JPH0336252B2 - - Google Patents

Info

Publication number
JPH0336252B2
JPH0336252B2 JP57163436A JP16343682A JPH0336252B2 JP H0336252 B2 JPH0336252 B2 JP H0336252B2 JP 57163436 A JP57163436 A JP 57163436A JP 16343682 A JP16343682 A JP 16343682A JP H0336252 B2 JPH0336252 B2 JP H0336252B2
Authority
JP
Japan
Prior art keywords
conductor
compression
stranded
wire
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57163436A
Other languages
Japanese (ja)
Other versions
JPS5954111A (en
Inventor
Susumu Koishihara
Katsuyuki Isaka
Fumio Yoshida
Kyoshi Sanbonsugi
Tsutomu Tanji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16343682A priority Critical patent/JPS5954111A/en
Publication of JPS5954111A publication Critical patent/JPS5954111A/en
Publication of JPH0336252B2 publication Critical patent/JPH0336252B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、電力ケーブルにおける撚線導体とり
わけ横断面型又は扇型に成形された素線を撚合せ
又は集合した撚線導体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a stranded conductor in a power cable, particularly a stranded conductor in which strands shaped in a cross-sectional shape or in a fan shape are twisted or assembled.

一般に、電力ケーブルの撚線導体は、横断面円
形の所謂丸型素線が用いられており、これの撚合
せ又は集合後の完成された撚線導体の占績率は、
78.5%(π/4に相当)と低く、その結果、導体
外径が大きくなり、特に導体の上に多くの被覆を
施す電力ケーブル等では、非常に不経済なものと
なつている。
Generally, so-called round wires with a circular cross section are used for the stranded conductors of power cables, and the occupation rate of the completed stranded conductors after twisting or gathering is as follows:
It is as low as 78.5% (equivalent to π/4), and as a result, the outer diameter of the conductor becomes large, making it extremely uneconomical, especially in power cables and the like where a large amount of coating is applied on the conductor.

従来、かかる問題を克服するために、次の二つ
の方法が為されていた。
Conventionally, the following two methods have been used to overcome this problem.

先ず、第一の方法としては、丸型素線を撚合せ
又は集合して所定の撚線導体とした後で、この導
体をダイス又はロールによつて圧縮加工し、もつ
て占積率の向上に資したものである。このものに
よる占積率は、90%程度(略88〜92%)まで向上
することができる。このときの占積率の向上分即
ち、包絡内面積の減少分に相当する圧縮率は略10
〜15%である。圧縮率をそれ以上高めようとして
も、素線がただダイス又はロールの後方に伸びる
だけで、占積率の向上につながらないことが経験
上知られている。
First, the first method involves twisting or gathering round wires to form a predetermined stranded wire conductor, and then compressing this conductor using dies or rolls, thereby improving the space factor. This contributed to the The space factor with this can be improved to about 90% (approximately 88 to 92%). At this time, the compression ratio corresponding to the improvement in the space factor, that is, the reduction in the area within the envelope, is approximately 10
~15%. It is known from experience that even if an attempt is made to increase the compression ratio any further, the strands simply extend to the rear of the die or roll, and this does not lead to an improvement in the space factor.

上記のものは、例えば特公昭7−2074号、特開
昭50−147585号公報に開示されているが、これら
のものでは、占積率が上記したように、圧縮加工
後の占積率が90%程度までしか向上できず、この
ものによつては、コンパクト化を図るには自ら限
界があつた。
The above-mentioned products are disclosed in, for example, Japanese Patent Publication No. 7-2074 and Japanese Patent Application Laid-open No. 50-147585, but in these products, the space factor after compression processing is This could only be improved to about 90%, and there was a limit to how compact this product could be.

そこで、上記した占積率向上の限界を打破する
ものとして、次の第二の方法が提案されている。
Therefore, the following second method has been proposed to overcome the above-mentioned limitations on improving the space factor.

すなわち、第二の方法は、第1図に例示したよ
うに、撚線導体を構成する素線1をその撚合せ又
は集合する前に予め横断面平型又は扇型に成形
し、この成形素線を集合又は撚合せることによ
り、占積率を大幅に向上させた撚線導体とするも
のである。このものによれば、占積率は、略95〜
98%と飛躍的に向上させることができ、上記第一
のものにとつて変わり得るが、その一方で、撚線
導体として完成した後で、成形素線相互に緩みや
笑いが生じて導体接続に悪影響を及ぼしたり、
又、時には成形素線のエツジが立つて導体の上に
施す被覆に致命的な悪影響を及ぼすことから、従
来、この撚線導体を用いた電力ケーブルの実用化
が立ち遅れていた。
That is, the second method, as illustrated in FIG. By gathering or twisting the wires, a stranded wire conductor with a significantly improved space factor can be obtained. According to this, the occupancy factor is approximately 95~
This can be dramatically improved to 98%, which can be compared to the first thing above, but on the other hand, after the stranded wire conductor is completed, the formed wires may become loose or loose, resulting in poor conductor connection. or have a negative impact on
In addition, the edges of the formed strands sometimes have a fatal adverse effect on the coating applied to the erect conductor, so that the practical application of power cables using this stranded conductor has been delayed.

上記第二の方法によるものは、例えば、特公昭
34−6337号公報に開示されている。
The method according to the second method is, for example,
It is disclosed in Publication No. 34-6337.

しかして、同公報にも開示されているもので
は、横断面円形の丸型素線を用いてこれを異形ダ
イスを通すことにより、完成後の圧縮導体として
の最終形状の角形に予め成形し、しかる後に丸型
ダイスによつて成形された素線を集合せしめて占
積率の高い丸型導体を得るものであり、素線の成
形と集合とを同一プロセスで行うものである。
However, in the method disclosed in the same publication, a round wire with a circular cross section is passed through a deformed die to be preformed into a final square shape as a completed compressed conductor. Thereafter, the wires formed by the round die are assembled to obtain a round conductor with a high space factor, and the shaping and assembly of the wires are performed in the same process.

かかる方法によつて得られた丸型導体では、丸
型素線を最終の完成された姿として成形した後に
集合するものであるから、集合した後には何等の
特別な加工が加えられていない。従つて、このも
のにより享受できる利点は、占積率向上の素線の
笑い防止に留められている。
The round conductors obtained by this method are assembled after the round wires are shaped into a final completed form, so no special processing is applied after the round conductors are assembled. Therefore, the advantages that can be enjoyed by this method are limited to improving the space factor and preventing the strands from collapsing.

以上、説明した通り、撚線導体の占積率を向上
せしめたものとしては、従来から丸型素線を集合
(撚合せ)した後に圧縮加工して得られる第一の
方法による撚線導体と、予め平型、扇型或いは角
形に成形した成形素線としてこれを集合(撚合
せ)して得られる第二の方法による撚線導体とが
提案されており、占積率の向上という観点からは
第二の方法による撚線導体が圧倒的に優れてい
る。
As explained above, the first method that improves the space factor of stranded conductors is the first method, which is obtained by gathering (twisting) round wires and then compressing them. A second method has been proposed in which a stranded wire conductor is obtained by assembling (twisting) shaped wires that have been previously shaped into a flat, fan-shaped, or square shape, and from the viewpoint of improving the space factor. The stranded wire conductor made by the second method is overwhelmingly superior.

更に、この撚線導体によれば、成形素線が所謂
楔型を呈することから、第1図に示すように中空
部10を有する構造にでき、これを油通路として
利用すれば、導体自身が油通路を確保することと
なつて、油通路確保用スパイラル管を省略した
OFケーブルを提供することができる。
Furthermore, according to this stranded wire conductor, since the formed wire has a so-called wedge shape, it can be structured to have a hollow part 10 as shown in FIG. 1, and if this is used as an oil passage, the conductor itself can be In order to secure the oil passage, the spiral pipe for securing the oil passage was omitted.
OF cable can be provided.

しかしながら、上記のように優れた特長があり
ながら、前にも述べたように、完成した撚線導体
において、成形素線に有する残留応力等の影響に
から成形素線相互にゆるみや笑いが生じて、導体
接続作業を困難にしたり、又、第6図に例示して
いるように、成形素線1のエツジ1eが立ち、こ
の導体の上に施す被覆に対して突起を形成する状
態となり、該被覆に致命的な悪影響を及ぼすとい
う欠陥があつた。特に、この種の撚線導体を高電
圧電力ケーブルに用いる場合には、当該成形素線
のエツジ立ち等の欠陥は、電極不整箇所となつて
電界集中を引き起こしその上に施す絶縁被覆の電
気的絶縁強度を著しく低下せしめることがあり、
これが電力ケーブルとして実用化を妨げる大きな
要因となつていた。従つて、従来の主に第一の例
による撚線導体を用いて電力ケーブルの実用化が
なされてきた。
However, despite having the above-mentioned excellent features, as mentioned earlier, in the completed stranded wire conductor, the formed strands may become loose or loose due to the influence of residual stress in the formed strands. This may make the conductor connection work difficult, or, as illustrated in FIG. 6, the edge 1e of the formed wire 1 will stand up and form a protrusion on the coating applied to the conductor. There was a defect that had a fatal adverse effect on the coating. In particular, when this type of stranded conductor is used in high-voltage power cables, defects such as raised edges in the formed strands become irregularities in the electrodes, causing electric field concentration and causing electrical damage to the insulation coating applied over the stranded conductors. This may significantly reduce the insulation strength.
This was a major factor preventing its practical use as a power cable. Therefore, conventional power cables have been put into practical use mainly using stranded conductors according to the first example.

本発明は、以上の実情を踏まえてなされたもの
であつて、横断面平型又は扇型の成形素線を集合
又は撚合せる撚線導体、即ち、第二の方法により
得られる撚線導体を電力ケーブルの導体として採
用することを根底とし、そして当該第二の方法に
より得られた撚線導体の欠陥つまりゆるみ、笑い
を防止することは勿論、エツジ立ちをも生じさせ
ないように改善した撚線導体のすることにより、
より一層のコンパクト化に対応できる電力ケーブ
ルの実用化を推進しようとするものである。従つ
て、その点が本発明の解決すべき課題(目的)と
なるものである。
The present invention has been made based on the above circumstances, and is directed to a stranded wire conductor in which shaped wires having a flat or fan-shaped cross section are assembled or twisted, that is, a stranded wire conductor obtained by the second method. The stranded wire is based on its use as a conductor of power cables, and is improved to prevent defects such as loosening and laughter in the stranded wire conductor obtained by the second method, as well as to prevent the occurrence of edges. By what the conductor does,
The aim is to promote the practical use of power cables that can be made even more compact. Therefore, this point is the problem (object) to be solved by the present invention.

そして、本発明によれば、本願発明者等の日夜
を分かたぬ試行錯誤と努力の結果、遂に当該成形
素線による撚線導体の持つ欠陥を解消できる解決
方法を見出した。
According to the present invention, as a result of tireless trial and error and efforts by the inventors of the present invention, they have finally found a solution that can eliminate the defects in the stranded wire conductor made of the shaped strands.

その方法とは、横断面略平型又は扇型の成形素
線によつてこれの撚合せ又は集合により構成され
た撚線導体では、占積率の点からすれば十分であ
つてそれ以上何等の加工を加えることを要しない
という常識を打ち破り、占積率向上状態に撚合せ
又は集合したる後に、敢えて軽度の圧縮を加える
ことにより、各成形素線に対して塑性変形を生じ
させるものである。
The method is that a stranded wire conductor constructed by twisting or assembling shaped wires with a substantially flat or fan-shaped cross section is sufficient from the point of view of the space factor, and there is no need for anything more. Breaking away from the common sense that there is no need for additional processing, we intentionally apply slight compression to each formed strand after it has been twisted or assembled to improve the space factor, causing plastic deformation to occur in each formed strand. be.

かかる軽度の圧縮は、従来の丸型素線による撚
線導体に対する占積率向上の観点からなされる圧
縮加工とは次元が異なり、平型又は扇型素線が既
に保有する占積率向上への有為性に影響を及ぼす
ことなく、該成形素線の残留応力を消滅せしめる
という観点からなされるものである。従つて、成
形素線には、塑性変形が加えられても、その原形
を保有させるという、相反するような二つの条件
を満足させた上で加工を施すものである。
Such mild compression is different from conventional compression processing performed from the perspective of improving the space factor of stranded wire conductors using round strands, and it is not possible to improve the space factor that flat or fan-shaped strands already have. This is done from the viewpoint of eliminating residual stress in the formed wire without affecting the significance of the wire. Therefore, processing is performed on the formed wire after satisfying two contradictory conditions: retaining its original shape even if plastic deformation is applied to it.

そして、上記の条件を満足する軽度の圧縮につ
いては、発明者等が種々検討し失敗を繰り返した
挙句、或る特定範囲のみが有効であることを初め
て突き止めたのである。
As for light compression that satisfies the above conditions, the inventors have made various studies and, after repeated failures, have discovered for the first time that it is effective only within a certain specific range.

即ち、圧縮の程度は、成形素線が撚合せ又は集
合したる圧縮を加えることを前提として、次の
(1)、(2)及び(3)の範囲とする。
In other words, the degree of compression is as follows, assuming that the formed wires are compressed by twisting or gathering.
(1), (2) and (3).

(1) 圧縮後の撚線導体の外径(第2図のロにおけ
るd′参照)が、圧縮加工前の外径(第2図のイ
におけるd参照)に対して0.1〜2.5%減少する
範囲 (2) 圧縮加工後の撚線導体の包絡内面積つまり、
第2図のニにおいてハツチングされた面積
S0′が、圧縮加工前包絡内面積つまり第2図の
ニにおいてハツチングされた面線S0に対して、
0.2〜5.0%減少する範囲 (3) 圧縮加工後の撚線導体の導体実断面積ΣS′=
S1′+S2′+S3′+…Sn′(第2図のヘ参照)が圧縮
前の導体実断面積ΣS=S1+S2+S3+…Sn(第2
図のホ参照)に対して1.0〜5.0%減少する範
囲。
(1) The outer diameter of the stranded conductor after compression (see d' in B in Figure 2) is reduced by 0.1 to 2.5% compared to the outer diameter before compression (see d in A in Figure 2). Range (2) The area within the envelope of the stranded wire conductor after compression processing, that is,
Area hatched in d of Figure 2
S 0 ′ is the inner envelope area before compression processing, that is, with respect to the hatched surface line S 0 in d of Fig. 2,
Range of 0.2 to 5.0% reduction (3) Actual conductor cross-sectional area of stranded wire conductor after compression processing ΣS′=
S 1 ′+S 2 ′+S 3 ′+…Sn′ (see Fig. 2) is the actual conductor cross-sectional area before compression ΣS=S 1 +S 2 +S 3 +…Sn (second
1.0 to 5.0% reduction range compared to (see E in the figure).

かかる特定範囲内で選ばれる最適圧縮程度は、成
形素線の構成、形状、材質によつて異なる。
The optimum degree of compression selected within such a specific range varies depending on the configuration, shape, and material of the formed wire.

しかして、成形素線の構成、形状、材質の如何
を問わず、圧縮の程度が導体外径で0.1%、導体
包絡内面積で0.2%、導体実断面積で1.0%減少す
る域を下回る程に小さ過ぎると、各成形素線の残
留応力が十分に消滅させることができず、緩みや
笑い防止は達成されていても、エツジ立ちが以前
として生ずる傾向を示す。
Therefore, regardless of the composition, shape, or material of the formed wire, the degree of compression falls below the range where the conductor outer diameter decreases by 0.1%, the conductor envelope inner area decreases by 0.2%, and the conductor actual cross-sectional area decreases by 1.0%. If it is too small, the residual stress in each formed strand cannot be sufficiently eliminated, and even if loosening and breakage prevention is achieved, edge standing still tends to occur.

一方、圧縮の程度が導体外径で2.5%、導体包
絡内面積で5.0%、導体実断面積で5.0%減少する
域を越えてさらに大きく減少させる程に大きくし
た場合には、加工硬化により完成された撚線導体
の曲げ剛性が増加し、ケーブル本来に求められる
可撓性が不十分となつて、曲げなどを伴う取り扱
い性が極めて悪くなる。
On the other hand, if the degree of compression exceeds the range where the conductor outer diameter is reduced by 2.5%, the conductor envelope inner area is reduced by 5.0%, and the conductor actual cross-sectional area is reduced by 5.0%, and the degree of compression is increased to the extent that it is further reduced, work hardening will complete the process. The bending rigidity of the stranded conductor increases, and the flexibility originally required of the cable becomes insufficient, resulting in extremely poor handling when bending or the like.

このように、本発明における圧縮の程度は、従
来の第一の方法により得られた撚線導体における
ような、占積率向上を目的として撚線導体に対し
て圧縮率が、導体外径の減少率で5〜8%、包絡
内面積で減少率で10〜15%、導体実断面積の減少
率で5%を越える範囲になることはあり得ず、独
自に究明されたものである。
As described above, the degree of compression in the present invention is such that the compression rate is the same as the outer diameter of the stranded wire conductor for the purpose of improving the space factor, as in the stranded wire conductor obtained by the first conventional method. It is impossible for the reduction rate to exceed 5 to 8%, the area within the envelope to be reduced by 10 to 15%, and the reduction rate for the actual cross-sectional area of the conductor to exceed 5%, which has been independently determined.

尚、軽度の圧縮加工で、それにより成形素線が
容易に塑性変形が生じせしめ且つ圧縮が過度にな
つた場合でも完成後の導体の剛性を著しく増加さ
せることがないようにするためには、成形素線と
しては焼鈍材を用いることが望ましい。
In addition, in order to ensure that the formed wire does not easily undergo plastic deformation due to mild compression processing, and that even if compression becomes excessive, the rigidity of the completed conductor does not increase significantly. It is desirable to use an annealed material as the shaped wire.

軽度の圧縮を加える具体的手段としては、硬い
ダイス、ロール又はその他の手段が適用可能であ
る。
Specific means for applying mild compression include hard dies, rolls, or other means.

第3図及び第4図を引用し、本発明の一実施例
を説明する。この実施例は、成形素線21,2
2,23…の撚合せ又は集合による層が2層から
なり、且つ中空部200を有する、所謂中空撚合
導体の場合である。
An embodiment of the present invention will be described with reference to FIGS. 3 and 4. In this embodiment, the shaped wires 21, 2
This is the case of a so-called hollow twisted conductor which has two layers formed by twisting or aggregating layers 2, 23, . . . and has a hollow portion 200.

即ち、横断面扇型の成形素線21,22,23
…が撚合せられて、それらの楔効果により中心部
に油通路として利用できる中空部200を形成し
つつ所定の撚線導体20が形成されている。
That is, formed wires 21, 22, 23 having a fan-shaped cross section
... are twisted together, and a predetermined twisted wire conductor 20 is formed while forming a hollow portion 200 in the center that can be used as an oil passage due to their wedge effect.

各成形素線21,22,23…に対しては、そ
れらの撚合せの後に前述した(1)、(2)及び(3)で規定
した範囲の中から選択された程度の圧縮が加えら
れて、各成形素線にその原形を保持した状態での
塑性変形が与えられることによつて、各成形素線
の残留応力を消滅させてあるものである。
After twisting, each formed wire 21, 22, 23... is compressed to a degree selected from the range specified in (1), (2), and (3) above. The residual stress in each formed strand is eliminated by applying plastic deformation to each formed strand while maintaining its original shape.

このようにするための具体的手段の一例が、第
4図に示してある。即ち、横断面扇型の成形素線
21,22,23…は、撚合機(図示せず)に装
備されたボビン41,42,43…から撚り出さ
れ、金属製ダイス40に集束されて、各成形素線
は当該ダイス40にて撚合せられたる後に直ちに
金属ダイス400によつて前記の(1)、(2)及び(3)で
規定した範囲内で軽度に圧縮加工されて塑性変形
されるものである。そして、上記のようにして構
成される1層目が構成されたならば、該層の上に
2層目を構成する横断面扇型の成形素線210,
220,230…が別な金属製ダイス41によつ
て集束されて1層目の撚合素線周上に撚合せら
れ、その後直ちに金属製ダイス410によつて前
記の(1)、(2)及び(3)で規定した範囲内で軽度に圧縮
加工されて塑性変形されるものである。
An example of a specific means for doing so is shown in FIG. That is, the formed wires 21, 22, 23... having a fan-shaped cross section are twisted from bobbins 41, 42, 43... equipped in a twisting machine (not shown), and are bundled into a metal die 40. After each formed wire is twisted in the die 40, it is immediately subjected to slight compression processing in the metal die 400 within the range specified in (1), (2), and (3) above to undergo plastic deformation. It is something that will be done. Once the first layer configured as described above is constructed, the second layer is formed on top of the formed wire 210 having a fan-shaped cross section,
220, 230... are focused by another metal die 41 and twisted on the circumference of the first layer of twisted strands, and immediately thereafter, by the metal die 410, the above-mentioned (1), (2) and (3), which undergoes slight compression processing and plastic deformation within the range specified in (3).

第3図は、そのようにして製作された撚線導体
20を用いて、これの周上に、遮蔽用カーボン紙
による内部遮蔽層S1、絶縁紙による絶縁層Z、遮
蔽用カーボン紙、金属化成紙による外部遮蔽層S2
を、そしてさらに金属シースSH、外装Bを順次
施して構成されたOFケーブルとして構成した例
である。このようなOFケーブルによれば、成形
素線の緩みや笑いが無くなるので、導体上の全て
の被覆を剥ぎ取つて剥き出しにした導体20を切
断しても、素線がバラバラにならず、導体接続作
業を容易に行うことができる。のみならず、成形
素線のエツジ立ちが無くなるので、被覆特に絶縁
層Zに対して電界集中を惹起させるような突起を
形成せずに済み、絶縁層Zに所定の電気的絶縁強
度を保有させることが可能となる。
FIG. 3 shows a stranded wire conductor 20 manufactured in this way, and on its circumference an internal shielding layer S 1 of shielding carbon paper, an insulating layer Z of insulating paper, shielding carbon paper, and metal. External shielding layer S 2 with synthetic paper
This is an example in which an OF cable is constructed by sequentially applying a metal sheath SH and a sheath B. According to such an OF cable, there is no looseness or looseness of the formed strands, so even if the conductor 20, which is exposed by stripping off all the covering on the conductor, is cut, the strands will not fall apart and the conductor Connection work can be easily performed. In addition, since the edges of the formed strands are eliminated, there is no need to form protrusions that would cause electric field concentration on the coating, especially on the insulating layer Z, and the insulating layer Z can maintain a predetermined electrical insulation strength. becomes possible.

上記の効能を確認する意味で、発明者等は、銅
製の扇型成形素線を用いて、導体断面積が630mm2
の中空導体による130KVOFケーブル(油浸紙絶
縁油入電力ケーブル)を、上記実施例に基づくも
のと、従来の方法によるものとの2種類を製作し
た。そして、両者はともに、遮蔽用カーボン紙、
絶縁紙(9mm厚さ)、遮蔽用カーボン紙、金属化
成紙を順次施し、真空乾燥したる後に鉛被を施
し、鉛被内に絶縁油を注油したる後に、内圧補強
として金属テープを巻き付け、更に防食層として
ポリ塩化ビニル被覆を施した。
In order to confirm the above-mentioned effects, the inventors used a copper fan-shaped wire with a conductor cross-sectional area of 630 mm 2
Two types of 130KVOF cables (oil-immersed paper insulated oil-filled power cables) using hollow conductors were manufactured: one based on the above example and one using a conventional method. And both of them are shielding carbon paper,
Insulating paper (9mm thick), shielding carbon paper, and metal chemical paper were applied in sequence, and after vacuum drying, a lead coating was applied, and after lubricating the lead coating with insulating oil, a metal tape was wrapped to reinforce the internal pressure. Furthermore, a polyvinyl chloride coating was applied as an anti-corrosion layer.

これらのケーブルの電気的絶縁強度を確認する
ために、雷インパルス電圧による絶縁破壊試験を
実施した。試験方法は、常温にて負極性雷インパ
ルス電圧を400KVから50KV昇圧で各々の電圧を
3回ずつ印加する方法をとつた。その試験の結
果、次の通りであつた。
In order to confirm the electrical insulation strength of these cables, a dielectric breakdown test using lightning impulse voltage was conducted. The test method was to apply a negative lightning impulse voltage from 400KV to 50KV three times at room temperature. The results of the test were as follows.

従来の中空導体によるもの→550KV2回目で
絶縁破壊。
Conventional hollow conductor → Dielectric breakdown at 550KV second time.

本発明の中空導体によるもの→800KV3回目
で絶縁破壊。
Due to the hollow conductor of the present invention → dielectric breakdown at 800KV for the third time.

上記の結果から明らかなように、本発明に基づ
く中空導体使用の電力ケーブルによれば、その電
気的絶縁強度が従来のものに比べて、約45%向上
していることが認められた。これは132KVOFケ
ーブルに要求される雷インパルス電圧に対する当
該絶縁強度は、一般に650KVであるところから、
本発明によるケーブルは、その要求を十分満足す
る結果が得られ、これを実用に供し得ることが確
認された。
As is clear from the above results, it was confirmed that the electrical insulation strength of the power cable using a hollow conductor according to the present invention was improved by about 45% compared to the conventional cable. This is because the insulation strength against lightning impulse voltage required for 132KVOF cable is generally 650KV.
It was confirmed that the cable according to the present invention fully satisfies the requirements and can be put to practical use.

上記のような電気的強度の差が何故生ずるのか
を確認するため、試験が完了した上記2種類のケ
ーブルを解体し、内部の構造を仔細に観察してみ
た。すると、従来のものによる導体には、素線相
互の緩みと笑いが僅かに認められる上に、第6図
に示したように、成形素線1にエツジ1eが立つ
傾向がみられ、そして絶縁破壊点が成形素線のエ
ツジの立つた部分に一致して生じていた。これは
完成された撚線導体において、残留応力が完全に
消滅してないがために生じた致命的な悪影響であ
ると考察される。他方、本発明による導体には、
素線相互の緩みや笑いが全くみられないのは勿論
のこと、成形素線のエツジが立つという兆候が全
く認められなかつた。
In order to confirm why the above-mentioned difference in electrical strength occurs, we disassembled the two types of cables mentioned above and carefully observed their internal structures. As a result, in the conventional conductor, not only the wires were slightly loose and loose, but also the formed wire 1 tended to have an edge 1e as shown in Fig. 6, and the insulation The breaking point occurred at the edge of the formed wire. This is considered to be a fatal adverse effect caused by residual stress not completely disappearing in the completed stranded wire conductor. On the other hand, the conductor according to the invention includes:
Of course, there was no evidence of any looseness or looseness between the strands, and there was also no sign that the edges of the formed strands were standing.

尚更に、本発明のケーブルを用いて、導体接続
作業に供するため、導体を露出して切断してみた
が、各成形素線がゆるんだりほぐれるといつた現
象は皆無であり、又、剛性が大きく取り扱いが困
難となることも認められなかつた。そして所定の
導体接続作業を円滑に進行することができた。
Furthermore, when using the cable of the present invention to expose and cut the conductor for use in conductor connection work, there was no phenomenon that each formed wire became loose or unraveled, and the rigidity was It was also not found that handling would be significantly difficult. In addition, the specified conductor connection work was able to proceed smoothly.

これらの結果からいえることは、従来のものに
比べて、本発明によるケーブル即ち、成形した素
線を集合(撚合せ)する過程で特定範囲の軽度の
圧縮加工を施して、各成形素線に軽度の塑性変形
を生ぜしめることによつて、初めて素線の残留応
力が完全に消滅することができたことの裏付けが
なされ、本発明による軽度の圧縮加工による効果
の重要性を認識できた。
What can be said from these results is that compared to conventional cables, the cable according to the present invention, that is, the molded wires are subjected to a slight compression process in a specific range in the process of gathering (twisting) them, and each molded wire is It was confirmed that residual stress in the strands could be completely eliminated only by causing mild plastic deformation, and the importance of the effect of mild compression processing according to the present invention was recognized.

このようなことから、スパイラル管を要せずに
自己の中空部を油通路としてなり、而も占積率が
95〜98%というこの種導体の優れな特長を遺憾無
く発揮したOFケーブルの実現化に成功すること
ができたものであり、経済効果は非常に大きいも
のといえる。
Because of this, the hollow part of the self can be used as an oil passage without the need for a spiral pipe, and the space factor can be reduced.
We were able to successfully create an OF cable that fully exploits the excellent features of this type of conductor, with a ratio of 95 to 98%, and the economic effects can be said to be extremely large.

尚、以上の実施例では、中空導体とする例につ
いて述べてきたが、本発明によれば充実型導体に
対しても適用可能である。即ち、第5図にその例
を示しているように、中央の横断面円形の丸型導
体500を軸として、その周上に上述した通りの
成形素線を撚合配置するものである。本実施例に
おいて、第3図と同一要素部分は、それに付与し
た符号を引用してあるので、これらの要素の特徴
については前述した説明を参照されたい。
In the above embodiments, hollow conductors have been described, but the present invention is also applicable to solid conductors. That is, as an example is shown in FIG. 5, the above-described formed wires are twisted and arranged around a central round conductor 500 having a circular cross section as an axis. In this embodiment, the same elements as those in FIG. 3 are referred to by the reference numerals assigned thereto, so please refer to the above description for the characteristics of these elements.

以上、説明してきた通り、本発明の電力ケーブ
ル用導体の製造方法によれば、横断面平型又は扇
型の成形素線を集合又は撚合せる撚線導体、即ち
冒頭に述べた第二の方法により得られる撚線導体
をケーブル導体として採用することを根底とし、
そして当該第二の方法により得られた撚線導体の
欠陥つまりゆるみ、笑いを防止することは勿論、
エツジ立ちをも生じさせないように改善した撚線
導体とすることにより、より一層のコンパクト化
に対応できる電力ケーブルの実用化を図るとい
う、所期の目的が初めて達成されたものであり、
これにより経済的な電力ケーブルを提供すること
ができ、実益はまことに大きいものといえる。
As explained above, according to the method for manufacturing a power cable conductor of the present invention, a stranded wire conductor is produced in which formed wires having a flat or fan-shaped cross section are assembled or twisted, that is, the second method described at the beginning. Based on the fact that the stranded conductor obtained by the method is used as a cable conductor,
And of course, it is possible to prevent defects, that is, loosening and laughter, in the stranded conductor obtained by the second method.
This is the first time that the intended purpose of creating a practical power cable that can be made even more compact has been achieved by using a stranded conductor that has been improved to prevent the formation of edges.
This makes it possible to provide an economical power cable, and the practical benefits can be said to be truly great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、横断面扇型の成形素線により構成さ
れた撚線導体の例を示す横断面説明図、第2図の
イとロ、ハとニ、ホとヘは、本発明の製造方法に
おいて横断面扇型成形素線による撚線導体の圧縮
前及び圧縮後の状況を示す横断面説明図、第3図
は本発明により製造された撚線導体を採用した電
力ケーブルの一実施例を示す横断面説明図、第4
図は本発明の製造方法において扇型成形素線によ
る集合及び軽度の圧縮加工例を示す説明図、第5
図は本発明により製造された撚線導体を採用した
電力ケーブルの応用例を示す横断面説明図、さら
に第6図は扇型成形素線を集合した後の状況を示
す横断面説明図である。 図中、21,22,23は横断面扇型の成形素
線、20は撚線導体、200は油通路として利用
される中空部、Zは絶縁層、40,41は集合ダ
イス、400,410は軽度に圧縮するための金
属性ダイスである。
FIG. 1 is a cross-sectional explanatory diagram showing an example of a stranded wire conductor made of formed wires having a fan-shaped cross section, and A, B, C, D, H and F of FIG. 2 are manufactured according to the present invention. A cross-sectional explanatory diagram showing the state before and after compression of a stranded conductor by a cross-sectional fan-shaped wire in the method, and FIG. 3 is an example of a power cable employing a stranded conductor manufactured according to the present invention. 4th cross-sectional explanatory diagram showing
The figure is an explanatory diagram showing an example of assembly and mild compression processing using fan-shaped wires in the manufacturing method of the present invention.
The figure is an explanatory cross-sectional view showing an application example of a power cable employing the stranded conductor manufactured according to the present invention, and FIG. 6 is an explanatory cross-sectional view showing the situation after the fan-shaped wires are assembled. . In the figure, 21, 22, 23 are shaped wires with a fan-shaped cross section, 20 is a twisted wire conductor, 200 is a hollow part used as an oil passage, Z is an insulating layer, 40, 41 are assembled dies, 400, 410 is a metal die for mild compression.

Claims (1)

【特許請求の範囲】 1 横断面平型又は扇型の成形素線を撚合せ又は
集合して撚線導体とするときに、該撚線導体に対
して更に軽度の圧縮を加えることにより、当該成
形素線に軽度の塑性変形を生じさせ、前記軽度の
圧縮の程度は、次の(1)、(2)及び(3)の範囲であるこ
とを特徴とする電力ケーブル用撚線導体の製造方
法。 (1) 圧縮後の撚線導体の外径d′が圧縮前のそれd
に対して0.1〜2.5%減少する範囲 (2) 圧縮後の撚線導体の包絡線内面積S0′が圧縮
前のそれS0に対して0.2〜5.0%減少する範囲 (3) 圧縮後の撚線導体の導体実断面積ΣS′=S1′+
S2′+S3′+…+Sn′が圧縮前のそれΣS=S1+S2
+S3+…+Snに対して1.0〜5.0%減少する範
囲。
[Claims] 1. When twisted or assembled formed wires having a flat or fan-shaped cross section to form a stranded conductor, the stranded conductor can be further compressed slightly. Production of a stranded conductor for a power cable, characterized in that a molded wire is subjected to slight plastic deformation, and the degree of said slight compression is within the following ranges (1), (2), and (3). Method. (1) The outer diameter d′ of the stranded conductor after compression is the same as d before compression.
(2) Range in which the area within the envelope of the stranded conductor after compression S 0 ′ decreases by 0.2 to 5.0% compared to that before compression (3) After compression Actual conductor cross-sectional area of stranded wire conductor ΣS′=S 1 ′+
S 2 ′+S 3 ′+…+Sn′ is that before compression ΣS=S 1 +S 2
+S 3 +...Range of 1.0 to 5.0% reduction relative to +Sn.
JP16343682A 1982-09-20 1982-09-20 Power cable Granted JPS5954111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16343682A JPS5954111A (en) 1982-09-20 1982-09-20 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16343682A JPS5954111A (en) 1982-09-20 1982-09-20 Power cable

Publications (2)

Publication Number Publication Date
JPS5954111A JPS5954111A (en) 1984-03-28
JPH0336252B2 true JPH0336252B2 (en) 1991-05-30

Family

ID=15773850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16343682A Granted JPS5954111A (en) 1982-09-20 1982-09-20 Power cable

Country Status (1)

Country Link
JP (1) JPS5954111A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147585A (en) * 1974-05-17 1975-11-26
JPH072074A (en) * 1993-04-16 1995-01-06 Robert Bosch Gmbh Valve gear for skid control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147585A (en) * 1974-05-17 1975-11-26
JPH072074A (en) * 1993-04-16 1995-01-06 Robert Bosch Gmbh Valve gear for skid control device

Also Published As

Publication number Publication date
JPS5954111A (en) 1984-03-28

Similar Documents

Publication Publication Date Title
KR20010006028A (en) Multi-wire sz and helical stranded conductor and method of forming same
US5732875A (en) Method for producing a sector conductor for electric power cables
US5445535A (en) Insulation displacement terminal
JP2007317477A (en) Twisted-wire conductor
US2106060A (en) Electric cable
JP5032405B2 (en) Superconducting cable former, its manufacturing method and superconducting cable
KR101831668B1 (en) Stranded conductors and method for producing stranded conductors
JPH0336252B2 (en)
JPH0127524B2 (en)
JPH0127522B2 (en)
JPH0127523B2 (en)
JP3680604B2 (en) Shielded wire
JP2002157926A (en) Twisted pair cable
JP2938265B2 (en) Sleeve for connecting sector-shaped conductor and method for connecting sector-shaped conductor using the same
JPH0797456B2 (en) Method of manufacturing conductor for wiring
US11984239B2 (en) Compressed stranded conductor, method of manufacturing compressed stranded conductor, insulated electric wire, and wire harness
JP2015201322A (en) Electric wire
JP7405789B2 (en) Electric wires and wire harnesses
JP7242148B2 (en) Compression stranded conductors, insulated wires and wire harnesses
JP7214689B2 (en) Compressed stranded conductor, method for producing compressed stranded conductor, insulated wire and wire harness
JP7427637B2 (en) heat resistant wire
JPH0532903Y2 (en)
EP4297046A1 (en) Rectangular cross-section multi-core insulated wire, and method for manufacturing same
JP3636002B2 (en) Twisted pair cable
JP2928017B2 (en) Sleeve connection method for fan-shaped conductor