置の構成を示
す一部断面図、第2図は第1図の−線断面
図、第3図は上記装置に形成される不均一電界の
説明図、第4図はこの発明の変形例の部分断面
図、第5図はこの発明のもう1つの変形例の要部
断面図、第6図はさらにもう1つの変形例の一部
切欠した部分断面図、第7図は第6図の−線
断面図、第8図は更にもう1つの変形例の要部断
面図である。 1……電気絶縁材製枠体、2−1,2−2……
突起部、3……テーパー面(傾斜面)、5……導
通路、6−1,6−2……チヤンバ、7……狭隘
部、8……透明ガラス板、9……蓋体、11−
1,11−2……平板電極、12……リード線、
13……交流電源回路、14……スイツチ手段、
15……直流パルス発生器、16……スイツチ手
段、21−1,21−2……装入口部、22−
1,22−2,26……コンジツト、23−1,
23−2,27……バルブ、25……融合細胞取
出し口部、30……電気絶縁板体、31……貫通
孔、32……狭隘部、33……電気絶縁板体、3
4……凸状の下端部、35……導通路、37……
狭隘部、39……貫通長穴、40……開口。
FIG. 1 is a partial sectional view showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line -- in FIG. 1, and FIG. 3 is an explanatory diagram of the non-uniform electric field formed in the above device , FIG. 4 is a partial sectional view of a modified example of the present invention, FIG. 5 is a sectional view of a main part of another modified example of the present invention, and FIG. 6 is a partially cutaway partial sectional view of yet another modified example. 7 is a sectional view taken along the line -- in FIG. 6, and FIG. 8 is a sectional view of a main part of yet another modification. 1... Frame made of electrical insulating material, 2-1, 2-2...
Projection, 3... Tapered surface (slanted surface), 5... Conduction path, 6-1, 6-2... Chamber, 7... Narrow portion, 8... Transparent glass plate, 9... Lid, 11 −
1, 11-2... Flat plate electrode, 12... Lead wire,
13... AC power supply circuit, 14... switch means,
15...DC pulse generator, 16...Switch means, 21-1, 21-2...Charging port section, 22-
1,22-2,26... conduit, 23-1,
23-2, 27...Valve, 25...Fused cell extraction port, 30...Electrical insulating plate, 31...Through hole, 32...Narrow portion, 33...Electrical insulating plate, 3
4... Convex lower end portion, 35... Conduction path, 37...
Narrow part, 39...through elongated hole, 40...opening.

Claims (1)

【特許請求の範囲】 1 不均一電界内で複数の分極性微粒体を誘電泳
動させて該不均一電界における電気変位の極大と
なる位置に互いに接触状態に集合させるにあた
り、 電界発生用の対向電極間領域における中間位置
に電気変位の極大点を有する不均一電界を発生さ
せる一方、該極大点と上記両電極との中間位置か
ら当該不均一電界内に分極性微粒体を装入するこ
とを特徴とする集合方法。 2 異種の分極性微粒体が種類毎に極大点と電界
発生用の対向電極との相対向する中間位置から当
該不均一電界内に装入される特許請求の範囲第1
項に記載の集合方法。 3 対向電極間に電解質溶液を装填し、該電解質
溶液に異種の分極性微粒体を懸濁する特許請求の
範囲第1項または第2項に記載の集合方法。 4 異種の分極性微粒体が互いに異なる2種の細
胞である特許請求の範囲第3項に記載の集合方
法。 5 不均一電界内において集合により互いに接触
させられた複数の細胞に電気パルスを印加して細
胞融合を行わせる特許請求の範囲第4項に記載の
集合方法。 6 電解質溶液が細胞融合誘発剤を含みかつ異種
の分極性微粒体が細胞である特許請求の範囲第3
項に記載の集合方法。 7 異種の分極性微粒体が細胞と所定の物質を包
含するマイクロカプセルである特許請求の範囲第
3項に記載の集合方法。 8 異種の分極性微粒体が細胞とDNA−ベクタ
ーである特許請求の範囲第3項に記載の集合方
法。 9 不均一電界内で複数の分極性微粒体を誘電泳
動させて該不均一電界における電気変位の極大と
なる位置に互いに接触状態に集合させる装置にお
いて、 電気絶縁性の容器、 上記容器内に互いに平行に所定の間隔をもつて
対向させられた電界発生用の平板状電極、 上記平板状電極と接続させた電源回路、 上記平板状電極間の電界形成空間に介在させら
れ、該両平板状電極間の中間位置において断面積
が極小となる導通路を形成する電気絶縁体、およ
び 上記導通路における狭隘部の相対向する両側方
位置にそれぞれ該導通路と連絡した複数の分極性
微粒体装入口部を備え、 上記電源回路から平板状電極間に所定電圧を印
加することにより上記導通路の狭隘部において電
気変位が極大となる不均一電界を形成せしめるこ
とを特徴とする装置。 10 電気絶縁体が板状体とされ、該板状体の両
面からそれぞれ内方に向けて開口断面積の漸減す
るテーパー面を形成した少なくとも1つの貫通部
を設けた特許請求の範囲第9項に記載の装置。 11 導通路が電気絶縁性板体の一端面に凸状に
形成された傾斜もしくは円曲面と該面と対向した
もう1つの電気絶縁性板体の一方の面とで形成さ
れる特許請求の範囲第9項に記載の装置。 12 電源回路が対向平板電極間に約5KHz〜
10MHz、電界の強さ約10V/cm〜2KV/cmの電界
を発生する交流電圧を出力する特許請求の範囲第
9項〜第11項のいづれかに記載の装置。 13 容器の平板状電極間の中間領域に所定の電
解質溶液が装填されるとともに該電解質溶液に細
胞が懸濁される一方、 もう1つのパルス電源回路が設けられ、該パル
ス電源回路から対向平板状電極を介して導通路に
おいて互いに接触状態とされた複数の細胞にパル
ス電圧を印加して細胞融合を行わせる特許請求の
範囲第9項〜第12項のいづれかに記載の装置。 14 導通路の狭隘部に融合細胞取出し手段を設
けた特許請求の範囲第13項に記載の装置。
[Scope of Claims] 1. In dielectrophoresing a plurality of polarizable fine particles in a non-uniform electric field and bringing them together in contact with each other at a position where the electric displacement in the non-uniform electric field is maximum, a counter electrode for generating an electric field is provided. A non-uniform electric field having a maximum point of electric displacement is generated at an intermediate position in the intervening region, and polarizable fine particles are charged into the non-uniform electric field from a position intermediate between the maximum point and the above-mentioned two electrodes. Collection method. 2. Claim 1, in which different types of polarizable fine particles are charged into the non-uniform electric field from an intermediate position facing each other between the local maximum point and the counter electrode for electric field generation.
Collection method described in Section. 3. The assembly method according to claim 1 or 2, wherein an electrolyte solution is charged between opposing electrodes, and different types of polarizable fine particles are suspended in the electrolyte solution. 4. The aggregation method according to claim 3, wherein the different types of polarizable fine particles are two different types of cells. 5. The aggregation method according to claim 4, wherein an electric pulse is applied to a plurality of cells brought into contact with each other by aggregation in a non-uniform electric field to cause cell fusion. 6 Claim 3, wherein the electrolyte solution contains a cell fusion inducing agent and the different types of polarizable fine particles are cells.
Collection method described in Section. 7. The aggregation method according to claim 3, wherein the different types of polarizable fine particles are microcapsules containing cells and a predetermined substance. 8. The assembly method according to claim 3, wherein the different types of polarizable microparticles are cells and DNA-vectors. 9. In an apparatus for dielectrophoresing a plurality of polarizable fine particles in a non-uniform electric field and bringing them together in contact with each other at a position where the electric displacement in the non-uniform electric field is maximum, an electrically insulating container; flat electrodes for electric field generation that are opposed in parallel with a predetermined interval; a power supply circuit connected to the flat electrodes; and an electric field forming space interposed between the flat electrodes; an electrical insulator forming a conductive path with a minimum cross-sectional area at an intermediate position between the conductive paths, and a plurality of polarizable fine particle charging ports each communicating with the conductive path at positions on opposite sides of the narrow portion of the conductive path. An apparatus comprising: a non-uniform electric field in which electric displacement is maximized in a narrow portion of the conductive path by applying a predetermined voltage between the flat electrodes from the power supply circuit. 10 Claim 9, wherein the electrical insulator is a plate-shaped body, and at least one through portion is provided with a tapered surface whose opening cross-sectional area gradually decreases inward from both sides of the plate-shaped body. The device described in. 11. Claims in which the conductive path is formed by a convex inclined or circular curved surface on one end surface of an electrically insulating plate and one surface of another electrically insulating plate facing the surface Apparatus according to paragraph 9. 12 The power supply circuit is connected between the opposing flat electrodes at approximately 5KHz~
12. The apparatus according to claim 9, which outputs an alternating voltage that generates an electric field of 10 MHz and a field strength of about 10 V/cm to 2 KV/cm. 13 A predetermined electrolyte solution is loaded into the intermediate region between the plate-shaped electrodes of the container and cells are suspended in the electrolyte solution, while another pulse power circuit is provided, and from the pulse power supply circuit, the opposite plate-shaped electrode is charged. 13. The device according to claim 9, wherein a pulse voltage is applied to a plurality of cells brought into contact with each other in a conductive path via a conductive path to perform cell fusion. 14. The device according to claim 13, wherein a means for extracting fused cells is provided in the narrow part of the conductive path.
JP6283085A 1985-03-26 1985-03-26 Method for agglomerating polarizable fine particle and apparatus therefor Granted JPS61219386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6283085A JPS61219386A (en) 1985-03-26 1985-03-26 Method for agglomerating polarizable fine particle and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6283085A JPS61219386A (en) 1985-03-26 1985-03-26 Method for agglomerating polarizable fine particle and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS61219386A JPS61219386A (en) 1986-09-29
JPH0336508B2 true JPH0336508B2 (en) 1991-05-31

Family

ID=13211626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6283085A Granted JPS61219386A (en) 1985-03-26 1985-03-26 Method for agglomerating polarizable fine particle and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS61219386A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074218B2 (en) * 1987-01-24 1995-01-25 株式会社アドバンス Cell fusion device
JP2619387B2 (en) * 1987-04-30 1997-06-11 株式会社日立製作所 Cell fusion method
JPS63178495U (en) * 1987-05-11 1988-11-18
JPH0782009B2 (en) * 1988-03-24 1995-09-06 工業技術院長 Cell fusion method and device
JP4918811B2 (en) * 2005-06-13 2012-04-18 東ソー株式会社 Cell fusion chamber, cell fusion device, and cell fusion method using them
JP4677832B2 (en) * 2005-06-13 2011-04-27 東ソー株式会社 Microfluidic substrate for cell fusion, microfluidic structure for cell fusion using the same, and cell fusion method
JP2007296510A (en) * 2006-04-03 2007-11-15 Tosoh Corp Fine particle operation apparatus and fine particle operation method
JP4973305B2 (en) * 2006-05-11 2012-07-11 東ソー株式会社 Cell fusion device and cell fusion method using the same
JP2008260008A (en) * 2007-03-19 2008-10-30 Tosoh Corp Fine-particle operation apparatus and fine-particle operation method using it
JP7450871B2 (en) * 2019-08-28 2024-03-18 株式会社日立製作所 Cell manufacturing equipment

Also Published As

Publication number Publication date
JPS61219386A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
US4923814A (en) High speed, high power apparatus for vesicle prealignment, poration, loading and fusion in uniform electric fields and method therefor
US4906576A (en) High speed, high power apparatus for vesicle prealignment, poration, loading and fusion in uniform electric fields and method therefor
JPH0336508B2 (en)
Zimmermann Electrofusion of cells: principles and industrial potential
JPH05506605A (en) Manipulation of solid, semi-solid or liquid substances
CA2329945C (en) Electrofusion chamber
Scheurich et al. Membrane fusion and deformation of red blood cells by electric fields
KR101598847B1 (en) Device for micro droplet electroporation via direct charging and electrophoresis, apparatus therefor and method therefor
CN105143436B (en) Electroporation method and equipment
JPH01141582A (en) Gene-introducing device
US4784954A (en) Procedure and device for the fusion of cells
JP4918811B2 (en) Cell fusion chamber, cell fusion device, and cell fusion method using them
JP2590459B2 (en) Cell capture device
JPH0740914B2 (en) Electrode for electric cell fusion
US20130089929A1 (en) Microdevice for fusing cells
JPH0545199Y2 (en)
CN219621187U (en) Cell electroporation device
JPS6349071A (en) Multiple electrode-type cell fusion chamber
JPS6349068A (en) Apparatus for electrical introduction of gene
Yakovenko Electroporators based on digital formation of arbitrarily-shaped electroporation pulses
JPS63209577A (en) Cell fusion chamber
JP2565463B2 (en) Operating chamber for electrical cell manipulation device
JPH0324078Y2 (en)
JPS62171667A (en) Cell fusion apparatus
JPS6349083A (en) Method for electrical cell fusion

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term