JPH0336413A - Multistage revolving melting furnace - Google Patents
Multistage revolving melting furnaceInfo
- Publication number
- JPH0336413A JPH0336413A JP16654189A JP16654189A JPH0336413A JP H0336413 A JPH0336413 A JP H0336413A JP 16654189 A JP16654189 A JP 16654189A JP 16654189 A JP16654189 A JP 16654189A JP H0336413 A JPH0336413 A JP H0336413A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- melting chamber
- furnace
- melting
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002844 melting Methods 0.000 title claims abstract description 147
- 230000008018 melting Effects 0.000 title claims abstract description 147
- 238000002485 combustion reaction Methods 0.000 claims abstract description 55
- 239000000155 melt Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 31
- 239000002893 slag Substances 0.000 abstract description 52
- 238000010276 construction Methods 0.000 abstract description 6
- 239000007789 gas Substances 0.000 description 32
- 239000010802 sludge Substances 0.000 description 17
- 239000002245 particle Substances 0.000 description 11
- 239000010801 sewage sludge Substances 0.000 description 9
- 239000002699 waste material Substances 0.000 description 8
- 239000000567 combustion gas Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 7
- 239000012768 molten material Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000015210 Fockea angustifolia Nutrition 0.000 description 1
- 244000186654 Fockea angustifolia Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
Landscapes
- Gasification And Melting Of Waste (AREA)
- Incineration Of Waste (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、下水汚泥の乾燥物、焼却残渣、都市ごみ焼
却残渣等に含まれる可燃分を効率良く燃焼させ、灰分を
溶融固化してスラグとして得ることができる旋回溶融炉
に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention efficiently burns combustibles contained in dried sewage sludge, incineration residue, municipal waste incineration residue, etc., and melts and solidifies the ash to produce slag. Regarding the rotating melting furnace which can be obtained as follows.
近年、下水汚泥、都市ごみ焼却残渣等の廃m物の発生量
は年々増加する傾向にあり、また、埋立処分地の確保も
次第に困難な状況になってきている。また、廃棄物中に
含まれる水根、銅、CrCd等の有害な重金属の溶出に
よる汚染の危険性が、長期的問題としてとりあげられζ
いる。そして、廃棄物処理では、−層の減容化と無害化
が重要な課題となってきている。そこで、このような廃
棄物処分の問題に対応できる新しい技術として、旋回溶
融炉が注目されるようになった。In recent years, the amount of waste generated such as sewage sludge and municipal waste incineration residue has been increasing year by year, and securing land for landfill has become increasingly difficult. In addition, the risk of contamination due to the elution of harmful heavy metals such as water roots, copper, and CrCd contained in waste has been raised as a long-term problem.
There is. In waste treatment, volume reduction and detoxification of the negative layer have become important issues. Therefore, swirling melting furnaces have attracted attention as a new technology that can address such waste disposal problems.
この旋回溶融炉は、例えば、第3図に示すように、単段
式旋回溶融炉であり、円筒状の炉本体24の上部に設け
た被溶融物の供給口21及び燃焼空気吹込口22を炉本
体24の接線方向に配置し、頂部に補助燃料供袷口23
を配備し、炉本体24の下部にスラグ排出口27を設け
、該スラグ排出口27にスラグ受け(図示せず)を取り
換え可能に設置する。また、炉本体24の下部側方に伸
びる排ガス出口26を形威し、該排ガス出口26は、例
えば、熱交換器、サイクロン、バグフィルタ等に接続し
て、炉本体24で発生した排ガスは処理されるように構
成されている。This swirling melting furnace is, for example, a single-stage swirling melting furnace, as shown in FIG. It is arranged in the tangential direction of the furnace body 24, and an auxiliary fuel supply port 23 is provided at the top.
A slag discharge port 27 is provided at the lower part of the furnace body 24, and a slag receiver (not shown) is replaceably installed in the slag discharge port 27. Further, an exhaust gas outlet 26 is formed extending to the lower side of the furnace body 24, and the exhaust gas outlet 26 is connected to, for example, a heat exchanger, a cyclone, a bag filter, etc., and the exhaust gas generated in the furnace body 24 is treated. is configured to be
このような単段式旋回溶融炉において、例えば、下水汚
泥の乾燥物を処理する場合は、まず炉本体24の上部か
ら強力に旋回する燃焼用空気の流れに沿って下水汚泥乾
燥物を炉内に噴射する。この旋回流によって乾燥物粒子
には遠心力が作用し、微細粒子と粗い粒子の分離が起こ
り、微細粒子は浮遊状態で揮発分とともに短時間で燃焼
でき、粗い粒子は炉内壁面に形成する溶融スラグ面に捕
捉され、効率良く燃焼することで高い火炉負荷が実現で
きる。従って、汚泥の燃焼熱により、炉内を高温に保持
することが可能となり、燃焼と同時に灰分の溶融が達成
される。溶融物は炉壁面で捕集され、炉内にスラグ面を
形成′しながら流下し、炉下部のスラグ排出口27から
取り出し、冷却固化される。溶融スラグは一般の焼却灰
に比べ、比重が3〜5倍大きく、大幅な減容化が可能で
ある。In such a single-stage swirling melting furnace, for example, when treating dried sewage sludge, the dried sewage sludge is first moved into the furnace along the flow of combustion air that swirls strongly from the top of the furnace body 24. Inject to. This swirling flow exerts a centrifugal force on the dried particles, causing separation of fine particles and coarse particles.The fine particles can be combusted in a short time together with the volatile matter in a suspended state, and the coarse particles can be melted and formed on the inner wall of the furnace. It is captured on the slag surface and burns efficiently, making it possible to achieve a high furnace load. Therefore, the combustion heat of the sludge makes it possible to maintain the inside of the furnace at a high temperature, and ash content is melted simultaneously with combustion. The molten material is collected on the furnace wall, flows down into the furnace while forming a slag surface, is taken out from the slag discharge port 27 at the bottom of the furnace, and is cooled and solidified. Molten slag has a specific gravity 3 to 5 times greater than general incineration ash, and can be significantly reduced in volume.
また、有害な重金属をスラグ中に固定できるため溶出に
よる問題がないばかりか、その物理的特性から建築用骨
材、通路用砥石等の資dとしての再生利用が期待できる
。このように旋回溶融炉は、廃棄物中の可燃分による発
生熱を灰分の溶融に効果的に利用できることから、補助
燃料や溶融助剤の大幅な低減を可能にし、経済的にも優
れた装置として、廃棄物処分の諸問題に対応できるもの
である。Furthermore, since harmful heavy metals can be fixed in the slag, there is no problem with elution, and due to its physical properties, it can be expected to be recycled as a material for construction aggregates, grindstones for walkways, etc. In this way, the swirling melting furnace can effectively use the heat generated by the combustibles in the waste to melt the ash, making it possible to significantly reduce the need for auxiliary fuel and melting aids, making it an economically superior device. As such, it can deal with various problems of waste disposal.
〔発明が解決しようとする!l1題〕
ところで、従来の単段式旋回溶融炉は、スラグの捕集効
率を高めるために、第3図に示すように、炉本体24の
スラグ流出口である出口25の口径を絞り、ガスと同伴
して流出していた未燃粒子や溶融物のスラグ面での捕獲
を促進するように、構造上の工夫がされている。[Invention tries to solve! By the way, in the conventional single-stage swirling melting furnace, in order to improve the slag collection efficiency, the diameter of the outlet 25, which is the slag outlet of the furnace body 24, is narrowed to increase the slag collection efficiency. The structure has been devised to facilitate the capture of unburned particles and molten material on the slag surface, which flowed out together with the slag.
しかしながら、炉本体24の出口絞り部25は、主燃焼
ゾーンAと離れている構造であり、しかも単段式である
ため、炉本体24の上部から炉内に導入された下水汚泥
乾燥物等の被溶融物は、被溶融物や運転粂件によっては
、不十分な燃焼状態即ち溶融状態でスラグ排出口27へ
と送り込まれ、該出口絞り部25の部位ではスラグが該
スラグ溶融温度以下になることがある。この場合、流下
スラグが出口絞り部25で順次に固まり、炉出口の出口
絞り部25におけるガス流路を狭め、該出口絞り部25
を遂には閉塞してしまうという危険があった。スラグの
閉塞は、炉内圧の大幅な変動とスラグ流出を困難とする
ため、旋回溶融炉の運転が不可能となる。また、堆積し
たスラグは溶融炉を構成している炉材と一体的に固化し
ているため、除去作業も容易ではなかった。However, the outlet constriction part 25 of the furnace body 24 is separated from the main combustion zone A and is of a single stage type, so that dry sewage sludge etc. introduced into the furnace from the upper part of the furnace body 24 can be removed. Depending on the material to be melted and the operating conditions, the material to be melted is sent to the slag discharge port 27 in an insufficient combustion state, that is, in a molten state, and the slag becomes below the slag melting temperature at the outlet constriction section 25. Sometimes. In this case, the flowing slag solidifies sequentially at the outlet constriction section 25, narrowing the gas flow path at the outlet constriction section 25 at the furnace outlet, and causing the outlet constriction section 25 to narrow.
There was a danger that it would eventually become blocked. Slag blockage causes significant fluctuations in the furnace pressure and makes it difficult for the slag to flow out, making it impossible to operate the swirling melting furnace. In addition, since the accumulated slag is solidified integrally with the furnace material constituting the melting furnace, it is not easy to remove it.
更に、出口絞り部25では、圧力損失が発生し、未燃粒
子や溶融物を同伴した高速ガスが傾斜面に激しく衝突し
ながら排ガス出口26を通って排出されるため、傾斜面
を構成する炉材は勿論、排ガスとスラグの分離効率が悪
くなれば、下流に位置する炉壁、通路壁に対しても摩擦
接触して該壁面の摩耗が激しく発生し、炉材の侵食や溶
損が起こってしまうことがあった。そのため、炉材の修
復には大掛かりな工事を要し、損傷の頻度が高い場合に
は、旋回流式溶融炉にとって致命的なものとなってしま
うことがあった。Furthermore, pressure loss occurs in the outlet constriction section 25, and high-speed gas accompanied by unburned particles and molten material is discharged through the exhaust gas outlet 26 while violently colliding with the slope, so that the furnace constituting the slope If the separation efficiency of the exhaust gas and slag deteriorates, it will come into frictional contact with the furnace walls and passage walls located downstream, causing severe abrasion of the wall surfaces and causing corrosion and melting of the furnace materials. There were times when I ended up. Therefore, large-scale construction work is required to repair the furnace material, and if damage occurs frequently, it may be fatal to the swirling flow melting furnace.
この発明の目的は、旋回溶融炉における上記の問題点を
解決することであり、下水汚泥の乾燥物、焼却残渣、都
市ごみ焼却残渣等に含まれる可燃分を一層効率良く燃焼
させため、旋回溶融室を多段に設け、しかも溶融した被
溶融物が第1段旋回溶融室及び第1段旋回溶融室の各出
口部で固化することなく、被溶融物が炉内をスムースに
流動し、各出口部で固化して堆積して該出口部を閉塞す
ることなく溶融炉から排出でき、被溶融物を安定して溶
融分離処理できる多段式旋回溶融炉を提供することであ
る。The purpose of this invention is to solve the above-mentioned problems in the rotary melting furnace. The chambers are provided in multiple stages, and the melted material flows smoothly through the furnace without solidifying at the first-stage rotating melting chamber and each outlet of the first-stage rotating melting chamber. To provide a multi-stage rotary melting furnace which can be discharged from the melting furnace without solidifying and accumulating in the parts and clogging the outlet part, and which can stably melt and separate the materials to be melted.
この発明は、上記の目的を解決するため、次のように構
成されている。即ち、この発明は、ストレート状円筒部
の接線方向に開口する被溶融物供給口と燃焼用空気吹込
口を上部に備え且つ出口部を下部に備えた第1段旋回溶
融室、該第1段旋回溶融室の下端部に傾斜して配置し且
つ前記出口部と連通ずる入口部とストレート状円筒部の
接線方向に燃焼用空気吹込口とを上部に及び該円筒部の
出口部を下部に設けた第2段旋回溶融室、並びに前記各
旋回溶融室の各上部に前記各円筒部の接線方向にそれぞ
れ配備した各燃焼用バーナから成る多段式旋回溶融炉に
関する。In order to solve the above object, the present invention is configured as follows. That is, the present invention provides a first-stage rotating melting chamber that is provided with a melting material supply port and a combustion air inlet opening in the tangential direction of a straight cylindrical portion in the upper part and an outlet part in the lower part. A combustion air inlet is provided in the upper part in the tangential direction of the straight cylindrical part and the inlet part which is inclined at the lower end of the swirling melting chamber and communicates with the outlet part, and the outlet part of the cylindrical part is provided in the lower part. The present invention relates to a multi-stage swirling melting furnace comprising a second stage swirling melting chamber, and combustion burners arranged in the upper part of each of the swirling melting chambers in the tangential direction of each of the cylindrical parts.
また、この多段式旋回溶融炉は、前記第1段旋回溶融室
の燃焼用空気吹込口を被溶融物供給口の上部に少なくと
も1箇所以上設けたものである。Further, in this multi-stage swirling melting furnace, at least one combustion air inlet of the first stage swirling melting chamber is provided above the supply port of the material to be melted.
更に、この多段式旋回溶融炉は、前記第2段旋回溶融室
の有効容積を前記第1段旋回溶融室の容積の少なくとも
50%以上に構成したものである。Further, in this multi-stage swirling melting furnace, the effective volume of the second stage swirling melting chamber is at least 50% or more of the volume of the first stage swirling melting chamber.
この発明による多段式旋回溶融炉は、上記のようにII
戒されているので、次のように作用する。The multi-stage swirling melting furnace according to the present invention is manufactured by II.
Since it is a precept, it works as follows.
即ち、この多段式旋回溶融炉は、ストレート状円筒部の
接線方向に開口する被溶融物供給口と燃焼用空気吹込口
を上部に備え且つ出口部を下部に備えた第1段旋回溶融
室、該第1段旋回溶融室の下端部に傾斜して配置し且つ
前記出口部と連通ずる入口部とストレート状円筒部の接
線方向に燃焼用空気吹込口とを上部に及び該円筒部の出
口部を下部に設けた第2段旋回溶融室、並びに前記各旋
回溶融室の各上部に前記各円筒部の接線方向にそれぞれ
配備した各燃焼用バーナから構成したので、該下部に対
して傾斜した円筒状の第2段旋回溶融室を連結して2段
旋回方弐を採用することで排ガスとスラグの分離効率を
高めることができ、該構造により、第1段旋回溶融室の
下部に特に絞り部分を設ける必要はなく、炉内径を上方
から下方まで一定の形状にして形成することができる。That is, this multi-stage swirling melting furnace includes a first-stage swirling melting chamber, which is equipped with a melting material supply port and a combustion air inlet opening in the tangential direction of a straight cylindrical portion in the upper part, and an outlet part in the lower part; An inlet portion is disposed obliquely at the lower end of the first stage swirling melting chamber and communicates with the outlet portion, and a combustion air inlet is provided in the tangential direction of the straight cylindrical portion at the upper portion thereof, and an outlet portion of the cylindrical portion. The structure includes a second-stage swirling melting chamber provided at the lower part, and each combustion burner disposed at the upper part of each of the swirling melting chambers in the tangential direction of each cylindrical part, so that the cylinder inclined with respect to the lower part The separation efficiency of exhaust gas and slag can be increased by connecting the second-stage rotating melting chambers and adopting a two-stage rotating method. It is not necessary to provide a furnace, and the inner diameter of the furnace can be formed in a constant shape from the top to the bottom.
従って、築炉上も簡素化が計れると共に、炉本体は垂直
な円筒部であって絞り部がないから、該出口の部位でス
ラグが該スラグ溶融温度以下になったとしても該絞り部
で固まることがない、また、出口部位で圧力損失が発生
することがなく、未燃粒子や溶融物を同伴した高速ガス
による摩耗で炉材の侵食や溶損は発生しない。Therefore, the construction of the furnace can be simplified, and since the furnace body is a vertical cylindrical part and does not have a constricted part, even if the slag falls below the slag melting temperature at the outlet, it will solidify in the constricted part. In addition, there is no pressure loss at the outlet, and no erosion or melting of the furnace material occurs due to abrasion caused by high-speed gas accompanied by unburned particles or molten material.
以下、図面を参照して、この発明による多段式旋回溶融
炉の実施例を説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a multi-stage rotating melting furnace according to the present invention will be described with reference to the drawings.
第1図はこの発明による多段式旋回溶融炉の一実施例を
示す断面図、及び第2図は第1図の多段式旋回溶融炉の
平面図である。FIG. 1 is a sectional view showing an embodiment of a multi-stage rotating melting furnace according to the present invention, and FIG. 2 is a plan view of the multi-stage rotating melting furnace shown in FIG.
第1図に示すように、この発明よる多段式旋回溶融炉l
は、主として、被溶融物の燃焼溶融を行う第1段旋回溶
融室4、第2段旋回溶融室5、排ガスと溶融スラグと分
離して排出する排ガス出口9、及びスラグ排出口10か
ら構成されている。As shown in FIG. 1, a multi-stage rotating melting furnace l according to the present invention
It mainly consists of a first-stage swirling melting chamber 4 for burning and melting the material to be melted, a second-stage swirling melting chamber 5, an exhaust gas outlet 9 for separating and discharging exhaust gas and molten slag, and a slag discharge port 10. ing.
被溶融物としては、下水汚泥乾燥物、焼却残渣、都市ご
み焼却残渣等の廃棄物の他、微粉炭、未燃カーボンを含
む固体燃料等であり、これらの被熔融物は、この多段式
旋回溶融炉1において溶融処理される。Materials to be melted include waste such as dried sewage sludge, incineration residue, and municipal waste incineration residue, as well as solid fuels containing pulverized coal and unburned carbon. It is melted in a melting furnace 1.
第1段旋回溶融室4は、ストレート状円筒部から形成さ
れ、上部に被溶融物の供給口13と燃焼用空気吹込口2
を円筒部の接線方向に配設して炉内で被溶融物の旋回気
流を形成せしめて、燃焼溶融を行わせるものである。従
来、単段式の旋回溶融室の下部については、溶融スラグ
の捕集効率を高めるために、出口方向に炉内径が順次縮
小するようにした絞り部分を設けているが、前述のよう
に絞り部分の耐火物の摩耗、溶損、溶融スラグの付着等
による閉塞が起こり、操炉に著しい困難をきたすので、
この発明による第1段旋回)容融室4の下部については
、該下部に対して傾斜した(頃斜面17を備えたストレ
ート状円筒部から成る第2段旋回溶融室5を連結し、2
段旋回方式を採用することで排ガスとスラグの分離効率
を高めるように構成されている。この構造により、第1
段旋回溶融室4の下部に特に絞り部分を設ける必要はな
く、炉内径を上方から下方までほぼ一様の形状にして構
成することができ、多段式旋回溶融炉の築炉上も簡素化
が計れる。第2段旋回溶融室5には、燃焼用空気吹込口
3が接線方向に配置され、下部には、排ガス出口9、ス
ラグ排出口■0が接続されている。また、第1段旋回溶
融室4の上部には、補助燃焼用バーナ6が円筒部の接線
方向に設けられている。この補助燃焼用バーナ6は、符
号8で示される部位から挿入して設けられてもよいもの
であるが、ここでは、符号8で示される部位には、のぞ
き窓が設けられている。更に、第2段旋回溶融室5の上
部には、補助燃焼用バーナ7が円筒部の接線方向に設け
られている。この補助燃焼用バーナ7は、符号14で示
される部位から挿入して設けられてもよいものであるが
、ここでは、符号14で示される部位には、のぞき窓が
設けられている。The first stage swirling melting chamber 4 is formed from a straight cylindrical part, and has a supply port 13 for melted material and a combustion air blowing port 2 at the top.
are arranged in the tangential direction of the cylindrical part to form a swirling airflow of the material to be melted in the furnace, thereby performing combustion melting. Conventionally, in the lower part of a single-stage rotating melting chamber, in order to increase the collection efficiency of molten slag, a constriction part is provided in which the inner diameter of the furnace gradually decreases in the direction of the exit. Blockage may occur due to wear and tear of refractories, adhesion of molten slag, etc., and this will cause significant difficulties in operating the reactor.
The lower part of the first-stage rotating melting chamber 4 according to the present invention is connected with a second-stage rotating melting chamber 5 consisting of a straight cylindrical part having a slope 17 (with a slope 17), which is inclined with respect to the lower part.
It is designed to increase the efficiency of separating exhaust gas and slag by adopting a stage rotation system. This structure allows the first
There is no need to provide a particular throttle part at the bottom of the staged swirling melting chamber 4, and the furnace inner diameter can be configured to have a substantially uniform shape from the top to the bottom, which simplifies the construction of the multistage swirling melting furnace. It can be measured. A combustion air inlet 3 is arranged tangentially in the second stage swirling melting chamber 5, and an exhaust gas outlet 9 and a slag outlet 0 are connected to the lower part thereof. Furthermore, an auxiliary combustion burner 6 is provided in the upper part of the first-stage rotating melting chamber 4 in the tangential direction of the cylindrical portion. The auxiliary combustion burner 6 may be installed by being inserted from the part indicated by the reference numeral 8, but here, the part indicated by the reference numeral 8 is provided with a peephole. Furthermore, an auxiliary combustion burner 7 is provided in the upper part of the second-stage rotating melting chamber 5 in the tangential direction of the cylindrical portion. The auxiliary combustion burner 7 may be installed by being inserted from the part indicated by the reference numeral 14, but here, the part indicated by the reference numeral 14 is provided with a viewing window.
上記のように構成したこの多段式旋回溶融炉1において
、例えば、被溶融物である下水汚泥乾燥物の処理をする
場合には、まず、補助燃焼用バーナ6.7により重油等
の燃焼ガスを第1段旋回溶融室4及び第2段旋回溶融室
5に吹込み、各溶融室41.5の昇温を行う、この場合
、補助燃焼バーナ6.7は、円筒状の溶融室の接線方向
にそれぞれ配置されているので、第1段旋回溶融室4及
び第2段旋回溶融室5内には、燃焼ガスによる旋回気流
が形成される。昇温により各旋回溶融室4゜5の温度を
、汚泥の灰分が溶融し、融液が炉内を流動するのに適当
な温度にまで上昇させた後、汚泥乾燥物を汚泥乾燥物供
給口13から第1段旋回溶融室4の接線方向から吹込む
。同時に、汚泥の理論空気量の約1.05〜1.40倍
の燃焼用空気を、例えば、第1段旋回溶融室4の燃焼用
空気吹込口2から全体空気量の50〜80%、及び第2
段旋回溶融室5の燃焼用空気吹込口3から残りの空気を
それぞれ溶融室4.5に対して接線方向に吹き込むよう
に制御する。In this multi-stage rotary melting furnace 1 configured as described above, for example, when processing dried sewage sludge as the material to be melted, first, combustion gas such as heavy oil is heated by the auxiliary combustion burner 6.7. The air is blown into the first stage swirling melting chamber 4 and the second stage swirling melting chamber 5 to raise the temperature of each melting chamber 41.5. In this case, the auxiliary combustion burner 6.7 is blown in the tangential direction of the cylindrical melting chamber Therefore, a swirling airflow is formed by the combustion gas in the first-stage swirling melting chamber 4 and the second-stage swirling melting chamber 5. After raising the temperature in each rotating melting chamber 4.5 to a temperature suitable for melting the ash of the sludge and causing the melt to flow in the furnace, the dried sludge is transferred to the dry sludge supply port. 13 from the tangential direction of the first stage rotating melting chamber 4. At the same time, about 1.05 to 1.40 times the theoretical air amount of the sludge is supplied with combustion air, for example, 50 to 80% of the total air amount from the combustion air inlet 2 of the first stage swirling melting chamber 4. Second
The remaining air is controlled to be blown tangentially into the melting chamber 4.5 from the combustion air inlet 3 of the staged swirling melting chamber 5, respectively.
この時、重油燃焼ガス量は各旋回溶融室4.5の温度が
過度に上昇しないように調節する必要があるが、汚泥の
発熱量が十分大きく、且つ灰の融点が極端に高くない場
合には、汚泥の燃焼熱だけで溶融温度が適当に保持され
るので、各補助燃焼用バーナ6.7を完全に停止するこ
とが可能である。また、補助燃焼用バーナ6.7はそれ
ぞれ別個に操作できるので、運転状況に合わせた補助燃
焼の方法を選択できる。At this time, it is necessary to adjust the amount of heavy oil combustion gas so that the temperature of each swirling melting chamber 4.5 does not rise excessively, but if the calorific value of the sludge is sufficiently large and the melting point of the ash is not extremely high. Since the melting temperature is appropriately maintained only by the combustion heat of the sludge, it is possible to completely stop each auxiliary combustion burner 6.7. Furthermore, since the auxiliary combustion burners 6, 7 can be operated separately, it is possible to select an auxiliary combustion method that suits the operating situation.
汚泥乾@吻は、熱風乾燥機や間接加熱乾燥機の乾燥物を
粉砕したものでも、気流乾燥機の乾燥物を未粉砕のまま
で使用してもよく、空気輸送により汚泥乾燥物供給口1
3から10〜501w/seeの流速供給し得る性状で
あれば良い。通常、この乾燥物は水分20%以下、粒径
1000μ以下であることが多いが、これを汚泥乾燥物
供給口13から旋回気流を形成させて供給すると、乾燥
物の中の微細粒子の一部が、大部分の粒子で形成する旋
回気流と分級され、その上部に滞vI111を形成する
ことがあった。第1段旋回溶融室4の上部にこの滞留層
が形成されると、補助燃焼用バーナ6の吹出口上に堆積
したり、炉壁に未溶融灰の付着物を形成する原因となる
ので、第1段旋回溶融室4の燃焼用空気吹込口2を汚泥
乾燥物供給口13の上部に少なくとも1箇所以上設ける
ことにより、微細粒子の滞留層の形成を防ぐようにする
ことが好ましい。The sludge dryer@rosa can be used by pulverizing dried material from a hot air dryer or indirect heating dryer, or by using unpulverized dried material from a flash dryer.
Any property is sufficient as long as it can be supplied at a flow rate of 3 to 10 to 501 w/see. Normally, this dried material has a moisture content of 20% or less and a particle size of 1000 μm or less, but if this is supplied from the sludge dried material supply port 13 by forming a swirling airflow, some of the fine particles in the dried material However, the particles were separated from the swirling airflow formed by most of the particles, and a stagnation vI111 was sometimes formed above the swirling airflow. If this stagnant layer is formed in the upper part of the first-stage swirling melting chamber 4, it may deposit on the outlet of the auxiliary combustion burner 6 or cause deposits of unmelted ash to form on the furnace wall. It is preferable to provide at least one combustion air inlet 2 of the first-stage swirling melting chamber 4 above the dried sludge supply port 13 to prevent the formation of a stagnation layer of fine particles.
第1段旋回熔融室4に吹き込まれた汚泥乾燥物は、搬送
空気、汚泥燃焼空気、バーナ燃焼ガスが形成する高速の
旋回気流に乗りながら、高温下で瞬時に空間燃焼するが
粒径の大きいものの一部が未燃粒子のままで強い遠心力
を受けて炉壁面に衝突し、溶融スラグ層に捕捉されて燃
焼する。汚泥中の灰分は溶融し、大部分は炉壁面を伝わ
りながら流下するが一部は溶融ξストとなって燃焼ガス
と同伴しながら第2段旋回溶融室5に導かれる。The dried sludge blown into the first-stage swirling melting chamber 4 is instantly combusted in space at high temperature while riding the high-speed swirling airflow formed by the conveying air, sludge combustion air, and burner combustion gas, but the particle size is large. Some of the unburned particles collide with the furnace wall due to strong centrifugal force, where they are trapped in the molten slag layer and burned. The ash in the sludge is melted, and most of it flows down along the furnace wall surface, but a portion becomes melted and guided to the second-stage swirling melting chamber 5 while being accompanied by combustion gas.
第2段旋回溶融室5では、残りの燃焼空気と発熱量の低
い汚泥の場合には補助燃焼用バーナ7の燃焼ガスが接線
方向から吹き込まれ再び強い旋回気流が形成される。こ
こで、一部残存していた未燃ガスが完全燃焼して第2段
旋回溶融室5の温度を高める一方、旋回気流によるサイ
クロン効果で溶融物が炉壁面に衝突し捕集されるので、
ガスと溶融物の分離が促進され、溶融スラグの捕集率を
高めることができるようになった。In the second-stage swirling melting chamber 5, in the case of remaining combustion air and sludge with a low calorific value, combustion gas from the auxiliary combustion burner 7 is blown in from the tangential direction to form a strong swirling airflow again. Here, some of the remaining unburned gas is completely combusted and raises the temperature of the second-stage swirling melting chamber 5, while the molten material collides with the furnace wall and is collected due to the cyclone effect caused by the swirling airflow.
Separation of gas and melt is promoted, making it possible to increase the collection rate of molten slag.
第2段旋回溶融室5は、ガスと溶融物とを徹底的に分離
することを主目的としているため、温度の降下がなけれ
ば、適当な容積、好ましくはその有効容積が第1段旋回
燃焼室4の容積の少なくとも50%以上に形成するのが
良い。The main purpose of the second-stage swirling melting chamber 5 is to thoroughly separate the gas and the melt, so if there is no drop in temperature, an appropriate volume, preferably its effective volume, can be used for the first-stage swirling combustion. It is preferable that the volume of the chamber 4 is at least 50% or more.
また・運転状況により溶融物の粘性が低下する場合があ
るので、第2段旋回溶融室5は水平ではなく、傾斜角が
約5°以上に出口部15を下方に傾けて形成するのが好
ましい、第2段旋回溶融室5では、炉壁面で捕集された
溶融物が円筒下方面に溜まりを形成しながら流下し、ス
ラグ排出口10に落下し、該スラグ排出口IOに配置さ
れるスラグ受けに投入される。一方、溶融物と分離され
た排ガスは、排ガス出口9より排気される。この排ガス
出口9より排気された排ガスは、例えば、後流に配置さ
れた第3段燃焼室を通って熱交換器に送り込まれ、排ガ
スは熱交換されて熱エネルギーが回収された後、サイク
ロンに送り込まれる。In addition, since the viscosity of the melt may decrease depending on the operating conditions, it is preferable that the second-stage rotating melting chamber 5 is formed not horizontally but with the outlet portion 15 tilted downward at an inclination angle of about 5° or more. In the second-stage rotating melting chamber 5, the molten material collected on the furnace wall flows down while forming a pool on the lower surface of the cylinder, falls into the slag discharge port 10, and the slag disposed in the slag discharge port IO It is thrown into the receiver. On the other hand, the exhaust gas separated from the melt is exhausted from the exhaust gas outlet 9. The exhaust gas exhausted from the exhaust gas outlet 9 is sent to a heat exchanger through, for example, a third-stage combustion chamber arranged downstream, and the exhaust gas is heat-exchanged and thermal energy is recovered, and then transferred to a cyclone. sent.
排ガスは、該サイクロンでガスと固液体が分離された後
、ガス分は、更にバグフィルタに送り込まれて、完全に
分離処理される。After the exhaust gas is separated into solid and liquid by the cyclone, the gas is further sent to a bag filter for complete separation treatment.
(実施例1)
第1段旋回溶融室4として、内径3501 φ、有効高
さ1300 amの円筒を用い、また第2段旋回溶融室
5として、内径350開φ、長さ1200 mmの円筒
を用いた。第1段旋回溶融室4の円筒下部に、第2段旋
回溶融室5の円筒を15°ill斜させて連結して多段
式旋回溶融炉を構成した。補助燃焼バーナにより第1段
旋回溶融室4及び第2段旋回溶融室5の温度を1200
〜1400℃まで上昇させた後、下水汚泥の脱水ケーキ
を気流乾燥機で処理して水分を2〜20%にした乾燥物
を空気輸送により第1段旋回熔融室4の上部に供給した
。燃焼空気は、汚泥空気比を1.1〜1.3に設定し、
全体量の約70%を第1段旋回溶融室4、約30%を第
2段旋回溶融室5に分割注入した。各溶融室の温度を1
200〜1400℃に保ちながら、補助燃焼バーナ油量
を減少しつつ乾燥物の供給量を高めていき、35〜50
kgO3/hの供給量で自燃運転を行った。(Example 1) As the first-stage rotating melting chamber 4, a cylinder with an inner diameter of 3501 φ and an effective height of 1300 am was used, and as the second-stage rotating melting chamber 5, a cylinder with an inner diameter of 350 mm and a length of 1200 mm was used. Using. The cylinder of the second-stage swirling melting chamber 5 was connected to the lower part of the cylinder of the first-stage swirling melting chamber 4 at an angle of 15 degrees to form a multi-stage swirling melting furnace. The temperature of the first stage swirling melting chamber 4 and the second stage swirling melting chamber 5 is set to 1200 by the auxiliary combustion burner.
After raising the temperature to ~1400°C, the dehydrated cake of sewage sludge was treated with a flash dryer to reduce the moisture content to 2 to 20%, and the dried product was supplied to the upper part of the first stage swirling melting chamber 4 by pneumatic transport. The combustion air has a sludge air ratio of 1.1 to 1.3.
Approximately 70% of the total amount was injected into the first stage swirling melting chamber 4 and about 30% into the second stage swirling melting chamber 5. The temperature of each melting chamber is 1
While maintaining the temperature at 200 to 1,400°C, increase the amount of dry matter supplied while decreasing the amount of auxiliary combustion burner oil.
Self-combustion operation was performed with a supply amount of kgO3/h.
1日約3〜8時間、乾燥物の供給をしながら、約4ケ月
間実験を続けた。結果を表−1に示す。The experiment continued for about 4 months while supplying dry material for about 3 to 8 hours a day. The results are shown in Table-1.
表−1から明らかなように、2段式旋回溶融炉を用いて
、溶融実験を行った結果、特に、操炉上のトラブルもな
く、スラグ捕集率95%以上の成績が約4ケ月間、安定
して得られた。一方、本実験の比較例として第1段旋回
溶融室の下部を内径200uφに絞り、第2段旋回溶融
室は連結せずにスラグ排出口と排ガス出口を設けた単段
式旋回溶融炉を用いて約4ケ月間処理した場合の結果は
同じく、表−1の比較例に示す通りであるが、スラグ捕
集率が80%まで低下し、絞り部分の耐火物が損傷して
欠落し、口径が広がってしまった。As is clear from Table 1, as a result of conducting melting experiments using a two-stage rotating melting furnace, there were no troubles in operating the furnace, and the slag collection rate was 95% or more for about 4 months. , was obtained stably. On the other hand, as a comparative example of this experiment, a single-stage rotating melting furnace was used, in which the lower part of the first-stage rotating melting chamber was narrowed to an inner diameter of 200 uφ, and the second-stage rotating melting chamber was not connected, but was provided with a slag discharge port and an exhaust gas outlet. The results of the treatment for about 4 months are also shown in the comparative example in Table 1, but the slag collection rate decreased to 80%, the refractory in the throttle part was damaged and missing, and the caliber decreased. has spread.
ここで、スラグ捕集率Rは、回収したスラグ重量Wを、
供給した汚泥の灰分換纂重量Cで除算した百分率の値で
ある。即ち、
R−100xW/C
である。 (以下、この頁余白)表−1
(実施例2)
実施例1において、
この多段式旋回溶融炉1の
第2段旋回溶融室5の長さ方向に3ケ所のガスサンプリ
ング口を設け、排ガス中のゲスl−?a度を測定した。Here, the slag collection rate R is the collected slag weight W,
It is a percentage value divided by the ash content weight C of the supplied sludge. That is, R-100xW/C. (Hereinafter, the margin of this page) Table 1 (Example 2) In Example 1, three gas sampling ports were provided in the length direction of the second-stage rotating melting chamber 5 of the multi-stage rotating melting furnace 1, and exhaust gas was Guess l-? The a degree was measured.
分析結果例を表−2に示したが、採取距離が長い方がダ
スト濃度が小さくなる傾向がみられ、その差は6501
m(第1段旋回溶融室4の容積の50%)をもって顕著
であった。この採取距離とは、第1段旋回溶融室4の出
口部11と第2段旋回溶融室5の入口部18との接続部
位からの距離である。従って、多段式旋回流炉1におい
ては第2段旋回溶融室5を第1段旋回溶融室4の少なく
ても50%以上の容積比で構成することが、スラグ捕集
率向上の点から有利であることが石奮認された。An example of the analysis results is shown in Table 2, and it can be seen that the longer the sampling distance, the lower the dust concentration, and the difference is 6501.
m (50% of the volume of the first stage swirling melting chamber 4). This sampling distance is the distance from the connection site between the outlet section 11 of the first stage swirling melting chamber 4 and the inlet section 18 of the second stage swirling melting chamber 5. Therefore, in the multistage swirling flow furnace 1, it is advantageous to configure the second stage swirling melting chamber 5 with a volume ratio of at least 50% of the first stage swirling melting chamber 4 from the viewpoint of improving the slag collection rate. It was strongly recognized that this was the case.
表−2
〔発明、の効果〕
この発明による多段式旋回溶融炉は、上記のように構造
されており、次のような効果を有する。Table 2 [Effects of the Invention] The multi-stage rotating melting furnace according to the present invention is structured as described above, and has the following effects.
即ち、この多段式旋回溶融炉は、ストレート状円筒部の
接線方向に開口する被溶融物供給口と燃焼用空気吹込口
を上部に備え且つ出口部を下部に備えた第1段旋回溶融
室、該第1段旋回溶融室の下端部に傾斜して配置し且つ
前記出口部と連通ずる入口部とストレート状円筒部の接
線方向に燃焼用空気吹込口とを上部に及び該円筒部の出
口部を下部に設けた第2段旋回溶融室、並びに前記各旋
回溶融室の各上部に前記各円筒部の接線方向にそれぞれ
配備した各燃焼用バーナから構成したので、該下部に対
して傾斜した円筒状の第2段旋回溶融室を連結して2段
旋回方式を採用することで排ガスとスラグの分離効率を
高めることができ、該構造により、第1段旋回溶融室の
下部に特に絞り部分を設ける必要はなく、炉内径を上方
から下方まで一定の形状にして形成することができる。That is, this multi-stage swirling melting furnace includes a first-stage swirling melting chamber, which is equipped with a melting material supply port and a combustion air inlet opening in the tangential direction of a straight cylindrical portion in the upper part, and an outlet part in the lower part; An inlet portion is disposed obliquely at the lower end of the first stage swirling melting chamber and communicates with the outlet portion, and a combustion air inlet is provided in the tangential direction of the straight cylindrical portion at the upper portion thereof, and an outlet portion of the cylindrical portion. The structure includes a second-stage swirling melting chamber provided at the lower part, and each combustion burner disposed at the upper part of each of the swirling melting chambers in the tangential direction of each cylindrical part, so that the cylinder inclined with respect to the lower part The separation efficiency of exhaust gas and slag can be increased by connecting the second-stage rotating melting chambers and adopting a two-stage swirling system. It is not necessary to provide the furnace, and the inner diameter of the furnace can be formed to have a constant shape from the top to the bottom.
従って、築炉上も簡素化が計れると共に、主燃焼域と離
れた炉本体の出口には絞り部が形成されていない構造で
あり、被溶融物や運転条件によっては、該出口部の部位
がたとえスラグ溶融温度以下になることがあっても、流
下スラグが炉出口の部位で固化することがなく、ガス流
路を狭めるという現象は発生しない。従って、スラグの
閉塞現象は発生せず、炉内圧の大幅な変動とスラグ流出
を困難とすることはなく、旋回)容融炉の運転が不可能
となることはない、それ故に、溶融炉を構成している炉
材に固着したスラグを除去するような作業を行う必要は
なく、作業性を向上できる。炉本体の出口部位での圧力
損失が発生せず、未燃粒子や溶融物を同伴した高速ガス
による摩耗で炉材の侵食やを容)員が発生するようなこ
ともない、そのため、炉材の修復も簡単でメインテナン
スも容易に行うことができる。また、二段旋回方式を採
用することで排ガスとスラグの分離効率を高めることが
できる。従って、下水汚泥の乾燥物、焼却残渣、都市ゴ
ミ焼却残渣等に含まれる可燃分を一層効率良く燃焼させ
、被溶融物が常にスムースに流動して溶融炉から排出で
き、安定した溶融分離処理ができ、廃棄物等の溶融処理
を極めて効率良く、且つ安定して行うことができる。Therefore, the construction of the furnace can be simplified, and the outlet of the furnace body, which is away from the main combustion area, does not have a constricted part, and depending on the material to be melted and the operating conditions, the part of the outlet part may change. Even if the temperature drops below the slag melting temperature, the falling slag will not solidify at the furnace outlet, and the phenomenon of narrowing the gas flow path will not occur. Therefore, the slag clogging phenomenon does not occur, the furnace internal pressure does not fluctuate significantly, the slag does not flow out easily, and the operation of the swirling melting furnace is not impossible. There is no need to perform work such as removing slag stuck to the constituent furnace materials, and work efficiency can be improved. There is no pressure loss at the outlet of the furnace body, and there is no erosion or damage to the furnace material due to abrasion caused by high-velocity gas accompanied by unburned particles or molten material. It is easy to repair and easy to maintain. Furthermore, by adopting a two-stage swirl system, the efficiency of separating exhaust gas and slag can be increased. Therefore, the combustible components contained in dried sewage sludge, incineration residue, municipal waste incineration residue, etc. can be burned more efficiently, and the material to be melted can always flow smoothly and be discharged from the melting furnace, resulting in stable melting and separation processing. This makes it possible to melt and process waste materials extremely efficiently and stably.
また、前記第1段旋回溶融室の燃焼用空気吹込口を被溶
融物供給口の上部に少なくとも1箇所以上設けたので、
第1段旋回溶融室内には燃焼ガスによる旋回気流を形成
でき、乾燥物の中の微細粒子の一部が大部分の粒子で形
成する旋回気流と分級されることがなく、微細粒子の滞
留層の形成を防ぐことができ、微細粒子が補助燃焼用バ
ーナの吹出口上に堆積したり、炉壁に未溶融灰の付着物
を形成することがない。Further, since the combustion air inlet of the first stage swirling melting chamber is provided at least at one location above the melting material supply port,
A swirling airflow caused by the combustion gas can be formed in the first-stage swirling melting chamber, and a part of the fine particles in the dried material is not separated from the swirling airflow formed by the majority of particles, and a layer of fine particles remains. This prevents the formation of fine particles on the outlet of the auxiliary combustion burner and the formation of deposits of unmelted ash on the furnace wall.
更に、前記第2段旋回溶融室の有効容積を、前記第1段
旋回溶融室の容積の少なくとも50%以上に構成したの
で、ガスと溶融物とを徹底的に分離することができる。Furthermore, since the effective volume of the second stage swirling melting chamber is configured to be at least 50% or more of the volume of the first stage swirling melting chamber, gas and melt can be thoroughly separated.
第11!lはこの発明による多段式旋回溶融炉の一実施
例を示す概略断面図、第2図は第1図の多段式旋回溶融
炉の平面図、及び第3図は従来の旋回溶融炉を示す概略
説明図である。
1−一・汚泥乾@物供給口、2.3・−・−燃焼用空気
吹込口、4・−第1段旋回溶融室、5 第2段旋回溶
融室、6.7・−捕助燃焼用バーナ、9−・・−排ガス
出口、10〜・−一一−スラグ排出口、11゜15−・
−出口部、■7−−−傾斜面、18−一一人口部。11th! 1 is a schematic sectional view showing an embodiment of the multi-stage rotating melting furnace according to the present invention, FIG. 2 is a plan view of the multi-stage rotating melting furnace shown in FIG. 1, and FIG. 3 is a schematic diagram showing a conventional rotating melting furnace. It is an explanatory diagram. 1-1. Sludge drying @material supply port, 2.3.--Combustion air inlet, 4.-1st stage swirling melting chamber, 5. 2nd stage swirling melting chamber, 6.7.-Capture combustion burner, 9-...-exhaust gas outlet, 10--11-slag discharge port, 11゜15--
-Exit part, ■7---Slope surface, 18-11 population part.
Claims (3)
物供給口と燃焼用空気吹込口を上部に備え且つ出口部を
下部に備えた第1段旋回溶融室、該第1段旋回溶融室の
下端部に傾斜して配置し且つ前記出口部と連通する入口
部とストレート状円筒部の接線方向に燃焼用空気吹込口
とを上部に及び該円筒部の出口部を下部に設けた第2段
旋回溶融室、並びに前記各旋回溶融室の各上部に前記各
円筒部の接線方向にそれぞれ配備した各燃焼用バーナか
ら成る多段式旋回溶融炉。(1) A first-stage rotating melting chamber equipped with a melting material supply port and a combustion air inlet opening in the tangential direction of a straight cylindrical portion at the top and an outlet section at the bottom; A second cylindrical part is arranged obliquely at the lower end of the cylindrical part, and has an inlet part communicating with the outlet part and a combustion air inlet in the tangential direction of the straight cylindrical part in the upper part, and an outlet part of the cylindrical part in the lower part. A multi-stage swirling melting furnace comprising a stage swirling melting chamber, and combustion burners arranged in the upper part of each of the swirling melting chambers in the tangential direction of each of the cylindrical parts.
融物供給口の上部に少なくとも1箇所以上設けた請求項
1に記載の多段式旋回溶融炉。(2) The multi-stage swirling melting furnace according to claim 1, wherein at least one combustion air inlet of the first stage swirling melting chamber is provided above the melt supply port.
旋回溶融室の容積の少なくとも50%以上に構成した請
求項1に記載の多段式旋回溶融炉。(3) The multi-stage swirling melting furnace according to claim 1, wherein the effective volume of the second-stage swirling melting chamber is at least 50% of the volume of the first-stage swirling melting chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16654189A JPH0336413A (en) | 1989-06-30 | 1989-06-30 | Multistage revolving melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16654189A JPH0336413A (en) | 1989-06-30 | 1989-06-30 | Multistage revolving melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0336413A true JPH0336413A (en) | 1991-02-18 |
JPH0587728B2 JPH0587728B2 (en) | 1993-12-17 |
Family
ID=15833193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16654189A Granted JPH0336413A (en) | 1989-06-30 | 1989-06-30 | Multistage revolving melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0336413A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250826A (en) * | 1985-08-30 | 1987-03-05 | Konishiroku Photo Ind Co Ltd | Positive image forming method |
JPH05340524A (en) * | 1992-06-12 | 1993-12-21 | Kobe Steel Ltd | Furnace for waste disposal, and method therefor |
US5357879A (en) * | 1992-05-20 | 1994-10-25 | Ebara-Infilco Co., Ltd. | Dried sludge melting furnace |
US6350288B1 (en) | 1994-03-10 | 2002-02-26 | Ebara Corporation | Method of and apparatus for fluidized-bed gasification and melt combustion |
KR100445363B1 (en) * | 1995-11-28 | 2004-11-03 | 가부시키 가이샤 에바라 세이사꾸쇼 | Waste treatment apparatus and method through vaporization |
US9874689B2 (en) | 2014-01-14 | 2018-01-23 | National University Of Singapore | Method of forming an integrated circuit and related integrated circuit |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666613A (en) * | 1979-11-06 | 1981-06-05 | Kurita Water Ind Ltd | Waste incinerating device |
JPS63172808A (en) * | 1987-01-12 | 1988-07-16 | Tsukishima Kikai Co Ltd | Melting furnace of swirl air type |
-
1989
- 1989-06-30 JP JP16654189A patent/JPH0336413A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5666613A (en) * | 1979-11-06 | 1981-06-05 | Kurita Water Ind Ltd | Waste incinerating device |
JPS63172808A (en) * | 1987-01-12 | 1988-07-16 | Tsukishima Kikai Co Ltd | Melting furnace of swirl air type |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6250826A (en) * | 1985-08-30 | 1987-03-05 | Konishiroku Photo Ind Co Ltd | Positive image forming method |
US5357879A (en) * | 1992-05-20 | 1994-10-25 | Ebara-Infilco Co., Ltd. | Dried sludge melting furnace |
JPH05340524A (en) * | 1992-06-12 | 1993-12-21 | Kobe Steel Ltd | Furnace for waste disposal, and method therefor |
US6350288B1 (en) | 1994-03-10 | 2002-02-26 | Ebara Corporation | Method of and apparatus for fluidized-bed gasification and melt combustion |
KR100445363B1 (en) * | 1995-11-28 | 2004-11-03 | 가부시키 가이샤 에바라 세이사꾸쇼 | Waste treatment apparatus and method through vaporization |
US9874689B2 (en) | 2014-01-14 | 2018-01-23 | National University Of Singapore | Method of forming an integrated circuit and related integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0587728B2 (en) | 1993-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2531736A1 (en) | Method for treating fly ash in a fluidized bed boiler and boiler plant | |
US5361728A (en) | Pressurized fluidized bed combustion boiler system | |
EP0389311B1 (en) | Combustion apparatus | |
JPH0336413A (en) | Multistage revolving melting furnace | |
EA023334B1 (en) | A method and an apparatus for making a mineral melt | |
IE904486A1 (en) | Apparatus for hazardous waste to form non-hazardous aggregate | |
JPS6235004B2 (en) | ||
US5385104A (en) | Method and apparatus for incinerating different kinds of solid and possibly liquid waste material | |
JPH0336412A (en) | Revolving melting furnace of multi-stage type | |
BE1001482A4 (en) | METHOD AND SYSTEM FOR THE TREATMENT OF A GAS FLOW pyrophoric SUBSTANCE THAT CONTAINS. | |
CN107355791A (en) | A kind of waste high temperature pyrolysis furnace | |
CN208541962U (en) | A kind of online dust pelletizing system of converter | |
JPH0626629A (en) | Sludge melting system | |
RU2339874C1 (en) | Method and device for coal combustion in swirling flow | |
KR20010067438A (en) | Method for the thermal treatment of grate ash from waste incineration plants | |
SU1171647A1 (en) | Device for burning residue of waste water | |
US4335663A (en) | Thermal processing system | |
JPS6170314A (en) | Whirling stream type fired melting furnace | |
JPS6370014A (en) | Combustion-melting furnace of cyclone type for sewage sludge | |
JPH03241214A (en) | Melting furnace | |
JP3165083B2 (en) | Fluid medium separator for circulating fluidized bed furnace | |
CN212493516U (en) | Multistage cyclone dust collector device | |
RU2266872C2 (en) | Method and apparatus for manufacturing mineral filaments | |
JP2722079B2 (en) | Method and apparatus for removing suspended dust in high-temperature atmosphere | |
TWI345481B (en) | Process and device for treating tail gases decomposed from regenerated asphalt |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 16 |