JPH0336322B2 - - Google Patents

Info

Publication number
JPH0336322B2
JPH0336322B2 JP58178639A JP17863983A JPH0336322B2 JP H0336322 B2 JPH0336322 B2 JP H0336322B2 JP 58178639 A JP58178639 A JP 58178639A JP 17863983 A JP17863983 A JP 17863983A JP H0336322 B2 JPH0336322 B2 JP H0336322B2
Authority
JP
Japan
Prior art keywords
sub
feed
array antenna
array
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58178639A
Other languages
Japanese (ja)
Other versions
JPS6070803A (en
Inventor
Hiroshi Yokoyama
Tsugio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58178639A priority Critical patent/JPS6070803A/en
Publication of JPS6070803A publication Critical patent/JPS6070803A/en
Publication of JPH0336322B2 publication Critical patent/JPH0336322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart

Description

【発明の詳細な説明】 本発明は高周波パルス信号に対する応答特性を
改良したアレイアンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an array antenna with improved response characteristics to high frequency pulse signals.

一般に、直列給電型アレイアンテナは、第1図
に示すように、1つの給電点1と直列に配列され
た放射素子列E1〜EN(Nは50〜100個)と残留
電力を吸収するための終端器2により構成され、
各々の放射素子の振幅と位相を適当に設定するこ
とにより、信号源3から入力された高周波信号を
分配放射し、所望の指向性を実現するものであ
る。この種のアレイアンテナは、アレイ給電線路
を簡潔に構成できる利点を有するため、レーダア
ンテナとして広く用いられている。
Generally, as shown in Fig. 1, a series-fed array antenna consists of one feeding point 1 and a series of radiating elements E1 to EN (N is 50 to 100) arranged in series to absorb residual power. Consisting of a terminator 2,
By appropriately setting the amplitude and phase of each radiating element, the high frequency signal input from the signal source 3 is distributed and radiated to achieve desired directivity. This type of array antenna has the advantage that the array feed line can be configured simply, and is therefore widely used as a radar antenna.

一方、パルスレーダにおいて角度分解能を高く
するには、アンテナの開口を大きくすることによ
りビーム幅を狭くし、また、距離分解能を高くす
るには、送受信パルス幅を狭くする必要がある。
しかし、第1図に示す直列給電型アレイアンテナ
を用いた狭ビーム幅、狭パルス幅のレーダにおい
ては、パルス信号のアンテナ内電波伝搬にある時
間を要するため、パルス幅の時間内でアンテナ全
体に所望の高周波電力分布を得られない場合が生
ずる。これは、アンテナ開口を部分的にしか使わ
ないことと等価であるため、高周波CW(連続波)
信号で送受した場合と比較して、利得の低下、ビ
ーム幅の拡大、サイドローブの上昇等の指向性の
劣化を生ずる。例えば、コサイン開口振幅分布を
有するアンテナにおいて、利得の低下を0.3dB以
内に抑圧するために必要なパルス幅TSとアンテ
ナ内の電波伝搬時間TAとの関係は、M.I.Skolnik
著の図書“RADAR HANDBOOK”13−23頁に
よれば、第式(1)で示される。
On the other hand, in order to increase the angular resolution in a pulse radar, it is necessary to narrow the beam width by increasing the aperture of the antenna, and to increase the distance resolution, it is necessary to narrow the transmission and reception pulse width.
However, in a radar with a narrow beam width and narrow pulse width using a series-fed array antenna shown in Figure 1, it takes a certain amount of time for the pulse signal to propagate within the antenna. There may be cases where a desired high frequency power distribution cannot be obtained. This is equivalent to using only a portion of the antenna aperture, so high-frequency CW (continuous wave)
Compared to the case where signals are transmitted and received, directivity deteriorates, such as a decrease in gain, an increase in beam width, and an increase in side lobes. For example, in an antenna with a cosine aperture amplitude distribution, the relationship between the pulse width T S required to suppress the drop in gain to within 0.3 dB and the radio wave propagation time T A in the antenna is given by MISkolnik
According to the author's book “RADAR HANDBOOK” pages 13-23, it is expressed by the formula (1).

TA/TS<0.2 ……(1) すなわち、直列給電型アレイアンテナの場合、
アンテナ内の電波伝搬時間TAは、そのアンテナ
開口の大きさにほぼ比例して長くなるため、パル
ス幅TSも(1)式の関係を満たすよう広くとる必要
がある。
T A /T S <0.2 ...(1) In other words, in the case of a series-fed array antenna,
Since the radio wave propagation time T A within the antenna increases approximately in proportion to the size of the antenna aperture, the pulse width T S must also be wide enough to satisfy the relationship in equation (1).

以上説明したように、従来の直列給電型アレイ
アンテナをレーダに用いた場合、角度分解能と距
離分解能の両方を向上させるには一定の限界があ
るという欠点があつた。
As explained above, when a conventional series-fed array antenna is used in a radar, there is a drawback that there is a certain limit to improving both the angular resolution and the distance resolution.

本発明の目的は、従来のアレイアンテナを複数
に分割し、アレイアンテナ内の電波伝搬時間を短
くすることにより、高周波パルス信号に対する応
答特性を改良したアレイアンテナを提供すること
にある。
An object of the present invention is to provide an array antenna with improved response characteristics to high-frequency pulse signals by dividing a conventional array antenna into a plurality of parts and shortening the radio wave propagation time within the array antenna.

本発明の構成は、高周波パルス信号が給電され
るパルスレーダ用のアレイアンテナにおいて、同
一方向に向けられた複数の放射素子が直列に配列
された放射部を複数に分割し、これら分割された
放射部にそれぞれ給電部を設け、これら各給電部
の給電点と終端とをほぼ同一方向に配置した複数
の副アレイアンテナと;これら副アレイアンテナ
の各給電部に並列にそれぞれ高周波パルス信号を
給電する分配器と;この分配器と前記各副アレイ
アンテナの給電点との間をそれぞれ接続する複数
の給電線路と;これら給電線路あるいは分配器に
それぞれ含まれ前記各給電部の隣り合う給電点と
終端との間に給電される高周波パルス信号の位相
差をほぼ2nπラジアン(nは整数)に設定する移
相手段とを含むことを特徴とする。
The configuration of the present invention is that, in an array antenna for a pulse radar that is fed with a high-frequency pulse signal, a radiating section in which a plurality of radiating elements directed in the same direction are arranged in series is divided into a plurality of parts, and the divided radiation is a plurality of sub-array antennas, each of which has a feeding section, and the feeding points and terminal ends of these feeding sections are arranged in substantially the same direction; a high-frequency pulse signal is fed in parallel to each feeding section of these sub-array antennas; a distributor; a plurality of feed lines respectively connecting the divider and the feed points of each of the sub-array antennas; adjacent feed points and terminations of each of the feed sections included in these feed lines or the distributor; and a phase shift means for setting the phase difference of the high-frequency pulse signal supplied between the two and the two to approximately 2nπ radians (n is an integer).

次に本発明の実施例について図面を参照して説
明する。
Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明の第1の実施例を説明する模式
図である。この実施例は、長さL(Lは任意の長
さ)のアレイアンテナを、長さL1の第1の直列
給電型副アレイアンテナ(以下副アレイアンテナ
という)4と長さL2の第2の副アレイアンテナ
5とに2分割し、これら副アレイアンテナ4,5
の終端に終端器6,7を設け、信号源11からの
高周波信号を分配器8で2分配し、副アレイアン
テナ4,5に給電線路9,10を経由して同位相
で給電したものである。
FIG. 2 is a schematic diagram illustrating the first embodiment of the present invention. In this embodiment, an array antenna of length L (L is an arbitrary length) is connected to a first series-fed sub-array antenna (hereinafter referred to as sub-array antenna) 4 of length L1 and a second series-fed sub-array antenna (hereinafter referred to as sub-array antenna) 4 of length L2. The sub array antenna 5 is divided into two sub array antennas 4 and 5.
Terminators 6 and 7 are provided at the ends of the signal source 11, and the high-frequency signal from the signal source 11 is divided into two parts by a divider 8, and power is fed to the sub array antennas 4 and 5 via feed lines 9 and 10 in the same phase. be.

第3図a,bは従来および本実施例の直列給電
型アレイアンテナ内の位相分布図を示し、それぞ
れ各アレイアンテナの給電点の位相を基準とした
相対位相で表わしている。従来の長さLのアレイ
アンテナの場合は、第3図aに示すように、アレ
イアンテナ内の位相分布が連続的に増加するのに
対し、2台の副アレイアンテナに分割した本実施
例の場合は、第3図bに示すように、副アレイア
ンテナ4,5の境界で位相差φを持つた不連続を
生じ、指向性が劣化する。しかし、この位相差φ
を φ=2nπ(ラジアン)(n=0,1,2,3,…
…) ……(2) とすれば、副アレイアンテナ4,5の境界の位相
は連続的になり、指向性の劣化は生じない。そこ
で本実施例では(2)式の条件を満たすように、副ア
レイアンテナ4,5の間に位相差を設定する手段
が必要となる。
FIGS. 3a and 3b show phase distribution diagrams within the series-fed array antennas of the conventional and the present embodiment, each expressed as a relative phase with respect to the phase of the feeding point of each array antenna. In the case of a conventional array antenna of length L, the phase distribution within the array antenna increases continuously as shown in Figure 3a, whereas in this embodiment, which is divided into two sub-array antennas, In this case, as shown in FIG. 3b, a discontinuity with a phase difference φ occurs at the boundary between the sub array antennas 4 and 5, and the directivity deteriorates. However, this phase difference φ
φ=2nπ (radians) (n=0, 1, 2, 3,...
...) ...(2) If so, the phase at the boundary between the sub array antennas 4 and 5 will be continuous, and no deterioration of directivity will occur. Therefore, in this embodiment, means for setting a phase difference between the sub array antennas 4 and 5 is required so as to satisfy the condition of equation (2).

このようにアレイアンテナを2分割し、副アレ
イアンテナ4と5の各々に2分配した高周波信号
を同位相で入力することにより、長さLのアレイ
アンテナに比べてアレイアンテナ内の電波伝搬時
間ほぼ半分に短くできるので、指向性の劣化を生
ずることが無くなる。
By dividing the array antenna into two in this way and inputting the divided high-frequency signals into each of the sub-array antennas 4 and 5 in the same phase, the radio wave propagation time within the array antenna is approximately Since it can be shortened by half, there is no possibility of directivity deterioration.

第4図は第2図の具体例を説明する構成図であ
る。この実施例は、第2図における給電線路9,
10に移相器15,16を挿入して(2)式の条件を
満たすように移相器15,16の移相量を設定し
たものである。したがつて、実施例では、副アレ
イアンテナ4,5の長さL1,L2を任意に設定
できる。なお、この実施例で移相器15,16を
設ける代りに給電線路9,10の長さを変えても
(2)式の条件を満たすことができ、また移相器1
5,16の内の一方を除いても同様に(2)式の条件
を満たすことができる。
FIG. 4 is a configuration diagram illustrating a specific example of FIG. 2. In this embodiment, the feed line 9 in FIG.
Phase shifters 15 and 16 are inserted into phase shifter 10, and the amount of phase shift of phase shifters 15 and 16 is set so as to satisfy the condition of equation (2). Therefore, in the embodiment, the lengths L1 and L2 of the sub array antennas 4 and 5 can be set arbitrarily. In this embodiment, instead of providing the phase shifters 15 and 16, the lengths of the feed lines 9 and 10 may be changed.
(2) can be satisfied, and the phase shifter 1
Even if one of 5 and 16 is removed, the condition of equation (2) can be satisfied in the same way.

第5図は本発明の第2の実施例の構成図で、直
列給電型アレイアンテナを3台の副アレイアンテ
ナ17,18,19に分割したものを示してい
る。これら副アレイアンテナ17,18,19の
各々に終端器20,21,22を設け、信号源1
1からの高周波信号を分配器23で3分配し、副
アレイアンテナ17,18,19の各々に給電線
路24,25,26を経由して同位相で給電して
いる。この場合も第1の実施例と同様に(2)式の条
件を満たすように副アレイアンテナ17,18,
19の各々の長さを決めており、副アレイアンテ
ナ17,18,19の境界の位相の不連続による
指向性の劣化を生ずること無く、アレイアンテナ
内の電波伝搬時間を短くすることができる。この
場合の伝搬時間は1台のアレイアンテナで構成し
たものに比べてほぼ1/3となる。
FIG. 5 is a block diagram of a second embodiment of the present invention, in which a series-fed array antenna is divided into three sub-array antennas 17, 18, and 19. Each of these sub-array antennas 17, 18, 19 is provided with a terminator 20, 21, 22, and the signal source 1
The high frequency signal from 1 is divided into three parts by a distributor 23, and is fed to each of the sub array antennas 17, 18, 19 via feed lines 24, 25, 26 in the same phase. In this case as well, the sub array antennas 17, 18,
Since the length of each of the sub array antennas 17, 18, and 19 is determined, the radio wave propagation time within the array antenna can be shortened without deteriorating the directivity due to phase discontinuity at the boundaries of the sub array antennas 17, 18, and 19. The propagation time in this case is approximately 1/3 compared to the configuration using one array antenna.

第6図は本発明の第3の実施例の構成図で、第
2の実施例の給電線路24,25,26に移相器
27,28,29を設けたものである。この場合
も(2)式の条件を満たすように移相器27,28,
29の移相量を設定することにより、副アレイア
ンテナ17,18,19の各長さを任意に設定で
きる。また、第2の実施例と同様に移相器27,
28,29を設ける代りに給電線路24,25,
26の長さを変えても、また移相器27,28,
29の内いずれか1つを除いても同様に2式の条
件を満たすことができる。
FIG. 6 is a block diagram of a third embodiment of the present invention, in which phase shifters 27, 28, and 29 are provided in the feed lines 24, 25, and 26 of the second embodiment. In this case as well, the phase shifters 27, 28,
By setting the phase shift amount of 29, each length of the sub array antennas 17, 18, and 19 can be set arbitrarily. Further, as in the second embodiment, a phase shifter 27,
28, 29 instead of providing feed lines 24, 25,
Even if the length of 26 is changed, the phase shifters 27, 28,
Even if any one of 29 is omitted, the conditions of formula 2 can be satisfied in the same way.

以上、各実施例において、2台あるいは3台の
副アレイアンテナの場合について説明したが、副
アレイアンテナの数をさらに増した場合も、同様
にアレイアンテナ内の電波伝搬時間を副アレイア
ンテナの数に応じて短くでき、したがつて高周波
パルス信号に対する応答特性を改善することが出
来る。
Above, in each embodiment, the case of two or three sub-array antennas has been explained, but even when the number of sub-array antennas is further increased, the radio wave propagation time within the array antenna is similarly reduced by the number of sub-array antennas. Therefore, the response characteristics to high frequency pulse signals can be improved.

本発明は、以上説明したように、給電部を複数
に分割された直列給電型アレイアンテナの給電部
の各々に並列に高周波信号を分配給電することに
より、アレイアンテナ内の電波伝搬時間が短くな
り、高周波パルス信号に対する応答特性が大幅に
改善され、レーダの基本性能である角度分解能と
距離分解能の両方を向上できる効果がある。
As explained above, the present invention shortens the radio wave propagation time within the array antenna by distributing high-frequency signals in parallel to each of the feeding sections of a series-fed array antenna in which the feeding section is divided into a plurality of sections. , the response characteristics to high-frequency pulse signals are significantly improved, and both the angular resolution and distance resolution, which are the basic performance of radar, can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の直列給電型アレイアンテナの構
成を示す回路図、第2図は本発明の第1の実施例
を説明する模式図、第3図a,bは従来および本
実施例の直列給電型アレイアンテナ内の位相分布
図、第4図は本発明の第2図の具体例を説明する
構成図、第5図は本発明の第2の実施例の構成
図、第6図は本発明の第3の実施例の構成図であ
る。図において、 1……アレイアンテナの給電点、2,6,7,
20,21,22……終端器、3,11……送信
源、E1,E2,E3,……,EN……N個の放
射素子列、4,5,17,18,19……直列給
電型副アレイアンテナ、8,23……分配器、
9,10,24,25,26……給電線路、1
5,16,27,28,29……移相器、であ
る。
FIG. 1 is a circuit diagram showing the configuration of a conventional series-fed array antenna, FIG. 2 is a schematic diagram explaining the first embodiment of the present invention, and FIGS. FIG. 4 is a diagram of the phase distribution within the feed type array antenna, FIG. 4 is a configuration diagram explaining the specific example of FIG. 2 of the present invention, FIG. FIG. 3 is a configuration diagram of a third embodiment of the invention. In the figure, 1... Feeding point of array antenna, 2, 6, 7,
20, 21, 22... Terminator, 3, 11... Transmission source, E1, E2, E3,..., EN... N radiating element rows, 4, 5, 17, 18, 19... Series feeding type sub-array antenna, 8, 23...distributor,
9, 10, 24, 25, 26... feed line, 1
5, 16, 27, 28, 29...phase shifters.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波パルス信号が給電されるパルスレーダ
用アレイアンテナにおいて;同一方向に向けられ
た複数の放射素子が直列に配列された放射部を複
数に分割し、これら分割された放射部にそれぞれ
給電部を設け、これら各給電部の給電点と終端と
をほぼ同一方向に配置した複数の副アレイアンテ
ナと;これら副アレイアンテナの各給電部に並列
にそれぞれ高周波パルス信号を給電する分配器
と;この分配器と前記各副アレイアンテナの給電
点との間をそれぞれ接続する複数の給電線路と;
これら給電線路あるいは分配器にそれぞれ含まれ
前記各給電部の隣り合う給電点と終端との間に給
電される高周波パルス信号の位相差をほぼ2nπラ
ジアン(nは整数)に設定する移相手段とを含む
ことを特徴とするアレイアンテナ。
1 In a pulse radar array antenna to which a high-frequency pulse signal is fed; a radiating section in which a plurality of radiating elements directed in the same direction are arranged in series is divided into a plurality of sections, and a feeding section is connected to each of these divided radiating sections. a plurality of sub-array antennas in which the feed points and terminal ends of each of these feed sections are arranged in substantially the same direction; a distributor that feeds high-frequency pulse signals in parallel to each of the feed sections of these sub-array antennas; a plurality of feed lines each connecting between the antenna and the feed point of each of the sub-array antennas;
Phase shifting means included in each of these feed lines or distributors and setting the phase difference of the high frequency pulse signals fed between adjacent feed points and terminations of each of the feed sections to approximately 2nπ radians (n is an integer); An array antenna comprising:
JP58178639A 1983-09-27 1983-09-27 Array antenna Granted JPS6070803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58178639A JPS6070803A (en) 1983-09-27 1983-09-27 Array antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58178639A JPS6070803A (en) 1983-09-27 1983-09-27 Array antenna

Publications (2)

Publication Number Publication Date
JPS6070803A JPS6070803A (en) 1985-04-22
JPH0336322B2 true JPH0336322B2 (en) 1991-05-31

Family

ID=16051971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58178639A Granted JPS6070803A (en) 1983-09-27 1983-09-27 Array antenna

Country Status (1)

Country Link
JP (1) JPS6070803A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365657B2 (en) 2014-02-21 2018-08-01 富士通株式会社 Power transmission equipment

Also Published As

Publication number Publication date
JPS6070803A (en) 1985-04-22

Similar Documents

Publication Publication Date Title
EP0313057B1 (en) Dual mode phased array antenna system
EP2822095B1 (en) Antenna with fifty percent overlapped subarrays
US4045800A (en) Phase steered subarray antenna
EP0312588B1 (en) Multifunction active array
US4044360A (en) Two-mode RF phase shifter particularly for phase scanner array
US5013979A (en) Phased frequency steered antenna array
GB2076229A (en) Improvements in or relating to apparatus for microwave signal processing
US5781157A (en) Multiple beam radar system with enhanced sidelobe supression
US4321605A (en) Array antenna system
US5017931A (en) Interleaved center and edge-fed comb arrays
US5262790A (en) Antenna which assures high speed data rate transmission links between satellites and between satellites and ground stations
US3977006A (en) Compensated traveling wave slotted waveguide feed for cophasal arrays
JP3461911B2 (en) Phased array antenna
US5345246A (en) Antenna device having low side-lobe characteristics
US7071890B2 (en) Reflector
US4746923A (en) Gamma feed microstrip antenna
JPH09284035A (en) Antenna system for on-vehicle radar
CA1063235A (en) Endfire-type phased array antenna
GB2034525A (en) Improvements in or relating to microwave transmission systems
US3430247A (en) Centerfed travelling wave array having a squinted aperture
US6549171B1 (en) Constrained feed techniques for phased array subarrays
JPH0336322B2 (en)
US3990077A (en) Electrically scanned antenna for direction error measurement
JPS61150504A (en) Antenna system
EP0030296B1 (en) Wide-band, phase scanned antenna