JPH0336285A - Ion milling device - Google Patents

Ion milling device

Info

Publication number
JPH0336285A
JPH0336285A JP17038089A JP17038089A JPH0336285A JP H0336285 A JPH0336285 A JP H0336285A JP 17038089 A JP17038089 A JP 17038089A JP 17038089 A JP17038089 A JP 17038089A JP H0336285 A JPH0336285 A JP H0336285A
Authority
JP
Japan
Prior art keywords
sample
center
ion beam
ion
ion milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17038089A
Other languages
Japanese (ja)
Other versions
JPH0733589B2 (en
Inventor
Hirotaka Nonaka
野中 裕貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Naka Seiki Ltd
Original Assignee
Hitachi Naka Seiki Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Naka Seiki Ltd filed Critical Hitachi Naka Seiki Ltd
Priority to JP1170380A priority Critical patent/JPH0733589B2/en
Publication of JPH0336285A publication Critical patent/JPH0336285A/en
Publication of JPH0733589B2 publication Critical patent/JPH0733589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To balance the etching rates in the central part and peripheral part of a sample so that the flat etching of the sample is executed by constituting the above device in such a manner that the center of rotation on the sample surface deviates by a prescribed distance from the center of an ion beam. CONSTITUTION:The ion beam 9 released from an ion gun 4 in processing by ion milling exhibits the normal distribution in which the intensity at the center line 9C is highest. The ion milling device is so constituted that the sample 1 rotates around 1C and the center 1C of rotation deviates by R from the position of the central line 9C of the ion beam 9 cast onto the surface of the sample 1. The offcentering rate R is adjusted by rotating a motor 15 to vertically move a supporting base 13. The angle alpha formed by the center 9C of the ion beam 9 with the surface of the sample 1 is adjusted by an angle adjusting device 12.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は走査型電子顕微鏡や透過型電子顕微鏡により観
察する半導体素子等の試料の表面や断面を観察するため
、該試料をイオンビームによりス3 バッタエツチングしてフラン]〜に加工するイオンミー
リング装置に関する。。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves scanning a sample with an ion beam in order to observe the surface or cross section of a sample such as a semiconductor element to be observed using a scanning electron microscope or a transmission electron microscope. 3. This invention relates to an ion milling apparatus for processing furan by grasshopper etching. .

〔従来の技術〕[Conventional technology]

例えば速め型電子顕微鏡により舐判を観察する場合、従
来行われたイオンミーリング法によるホ(料加工法につ
いて述へる。
For example, when observing a plate using a high-speed electron microscope, a conventional material processing method using an ion milling method will be described.

イオンビームにより試料をスバツタエツチンタする手法
は、電解研磨や機械研磨の困難なセラミックや半導体材
料などに刻して有効であり−・般に広く用いられでおり
、これは機械研磨などにより20〜50μmまで薄くし
た試料を試料台にのせ、試料を回転させながら、その同
転中心に3〜6KVのイオン化電圧を印加して発生する
イオンビムを照射し試料をエツチングすることにより加
丁している。
The method of engraving a sample with an ion beam is effective for engraving ceramics and semiconductor materials that are difficult to electrolytically polish or mechanically polish, and is widely used. A sample thinned to ~50 μm is placed on a sample stage, and while the sample is rotated, an ionization voltage of 3 to 6 KV is applied to the center of rotation, and the generated ion beam is irradiated and the sample is etched. .

「発明が解決しようとする問題点〕 このようなイオンミーリング法による試料はエツチング
出来る範囲が、直径約1mm′Pi、度で狭く、且つ断
面がすり鉢状となるので、近年電子顕微鏡による複雑多
岐にわたる観察要求に対しては試料として適当でないと
いう問題が出てきた。
``Problems to be Solved by the Invention'' The range that can be etched by such an ion milling method is narrow, with a diameter of approximately 1 mm'Pi, and the cross section is cone-shaped. The problem arose that it was not suitable as a sample for observation requests.

この点に鍋み、本発明においては観察に有利な十分な観
察面積を有する断面形状が平坦な試料を得ることの出来
るイオンミーリング装置を提供することを目的どしてい
る。
In consideration of this point, the present invention aims to provide an ion milling apparatus that can obtain a sample with a flat cross-sectional shape and a sufficient observation area that is advantageous for observation.

〔問題点を解決するための手段〕[Means for solving problems]

前述の目的を遠戚するため、イオンビームを照射する試
料表面の範囲内に試料の回転中心があるように配置しつ
つ、前記イオンビームの中心から前記試料表面における
回転中心が所定距離ずれるように構成した。
In order to achieve the above-mentioned purpose, the sample is arranged so that the center of rotation of the sample is within the range of the sample surface to which the ion beam is irradiated, while the center of rotation on the sample surface is shifted by a predetermined distance from the center of the ion beam. Configured.

〔作用〕[Effect]

イオンビームの強度分布はその中心が最も強い正規分布
をなしている。、そこで正規分布をなすイオンビームの
中心を試料の回転中心よりずらす。
The intensity distribution of the ion beam has a normal distribution with the strongest intensity at the center. Then, the center of the normally distributed ion beam is shifted from the center of rotation of the sample.

すると周辺部が中心より強いイオンビームを照射される
ことになる。しかしながら、周辺部は中心部より離れる
ほど単位試料面のイオンビームの照射時間の割合が少な
いので、正が1分布をなすイオンビーム強度どの関係で
バランスし中心部と周辺部のエツチングレートをバラン
スさせることが出来、従来より均一にエツチングするこ
とが可能となる。
The periphery will then be irradiated with a stronger ion beam than the center. However, the ratio of the ion beam irradiation time to the unit sample surface decreases as the distance from the center increases at the periphery, so the etching rate at the center and periphery must be balanced based on the relationship between the ion beam intensities that have a single positive distribution. This makes it possible to perform etching more uniformly than before.

〔実施例〕〔Example〕

平坦な断面形状を得るためには正規分布をなすイオン源
を試料より遠く引き離し試料面におけるエツチングレー
トを均一にすることが考えられる。
In order to obtain a flat cross-sectional shape, it is conceivable to separate the normally distributed ion source far from the sample to make the etching rate uniform on the sample surface.

しかしながら、試料の所定面積にどうたつするイオンが
弱くなるのでエツチング効果は低下することになる。そ
こで本願発明者等はイオン源は十分必要な距離内に保ち
つつも、エツチング1ノー1〜を均一にすることを試み
た。そしてイオンビームの中心を試料の回転中心からず
らして配置することを思い付いた。
However, since the ions that travel to a given area of the sample become weaker, the etching effect is reduced. Therefore, the inventors of the present invention attempted to make the etching uniformity while keeping the ion source within a sufficiently necessary distance. Then, they came up with the idea of locating the ion beam with its center offset from the center of rotation of the sample.

第1図及び第3図を用い本発明の1実施例を説明する。One embodiment of the present invention will be described using FIGS. 1 and 3.

第1図は本発明の構成の主要部を示し、第3図は本発明
の実施例の全体構成を示す。
FIG. 1 shows the main parts of the structure of the present invention, and FIG. 3 shows the overall structure of an embodiment of the invention.

第3図において、試料室2は真空排気系8によって5X
1/io’pa程度の真空に排気される。
In FIG. 3, the sample chamber 2 is
It is evacuated to a vacuum of about 1/io'pa.

この試料室2にはイオンビーム9を放出するイオンガン
4、試料1−を支持するするとともに試料1に穴があい
たことを検出するイオンビームコレクター16、試料↓
およびイオンコレクター上6を回転させるモーター10
、モーター10の支持台1王、支持台11の取り付は角
度を調整し試料面に対しイオンビーム中心がなす角度α
を調整する角度調整装置12、角度調整装置12を介し
支持台11を支持する支持金工3、モーター15により
回転軸14を回転させ回転軸14が設けられ、回転軸1
4に設けたネジ溝に果合する支持台13を矢印のごとく
」二下に移動させイオンビーム9の中心と試料上の中心
の間隔を調整する。試料室1には試料上のイオンミーリ
ング状態をwtaする観察窓3を設ける。
This sample chamber 2 includes an ion gun 4 that emits an ion beam 9, an ion beam collector 16 that supports the sample 1- and detects the presence of a hole in the sample 1, and the sample ↓
and a motor 10 that rotates the ion collector top 6
, the mounting angle of the support stand 1 and the support stand 11 of the motor 10 is adjusted so that the angle α formed by the center of the ion beam with respect to the sample surface is adjusted.
An angle adjustment device 12 for adjusting the angle adjustment device 12, a support metalwork 3 for supporting the support base 11 through the angle adjustment device 12, a rotation shaft 14 for rotating the rotation shaft 14 by a motor 15, and a rotation shaft 14 for rotating the rotation shaft 14.
The support stand 13, which fits into the thread groove provided in the ion beam 9, is moved downwards as shown by the arrow to adjust the distance between the center of the ion beam 9 and the center above the sample. The sample chamber 1 is provided with an observation window 3 for viewing the ion milling state on the sample.

イオンガン4はガスボンベ5の減圧弁で0.3Kg/c
m(ゲージ圧)程度に減圧されたガスがガス流量コンI
−ロールユニツ1−6で流量調整されて供給される。こ
の導入ガスはアルゴンガスを用いる。高電圧電源7は導
入ガスをイオン化しイオンガン4からイオンビーム9を
放出させる電源である。
The ion gun 4 is 0.3Kg/c with the pressure reducing valve of the gas cylinder 5.
The gas that has been reduced in pressure to about m (gauge pressure) is transferred to the gas flow controller I.
- The flow rate is adjusted and supplied by the roll unit 1-6. Argon gas is used as this introduced gas. The high voltage power supply 7 is a power supply that ionizes the introduced gas and causes the ion gun 4 to emit an ion beam 9.

このような装置により調整されるイオンビームと試料の
位置関係について第1図を用いて更に説明する。
The positional relationship between the ion beam and the sample adjusted by such an apparatus will be further explained using FIG. 1.

イオンガン4より放出され、試料1の表面に照射される
イオンビーム9はその中心線9Cが最も強度の強い正規
分布をなすものである。試料1−はICを中心として回
転しており、回転中心ICは、試料の表面に照射される
イオンビーム9の中心線9Cの位置からRだけ偏芯し、
ずれている。
The ion beam 9 emitted from the ion gun 4 and irradiated onto the surface of the sample 1 has a normal distribution with its center line 9C being the strongest. The sample 1- is rotating around IC, and the rotation center IC is eccentric by R from the center line 9C of the ion beam 9 irradiated onto the surface of the sample.
It's off.

この偏芯量Rは第3図におけるモーター土5を回転させ
ことにより支持台コー3を矢印のごとく」二下に移動さ
せ調整される。更に、イオンビーム9の中心1Cが試料
1の表面に苅してなす角度αは第3図における角度yA
整装置12によって調整さ−’/ − れる。
This eccentricity R is adjusted by rotating the motor base 5 in FIG. 3 and moving the support base 3 downward in the direction of the arrow. Furthermore, the angle α formed by the center 1C of the ion beam 9 on the surface of the sample 1 is the angle yA in FIG.
It is adjusted by the adjusting device 12.

本件出願の発明者等が行った実験による結果を第2図に
示すと、R=Ommの時(、)の如く、イオンビームの
中心が深くエツチングされ、すり綿状となり平坦な部分
の少ない観察しにくい試料となる。イオンビームの中心
をずらしR=: 1 m mの時試料の断面形状は(b
)の如くなり(a)の場合よりは平坦な試料を得ること
が判った。更にイオンビームの中心をずらしR=2.5
mmの時、試料の断面形状は(c)の如くなり試料はφ
5mmの平坦な試料を得ることが出来た。そして又、更
にイオンビームの中心をずらしR=3.5mmとなると
、試料の断面形状は(d)の如くなり試料は周辺部の方
がより深くエツチングされ平坦ではなくなることが判明
した。
Figure 2 shows the results of experiments conducted by the inventors of this application. When R = Omm, the center of the ion beam is deeply etched, and the ion beam becomes like a cotton ball, with few flat parts. This makes the sample difficult to analyze. When the center of the ion beam is shifted and R=: 1 mm, the cross-sectional shape of the sample is (b
), and it was found that a flatter sample was obtained than in case (a). Furthermore, shift the center of the ion beam to R = 2.5
mm, the cross-sectional shape of the sample is as shown in (c), and the sample is φ
A flat sample of 5 mm could be obtained. It was also found that when the center of the ion beam was further shifted to R = 3.5 mm, the cross-sectional shape of the sample became as shown in (d), and the sample was etched more deeply at the periphery and was no longer flat.

更に、このように第2図(Q)のごとく平坦な試料を得
るRの一般的な条件は、イオンガン4からイオンビーム
の中心線9Cが試料1の表面を照射している点までの距
slに大きく依存しており距離りを変えて実験したとこ
ろ第4図に示す結果を得た。
Furthermore, the general conditions for R to obtain a flat sample as shown in FIG. When experimenting with different distances, we obtained the results shown in Figure 4.

ただしここで、平坦しこ加工する試料表面の広さを最大
5mmφ(はぼ円形にエツチングして試料を加工するこ
とを想定した場合)とし、試料の平世度を20%として
実用に耐える範囲を実験白に求めたものである。この実
験においては、イオンビーム9の中心1Cが試料1の表
面に対してなす角度αは平坦度にさほど大きな影響が無
いことが観察されたので無視している。
However, here, the maximum width of the sample surface to be flattened is 5 mmφ (assuming that the sample is etched into a circular shape), and the degree of flatness of the sample is 20%, which is within a practical range. was determined experimentally. In this experiment, the angle α formed by the center 1C of the ion beam 9 with respect to the surface of the sample 1 was ignored because it was observed that it did not have much influence on the flatness.

第4図について説明すると、偏芯量Rは試料1の表面に
対してなす角度αがあるためイオンガン4に近い側に偏
芯した時の偏芯量(×印で示す)及びイオンガン4に遠
い側に偏芯した時の偏芯量(○印で示す)を測定してい
る。例えば、距離りが21rnmの時、イオンガン4に
近い側においては偏芯量が1.6rnmから3 、3 
m mの間であれは実用的な平坦度の試料が得られるこ
とを示している。また、イオンガン4に遠い側において
は、偏芯量が1.9mmから4.、 、 Om rnの
間であれば実用的な平坦度の試料が得られることを示し
ている。
To explain Fig. 4, the amount of eccentricity R is the amount of eccentricity when it is eccentric to the side closer to the ion gun 4 (indicated by an x mark) and the amount of eccentricity far from the ion gun 4 due to the angle α made with the surface of the sample 1. The amount of eccentricity (indicated by a circle) when eccentric to the side is measured. For example, when the distance is 21 rnm, the eccentricity on the side closer to the ion gun 4 ranges from 1.6 rnm to 3,3 rnm.
A value between mm and m indicates that a sample with a practical flatness can be obtained. Moreover, on the side far from the ion gun 4, the eccentricity ranges from 1.9 mm to 4. , , Om rn indicates that a sample with a practical flatness can be obtained.

この様な結果から一般的な偏芯量Rの範囲は第4図にお
ける上側の線R=0.15L+1と下側の線R=−0,
1L+3の間にあれば良くつぎの式の成立することが判
った。
From these results, the range of general eccentricity R is as follows: the upper line R = 0.15L+1 in Fig. 4, the lower line R = -0,
It was found that the following equation holds true as long as it is between 1L+3.

一〇、IL+3≦R≦0.15L+1−−−(1)従っ
て、イオンビームの中心線9Cはその偏芯量Rが上記式
(1)を濶たすようイオンガンからの鹿離りに応じてず
らしてやれば実用上平坦な試料を得ることが出来る。
10. IL+3≦R≦0.15L+1---(1) Therefore, the center line 9C of the ion beam is adjusted according to the distance from the ion gun so that the eccentricity R satisfies the above formula (1). By shifting, it is possible to obtain a practically flat sample.

〔発明の効果〕〔Effect of the invention〕

本発明は、その中心が最も強い正規分布をなすイオンビ
ームを試料の回転よりずらして試料に照射するように構
成したので、中心部と周辺部のエラチングレー1−をバ
ランスさせることが出来、試料を非常に平坦にエツチン
グすることが可能となった・
The present invention is configured to irradiate the sample with an ion beam whose center has the strongest normal distribution and is shifted from the rotation of the sample. Therefore, it is possible to balance the elapsed gray between the center and the periphery. It became possible to etch very flatly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部を示す図、第2図は本
発明の実施例による実験結果を示す図、第3図は本発明
の一実施例の全体構成図である。 第4図は本発明に関する実験結果を示す図である。 1 ・ 試料 2 ・・ 試料室 3 ・・・ 観察窓 4 ・・ イオンガン 5 ・・・ ガスボンベ 6 ・・・ ガス流量コントロールユニツ1〜7 ・・
・ 高電圧電源 8 ・・・ 真空排気系 9 ・・・ イオンビーム 10.15・・・モーター 11.13・・支持台 12・・・ 角度調整装置 1C・・・ 試料ICの中心線 9C・・・ イオンビーム9の中心線
FIG. 1 is a diagram showing essential parts of an embodiment of the present invention, FIG. 2 is a diagram showing experimental results according to the embodiment of the present invention, and FIG. 3 is a diagram showing the overall configuration of an embodiment of the present invention. FIG. 4 is a diagram showing experimental results regarding the present invention. 1 ・ Sample 2 ・・ Sample chamber 3 ・・ Observation window 4 ・・ Ion gun 5 ・・ Gas cylinder 6 ・・ Gas flow rate control units 1 to 7 ・・
・High voltage power supply 8...Evacuation system 9...Ion beam 10.15...Motor 11.13...Support stand 12...Angle adjustment device 1C...Center line 9C of sample IC...・ Center line of ion beam 9

Claims (10)

【特許請求の範囲】[Claims] 1.イオンビームを回転する試料に照射するイオンガン
と、前記イオンビームの照射面内にその回転中心がある
ように前期試料を位置決めし回転する試料回転装置とか
らなり、前記イオンビームの中心が前記試料表面に照射
する位置から前記試料表面における回転中心が所定距離
ずれていることを特徴とするイオンミリング装置。
1. It consists of an ion gun that irradiates a rotating sample with an ion beam, and a sample rotation device that positions and rotates the sample so that the center of rotation is within the irradiation surface of the ion beam, and the center of the ion beam is located on the sample surface. An ion milling apparatus characterized in that a rotation center on the sample surface is shifted by a predetermined distance from a position at which the sample is irradiated.
2.前記イオンビームの中心は前記試料の平面に対し所
定の角度で傾斜している請求項第1項記載のイオンミリ
ング装置。
2. 2. The ion milling apparatus according to claim 1, wherein the center of the ion beam is inclined at a predetermined angle with respect to the plane of the sample.
3.前記イオンビームの中心は前記試料の平面に対し任
意の角度で傾斜するよう傾斜させる機構をもつ請求項第
1項記載のイオンミリング装置。
3. 2. The ion milling apparatus according to claim 1, further comprising a mechanism for tilting the center of the ion beam at an arbitrary angle with respect to the plane of the sample.
4.前記所定距離を調整する機構をもつ請求項第1項記
載のイオンミリング装置。
4. The ion milling apparatus according to claim 1, further comprising a mechanism for adjusting the predetermined distance.
5.前記イオンビームは前記試料照射面において前記イ
オンビームの中心が最も強度の高い正規分布をなすもの
である請求項第1項記載のイオンミリング装置。
5. 2. The ion milling apparatus according to claim 1, wherein the ion beam forms a normal distribution where the center of the ion beam has the highest intensity on the sample irradiation surface.
6.前記イオンビームの中心と前記試料の回転中心の所
定距離Rは、記イオンビームの中心が前記イオンガンか
ら前記試料に至るまでの距離をLとすると式−0.1L
+3≦R≦0.15L+1で表される距離である請求項
第1項記載のイオンミリング装置。
6. The predetermined distance R between the center of the ion beam and the rotation center of the sample is expressed by the formula -0.1L, where L is the distance from the ion gun to the sample.
The ion milling apparatus according to claim 1, wherein the distance is expressed by +3≦R≦0.15L+1.
7.前記所定距離Rが式−0.1L+3≦R≦0.15
L+1を満たす範囲で調整する機構をもつ請求項第6項
記載のイオンミリング装置。
7. The predetermined distance R is expressed by the formula -0.1L+3≦R≦0.15
7. The ion milling apparatus according to claim 6, further comprising a mechanism for adjusting within a range that satisfies L+1.
8.前記イオンビームの中心は前記試料の平面に対し所
定の角度で傾斜している請求項第6項記載のイオンミリ
ング装置。
8. 7. The ion milling apparatus according to claim 6, wherein the center of the ion beam is inclined at a predetermined angle with respect to the plane of the sample.
9.前記イオンビームの中心を前記試料の平面に対し任
意の角度で傾斜させる機構を有している請求項第6項記
載のイオンミリング装置。
9. 7. The ion milling apparatus according to claim 6, further comprising a mechanism for tilting the center of the ion beam at an arbitrary angle with respect to the plane of the sample.
10.前記イオンビームの中心は前記試料の平面に対し
所定の角度で傾斜させると共に所定距離Rは前記イオン
ガンに近い側及び遠い側のいずれに対しても適用される
構成である請求項第6項記載のイオンミリング装置。
10. 7. The ion beam according to claim 6, wherein the center of the ion beam is inclined at a predetermined angle with respect to the plane of the sample, and the predetermined distance R is applied to both sides near and far from the ion gun. Ion milling equipment.
JP1170380A 1989-07-01 1989-07-01 Ion milling method and device Expired - Lifetime JPH0733589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170380A JPH0733589B2 (en) 1989-07-01 1989-07-01 Ion milling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170380A JPH0733589B2 (en) 1989-07-01 1989-07-01 Ion milling method and device

Publications (2)

Publication Number Publication Date
JPH0336285A true JPH0336285A (en) 1991-02-15
JPH0733589B2 JPH0733589B2 (en) 1995-04-12

Family

ID=15903865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170380A Expired - Lifetime JPH0733589B2 (en) 1989-07-01 1989-07-01 Ion milling method and device

Country Status (1)

Country Link
JP (1) JPH0733589B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
JP2003068243A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Ion milling device
WO2011093316A1 (en) * 2010-01-28 2011-08-04 株式会社日立ハイテクノロジーズ Ion milling device, sample processing method, processing device, and sample drive mechanism
US8267476B2 (en) 2007-11-09 2012-09-18 Toyota Boshoku Kabushiki Kaisha Vehicle seat reclining device
US8285002B2 (en) 2004-07-30 2012-10-09 Canon Kabushiki Kaisha Image processing apparatus and method, image sensing apparatus, and program
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
KR20190020790A (en) 2016-08-09 2019-03-04 가부시키가이샤 히다치 하이테크놀로지즈 Charged particle beam device
WO2019168106A1 (en) * 2018-02-28 2019-09-06 株式会社日立ハイテクサイエンス Thin-sample-piece fabricating device and thin-sample-piece fabricating method
WO2019244331A1 (en) * 2018-06-22 2019-12-26 株式会社日立ハイテクノロジーズ Ion milling device
KR20200096619A (en) * 2018-02-28 2020-08-12 주식회사 히타치하이테크 Ion milling device and ion source adjustment method of ion milling device
US11004652B2 (en) 2017-09-15 2021-05-11 Hitachi High-Tech Corporation Ion milling device
KR20210056407A (en) 2018-11-12 2021-05-18 주식회사 히타치하이테크 Image forming method and image forming system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328530A (en) * 1976-08-30 1978-03-16 Hitachi Ltd Method of etching surfaces of solids
JPS6183031U (en) * 1984-11-07 1986-06-02
JPS63166978A (en) * 1986-12-26 1988-07-11 Fujitsu Ltd Method for preparing sample for electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328530A (en) * 1976-08-30 1978-03-16 Hitachi Ltd Method of etching surfaces of solids
JPS6183031U (en) * 1984-11-07 1986-06-02
JPS63166978A (en) * 1986-12-26 1988-07-11 Fujitsu Ltd Method for preparing sample for electron microscope

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
JP2003068243A (en) * 2001-08-28 2003-03-07 Hitachi Ltd Ion milling device
US8285002B2 (en) 2004-07-30 2012-10-09 Canon Kabushiki Kaisha Image processing apparatus and method, image sensing apparatus, and program
US8267476B2 (en) 2007-11-09 2012-09-18 Toyota Boshoku Kabushiki Kaisha Vehicle seat reclining device
JP2011154920A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Ion milling device, sample processing method, processing device, and sample driving mechanism
CN102714125A (en) * 2010-01-28 2012-10-03 株式会社日立高新技术 Ion milling device, sample processing method, processing device, and sample drive mechanism
US20120298884A1 (en) * 2010-01-28 2012-11-29 Hitachi High-Technologies Corporation Ion Milling Device, Sample Processing Method, Processing Device, and Sample Drive Mechanism
WO2011093316A1 (en) * 2010-01-28 2011-08-04 株式会社日立ハイテクノロジーズ Ion milling device, sample processing method, processing device, and sample drive mechanism
JP2014139938A (en) * 2010-11-05 2014-07-31 Hitachi High-Technologies Corp Ion milling system
US10832889B2 (en) 2016-08-09 2020-11-10 Hitachi High-Tech Corporation Charged particle beam device
KR20190020790A (en) 2016-08-09 2019-03-04 가부시키가이샤 히다치 하이테크놀로지즈 Charged particle beam device
DE112017007863B4 (en) 2017-09-15 2022-10-06 Hitachi High-Technologies Corporation ion milling device
US11004652B2 (en) 2017-09-15 2021-05-11 Hitachi High-Tech Corporation Ion milling device
CN111065907A (en) * 2018-02-28 2020-04-24 日本株式会社日立高新技术科学 Sheet sample preparation device and sheet sample preparation method
KR20200096619A (en) * 2018-02-28 2020-08-12 주식회사 히타치하이테크 Ion milling device and ion source adjustment method of ion milling device
US11199480B2 (en) 2018-02-28 2021-12-14 Hitachi High-Tech Science Corporation Thin-sample-piece fabricating device and thin-sample-piece fabricating method
JP2022081571A (en) * 2018-02-28 2022-05-31 株式会社日立ハイテク Ion milling device and ion source adjustment method thereof
WO2019168106A1 (en) * 2018-02-28 2019-09-06 株式会社日立ハイテクサイエンス Thin-sample-piece fabricating device and thin-sample-piece fabricating method
KR20220154249A (en) * 2018-02-28 2022-11-21 주식회사 히타치하이테크 Ion milling device and method for adjusting ion source of ion milling device
CN111065907B (en) * 2018-02-28 2023-11-28 日本株式会社日立高新技术科学 Sample manufacturing device and sample sheet manufacturing method
WO2019244331A1 (en) * 2018-06-22 2019-12-26 株式会社日立ハイテクノロジーズ Ion milling device
JPWO2019244331A1 (en) * 2018-06-22 2021-07-01 株式会社日立ハイテク Ion milling device
US11894213B2 (en) 2018-06-22 2024-02-06 Hitachi High-Tech Corporation Ion milling device
KR20210056407A (en) 2018-11-12 2021-05-18 주식회사 히타치하이테크 Image forming method and image forming system
US11532454B2 (en) 2018-11-12 2022-12-20 Hitachi High-Tech Corporation Imaging method and imaging system

Also Published As

Publication number Publication date
JPH0733589B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH0336285A (en) Ion milling device
US11961722B2 (en) Method and apparatus for controlling stress variation in a material layer formed via pulsed DC physical vapor deposition
US4528474A (en) Method and apparatus for producing an electron beam from a thermionic cathode
EP1146139A1 (en) Sputtering apparatus
US3943047A (en) Selective removal of material by sputter etching
JP7350916B2 (en) Ion milling device and ion source adjustment method for ion milling device
KR20040058362A (en) Uniformity control for plasma doping systems
JPH07166346A (en) Magnetron sputtering device
JP2912864B2 (en) Magnetron unit for sputtering equipment
JPH06181187A (en) Sputtering system
KR100278158B1 (en) High vacuum sputtering device using small sputtering target
JPS63162862A (en) Sputtering device
JP2013101851A (en) Ion milling device
WO2020080016A1 (en) Plasma film formation apparatus and plasma film formation method
JP3679113B2 (en) Layer deposition method and apparatus
JPH02290971A (en) Sputtering device
WO2021152726A1 (en) Ion milling device
JP3172890B2 (en) Magnetron sputtering method
JPH10188873A (en) Ion milling device
WO2023002674A1 (en) Focused ion beam device
JP2707080B2 (en) Ion implantation method and apparatus
JP2000345336A (en) Device for magnetron sputtering
JPS61124568A (en) Ion beam sputter device
JP2008124281A (en) Dry etching apparatus and dry etching method
KR20210002008A (en) Sputtering apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 15