JPH0335883A - Charging and discharging circuit for capacitor - Google Patents

Charging and discharging circuit for capacitor

Info

Publication number
JPH0335883A
JPH0335883A JP16903289A JP16903289A JPH0335883A JP H0335883 A JPH0335883 A JP H0335883A JP 16903289 A JP16903289 A JP 16903289A JP 16903289 A JP16903289 A JP 16903289A JP H0335883 A JPH0335883 A JP H0335883A
Authority
JP
Japan
Prior art keywords
charging
voltage
circuit
capacitor
charging circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16903289A
Other languages
Japanese (ja)
Inventor
Shigeru Neo
滋 根尾
Ryoji Saito
斉藤 亮治
Junkichi Shimada
島田 純吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP16903289A priority Critical patent/JPH0335883A/en
Publication of JPH0335883A publication Critical patent/JPH0335883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding Control (AREA)

Abstract

PURPOSE:To improve stability and reproducibility of welding conditions by charging at a value slightly lower than the specified voltage by a main charging circuit to execute phase control charging from an AC power source, superimpos ing the voltage of the difference from an auxiliary charging circuit to execute charging. CONSTITUTION:The set voltage of the main charging circuit 100 is set lower by several ten % than the desired charging voltage of a capacitor 300. The auxiliary charging circuit 210 is then set at the voltage of the difference between the desired charging voltage and the set voltage of the main charging circuit 100. The sum of a current of these two charging circuits charges the capacitor 300. The change in the lapse of time of the charging voltage of the capacitor 300 is controlled so that the sum of the current of the two charging circuits is made to the desired charging voltage. When the inputted voltage rises sudden ly, although the charging voltage rises, the set voltage of the main charging circuit 100 is set lower by several ten % than the desired charging voltage, so it does not exceed the desired charging voltage. At this time, the output voltage of the auxiliary charging circuit 210 drops responsibly quickly and the desired charging voltage of the main charging circuit 100 is maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、比較的小容量の電源から大容量のコンデン
サを充電し、これを瞬時に放電せしめて急峻な放電電流
を得るコンデンサの充放電回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to charging and discharging a capacitor, which charges a large capacitor from a relatively small power source and instantly discharges it to obtain a steep discharge current. Regarding circuits.

〔従来の技術・発明が解決しようとする課題〕この種の
コンデンサの充電・放電回路を利用した機器7例えばコ
ンデンサ蓄勢式溶接機においては、サイリスタを用いた
位相制御充電回路が使用されている。その−例を第3図
に示すと、交流電源Iは変圧器2の一次巻線21に接続
される。その二次巻線22はダイオードl旧〜104か
らなる整流回路に接続される。この整流回路の出力は、
サイリスタ105と抵抗器106とを介してコンデンサ
3゜Oを充電する。コンデンサ300の両端の電圧が所
定の電圧になるよう位相制御パルス発生回路120によ
り、サイリスタ105を制御する。変圧器2の他の二次
巻線23は補助電源200に接続され1位相制御パルス
発生回路120に供給される。コンデンサ300の充1
!電圧の経時変化は第4図に示すように、平均値が所望
の充電電圧Boになるように位相制御される。すなわち
サイリスタ105は、1=口から 1=12まで導通し
1次は、  t=t3から【4まで。
[Prior art/problems to be solved by the invention] Devices using this type of capacitor charging/discharging circuit 7 For example, a phase control charging circuit using a thyristor is used in a capacitor storage type welding machine. . An example of this is shown in FIG. 3, where an AC power source I is connected to a primary winding 21 of a transformer 2. The secondary winding 22 is connected to a rectifier circuit consisting of a diode 104. The output of this rectifier circuit is
A capacitor 3°O is charged via a thyristor 105 and a resistor 106. The thyristor 105 is controlled by the phase control pulse generation circuit 120 so that the voltage across the capacitor 300 becomes a predetermined voltage. The other secondary winding 23 of the transformer 2 is connected to the auxiliary power supply 200 and supplied to the one-phase control pulse generation circuit 120. Charging capacitor 300 1
! As shown in FIG. 4, the voltage change over time is phase-controlled so that the average value becomes a desired charging voltage Bo. That is, the thyristor 105 is conductive from 1=mouth to 1=12, and the primary conduction is from t=t3 to [4].

そして、 t=t5からt6と顯次導通する。ところで
Then, conduction occurs from t=t5 to t6. by the way.

t=t3で導通直後、破線で示すように入力電圧が急に
上昇した場会には、サイリスタ105は途中でオフでき
ないため、充電電圧は上昇する。
Immediately after conduction at t=t3, when the input voltage suddenly increases as shown by the broken line, the charging voltage increases because the thyristor 105 cannot be turned off midway.

このようにサイリスタのような非自己消弧型スイッチに
よる位相制御方式だけでは、導通後の周期内で、交流1
[源の電圧が何らかの原因で上昇した場合に、コンデン
サの過大充電をを制御する手段がない。
In this way, with only the phase control method using non-self-extinguishing switches such as thyristors, AC
[If the source voltage increases for some reason, there is no way to control overcharging of the capacitor.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、このような課題を解決するため。 This invention aims to solve such problems.

交流電源より非自己消弧型スイッチ素子を用い。Uses a non-self-extinguishing switch element from an AC power supply.

位相制御充電する主充電回路と、直流電流にて連続で、
主充電回路より高速に応答して充電する副充電回路との
双方から、構成される回路を提案するものである。
The main charging circuit performs phase control charging and continuous DC current.
We propose a circuit that is composed of both a sub-charging circuit and a sub-charging circuit that responds and charges faster than the main charging circuit.

〔作用〕[Effect]

I−たがって、交流電源より位相制御充電する主充電回
路により、所定電圧よりわずかに低い値に充電され、副
充電回路より、その差の電圧を重畳して充電するので、
必要な所定電圧に充電できると共に、万一の過大入力の
場合、主充電回路の非自己消弧型スイッチ素子がオフで
きなくとも、!1充電回路が停止して出力電圧値を制限
することができる。
I- Therefore, the main charging circuit that performs phase control charging from an AC power source charges to a value slightly lower than the predetermined voltage, and the sub-charging circuit charges the battery by superimposing the voltage difference.
It can be charged to the required predetermined voltage, and even if the non-self-extinguishing switch element of the main charging circuit cannot be turned off in the event of excessive input! 1 The charging circuit can be stopped and the output voltage value can be limited.

〔実施例〕〔Example〕

以下、この発明を図面に基づいて説明する。、第1図は
、この発明の一実施例を示す図である。
The present invention will be explained below based on the drawings. , FIG. 1 is a diagram showing an embodiment of the present invention.

先ず構成を説明する己、交流電源Iは変圧器2の一次巻
線2目こ接続されるヶその二次巻1m22はダイオード
101〜104の整流回路番こ接続される。この整流回
路の111力は、サイリスタ105と抵抗器[06とを
介して91ンデン−)+300に充電される。この充電
系統が主充電回路1(IQである。変圧器2の他の二次
巻線23はダイオード2(N〜204で構成されるブリ
ッジ整流回路に接続される。この出力は平滑用のコンデ
ンサ207εレギュレータ206とその出力に接続され
たつ;ノデンg207で安定化される。
First, the configuration will be explained.The AC power source I is connected to the second primary winding of the transformer 2, and the secondary winding 1m22 is connected to the rectifier circuit of diodes 101 to 104. The 111 power of this rectifier circuit is charged to 91 nden-)+300 via the thyristor 105 and the resistor [06. This charging system is the main charging circuit 1 (IQ). The other secondary winding 23 of the transformer 2 is connected to a bridge rectifier circuit composed of diodes 2 (N to 204). This output is connected to a smoothing capacitor 207ε is connected to the regulator 206 and its output; it is stabilized by the Noden G207.

この出力は補助電源200として副充電回路210と位
相11御パルス発生回路120とに利用される。
This output is used as an auxiliary power source 200 for the sub charging circuit 210 and the phase 11 control pulse generating circuit 120.

主充電回路100は以下の位相制御パルス発生回路12
0で位相@御される。先ずコンデンサ300の両端の電
圧は抵抗器161.可変抵抗器162.抵抗器163及
びコンデンサ164からなる電圧検出回路により検出さ
れ、抵抗器142を介して演算増幅器141の反転入力
端子に接続される。ここでコンデンサ164は安定性を
高め、帰還系のハンチングを防止する作用をする。一方
、基準電圧源150は抵抗器143を介して演算増幅器
+41の非反転入力端子に接続される。この比較増幅さ
れた出力電圧は抵抗器145を介してトランジスタ+4
6によって増幅される。そして抵抗器147と148と
によって分割されて、抵抗器127を介してトランジス
タ+25に接続される。トランジスタ125はそのベー
ス信号に応じて、コンデンサ124に充電il[を与え
る。コンデンサ124とユニジャンクショントランジス
タ121 と抵抗器123とパルストランス+22とか
ら構成される回路はよく知られているパルス発生回路で
ある。そして変圧器2の二次巻Ia23から同期回路1
10を介してトランジスタ用1のベースに信号を接続し
て交流型[1の周波数に同期したパルスを発生させる。
The main charging circuit 100 includes the following phase control pulse generation circuit 12
The phase is controlled by 0. First, the voltage across capacitor 300 is connected to resistor 161. Variable resistor 162. It is detected by a voltage detection circuit consisting of a resistor 163 and a capacitor 164, and is connected to the inverting input terminal of the operational amplifier 141 via the resistor 142. Here, the capacitor 164 functions to enhance stability and prevent hunting in the feedback system. On the other hand, reference voltage source 150 is connected to the non-inverting input terminal of operational amplifier +41 via resistor 143. This compared and amplified output voltage is passed through a resistor 145 to a transistor +4.
6. It is then divided by resistors 147 and 148 and connected to transistor +25 via resistor 127. Transistor 125 provides a charge il[ to capacitor 124 in response to its base signal. A circuit composed of a capacitor 124, a unijunction transistor 121, a resistor 123, and a pulse transformer +22 is a well-known pulse generating circuit. And from the secondary winding Ia23 of the transformer 2 to the synchronous circuit 1
A signal is connected to the base of transistor 1 through 10 to generate a pulse synchronized with the frequency of AC type 1.

次に副充電回路210については補助電源200からト
ランシタ211を直列制御#素子としてコンデンサ30
0を充電する。その制御はよく知られている直列安定化
電源の形式である。抵抗器261.262で検出した電
圧は抵抗器243を介して演算増幅器24目の反転入力
端子!、T接続され7前記の基準電圧源+50は抵抗器
242を介し、τ演算増幅器241の非反転入力端子に
、接続される。この比較増幅葵241の出力電圧は抵抗
器245を介し、てトランジスタ246によって増幅さ
れる。トランジスタ246のベース・エミッタ間にはP
I4P l−ランラスタ282のエミッタ・コレクタが
並列接続される。そしてPNP トランジスタ282の
ベースには位相制御パルス発生回路120内のトランジ
スタ146のコレクタよりシュミットトリガ回路280
と抵抗器281を介して信号が供給される。この信号は 主充電回路+00が所定値より低い時、副充電回路21
0を強制オフさせ。
Next, regarding the auxiliary charging circuit 210, the capacitor 30 is connected to the auxiliary power supply 200 using the transistor 211 as a series control element.
Charge 0. Its control is in the form of a well-known series regulated power supply. The voltage detected by resistors 261 and 262 is passed through resistor 243 to the inverting input terminal of operational amplifier 24! , T-connected 7 The reference voltage source +50 is connected to the non-inverting input terminal of the τ operational amplifier 241 via a resistor 242. The output voltage of the comparison amplifier 241 is amplified by a transistor 246 via a resistor 245. There is a P between the base and emitter of the transistor 246.
The emitter and collector of the I4P l-run raster 282 are connected in parallel. A Schmitt trigger circuit 280 is connected to the base of the PNP transistor 282 from the collector of the transistor 146 in the phase control pulse generation circuit 120.
A signal is supplied via the resistor 281. This signal is sent to the sub charging circuit 21 when the main charging circuit +00 is lower than a predetermined value.
Force 0 off.

主充電回路10口が所定値より高い時、副充電回路21
0は独立に設定値を保つよう作用させる。
When the main charging circuit 10 is higher than the predetermined value, the sub charging circuit 21
0 causes the setting value to be maintained independently.

そしてシュミットトリガ回路280は主充電回路+00
と副充電回路210との制御の連携をより安定に保つよ
う上記の信号に履歴特性を与えるのに効力を発揮する。
And the Schmitt trigger circuit 280 is the main charging circuit +00
This is effective in giving history characteristics to the above-mentioned signal so as to maintain more stable control coordination between the charging circuit and the sub-charging circuit 210.

トランジスタ246の出力は抵抗器247と248とに
よって分割されて、トランジスタ2!2に接続される。
The output of transistor 246 is divided by resistors 247 and 248 and connected to transistor 2!2.

トランジスタ212はそのベース信号に応じて、直列制
御素子たるトランジスタ211に電流出力を制御する。
Transistor 212 controls current output to transistor 211, which is a series control element, according to its base signal.

トランジスタ2!3及び抵抗器215はトランジスタ2
11の出力電流を垂下制限する作用をする。
Transistor 2!3 and resistor 215 are transistor 2
It acts to limit the drooping of the output current of No. 11.

このように構成された本回路において、主充電回路10
0の設定電圧はコンデンサ300の所望の充電電圧[!
0より数十パーセント低いEII+に定める。そして副
充電回路210は、所望の充Tl1l圧Eoと主充電回
路100の設定電圧I’mとの差電圧に設定される。
In this circuit configured in this way, the main charging circuit 10
The set voltage of 0 is the desired charging voltage of the capacitor 300 [!
It is set at EII+, which is several tens of percent lower than 0. The sub-charging circuit 210 is set to a voltage difference between the desired charging Tl1l pressure Eo and the set voltage I'm of the main charging circuit 100.

この二つの充電回路の電流の和がコンデンサ300を充
電する。コンデンサ300の充T!!電圧の経時変化を
第2図で見ると、二つの充電回路のIItILの和が所
望の充電電圧EOになるように制御される。すなわち、
主充電回路100は、 t=tlから 1=12まで導
通し0次は、  t=taからt4まで、そして、t=
L5からt6と順次導通する。ところで、  t=t3
で導通直後、破線で示すように入力電圧が急に上昇した
場合には、充111!圧は上昇するが、主充電回路10
0の設定電圧は所望の充1!電圧IIOより数十パーセ
ント低いl11mに定めであるので、所望の充電電圧F
i。
The sum of the currents of these two charging circuits charges the capacitor 300. Charging capacitor 300T! ! Looking at the change in voltage over time in FIG. 2, it is controlled so that the sum of IItIL of the two charging circuits becomes the desired charging voltage EO. That is,
The main charging circuit 100 conducts from t=tl to 1=12, and the 0th order conducts from t=ta to t4, and then t=
Successively conducts from L5 to t6. By the way, t=t3
If the input voltage suddenly increases as shown by the broken line immediately after conduction, the charge is 111! Although the pressure increases, the main charging circuit 10
The set voltage of 0 is the desired charge 1! The desired charging voltage F is set at l11m, which is several tens of percent lower than the voltage IIO.
i.

を越えない。この時は、副充電回路210はその出力電
圧が速やかに応答低下して100所望の充ifi圧F、
oを保つ。
not exceed. At this time, the output voltage of the auxiliary charging circuit 210 quickly decreases in response to 100% of the desired charging pressure F,
Keep o.

主充電回路の出力設定電圧Emは副充電回路の設定電圧
Haより低い値に選ばれるが、この差を小さくすれば、
1s力効率は高くなる。しかし、あまりH+wをEoに
近く選ぶと、交流入力電源の急変動に対応できなくなる
。したがって効率と入力変動幅の予測値との間での適当
の値を見つける必要がある。
The output setting voltage Em of the main charging circuit is selected to be lower than the setting voltage Ha of the auxiliary charging circuit, but if this difference is made small,
1s force efficiency becomes higher. However, if H+w is chosen too close to Eo, it will not be possible to cope with sudden fluctuations in the AC input power supply. Therefore, it is necessary to find an appropriate value between the efficiency and the predicted value of the input fluctuation range.

尚、実施例においては主充電回路の整流回路は単相全波
であったが、三相にすることも可能であり、また全波で
も半波でもいずれでも構成可能である。整流回路のアー
ムの一部または全部の要素をサイリスタと置換すること
もできる。また副充電回路は直列型のみならず、並列型
制御方式にすることもできる。また、交流側にトライア
ックのような交流位相制御素子を設けて、その後にダイ
オードで整流する方法によっても、主充電回路を構成で
きる。
In the embodiment, the rectifier circuit of the main charging circuit is a single-phase full-wave type, but it can also be made into a three-phase type, and can be configured as either a full-wave type or a half-wave type. It is also possible to replace some or all elements of the arms of the rectifier circuit with thyristors. Furthermore, the sub-charging circuit can be controlled not only in series but also in parallel. The main charging circuit can also be configured by providing an AC phase control element such as a triac on the AC side and then rectifying it with a diode.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたようにこの発明によれば、非自己消弧
型スイッチ素子を用いた主充電回路により充電効率を高
く維持しつつ、応答速度は連続で高速制御可能な副充電
回路により商用電力周波数の一周期以内の早さにするこ
とができる。ディジタル電圧計に対しても、コンデンサ
電圧値の変動が表示されない程の応答速度となる。従っ
て本発明によるコンデンサ充放電回路を溶接機に用いる
と、溶接条件の安定性と再現性とが向上し、操作者の煩
わしさが解消する。
As explained above, according to the present invention, charging efficiency is maintained high by the main charging circuit using a non-self-extinguishing switching element, and the response speed is continuously controlled at high speed by the sub-charging circuit, which is capable of controlling commercial power frequency. It can be done as quickly as within one period. The response speed is so fast that fluctuations in the capacitor voltage value are not displayed even on a digital voltmeter. Therefore, when the capacitor charging/discharging circuit according to the present invention is used in a welding machine, the stability and reproducibility of welding conditions are improved, and the operator's inconvenience is eliminated.

副充電回路は主充電回路の1710位の電力損失で済む
ので、実装上、従来の位相制御回路のプリント板のわず
かな伸延ですみ、小型、経済的である。
Since the auxiliary charging circuit requires only 1710 times the power loss of the main charging circuit, it requires only a slight extension of the printed circuit board of the conventional phase control circuit in terms of implementation, making it compact and economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示し、第2図はその充電経
時変化特性図を示し、第3図は従来の充放電回路の一例
であり、第4図はその充電経時変化特性図を示す。 !・・・交流電源、2・・・変圧器、Ioo・・・主充
電回路101〜104・・・ダイオード、105・・・
サイリスタ。 HO・・・同期回路 120・・・位相制御パルス発生回路 121・・・ユニジャンクショントランジスタ150・
・・基準電圧源 200・・・神助電源、206・・・レギュレータ21
0・・・騙り充電回路 280  ・・・ シ ュ ミ  ッ  ト  ト リ
 ガ 回 路300・・・コンデンサ 301・・・ダイオード、302・・・変圧器、303
・・・サイスタ、304・・−放電制御回路、305・
・・溶接電極す
Fig. 1 shows an embodiment of the present invention, Fig. 2 shows its charging characteristics over time, Fig. 3 shows an example of a conventional charging/discharging circuit, and Fig. 4 shows its charging characteristics over time. shows. ! ...AC power supply, 2...Transformer, Ioo...Main charging circuit 101-104...Diode, 105...
Thyristor. HO...Synchronization circuit 120...Phase control pulse generation circuit 121...Unijunction transistor 150...
... Reference voltage source 200 ... Kamisuke power supply, 206 ... Regulator 21
0... False charging circuit 280... Schmit trigger circuit 300... Capacitor 301... Diode, 302... Transformer, 303
...cysta, 304...-discharge control circuit, 305.
・・Welding electrode

Claims (1)

【特許請求の範囲】 コンデンサを交流電源より位相制御充電する主充電回路
と、 該コンデンサを前記交流電源より付勢される直流電流に
て充電する副充電回路と、 該コンデンサを放電させるスイッチ手段と から構成されることを特徴とするコンデンサの充放電回
路。
[Scope of Claims] A main charging circuit that charges a capacitor in phase control from an AC power supply, a sub-charging circuit that charges the capacitor with a DC current energized from the AC power supply, and a switch means that discharges the capacitor. A capacitor charging/discharging circuit comprising:
JP16903289A 1989-06-30 1989-06-30 Charging and discharging circuit for capacitor Pending JPH0335883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16903289A JPH0335883A (en) 1989-06-30 1989-06-30 Charging and discharging circuit for capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16903289A JPH0335883A (en) 1989-06-30 1989-06-30 Charging and discharging circuit for capacitor

Publications (1)

Publication Number Publication Date
JPH0335883A true JPH0335883A (en) 1991-02-15

Family

ID=15879057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16903289A Pending JPH0335883A (en) 1989-06-30 1989-06-30 Charging and discharging circuit for capacitor

Country Status (1)

Country Link
JP (1) JPH0335883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041934B2 (en) * 2002-06-03 2006-05-09 Agency For Defense Development Micro-welder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146246A (en) * 1978-05-09 1979-11-15 Stanley Electric Co Ltd Protector for charging circuit of electrostatic stored energy type welder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146246A (en) * 1978-05-09 1979-11-15 Stanley Electric Co Ltd Protector for charging circuit of electrostatic stored energy type welder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041934B2 (en) * 2002-06-03 2006-05-09 Agency For Defense Development Micro-welder

Similar Documents

Publication Publication Date Title
US3327199A (en) Transistorized high voltage regulated power supply system with temperature compensating means
US3355653A (en) Variable pulse width regulated power supply
US4159409A (en) Current unit for arc welding
US3147094A (en) Control system for electrical precipitators
US3254293A (en) Electrical apparatus
US3217239A (en) Voltage control apparatus
US3875367A (en) AC power source voltage regulator including outward voltage slope control
US3356927A (en) Regulated power supply circuit
US3588519A (en) Automatic paralleling system
US3894280A (en) Frequency limited ferroresonant power converter
US3211987A (en) Excitation system for a dynamoelectric machine
JPS6022591B2 (en) Circuit to prevent commutation failure
JPH0241777A (en) Power unit for arc machining
US2568391A (en) Regulating system
JPH0335883A (en) Charging and discharging circuit for capacitor
US3781640A (en) Arc working power supply with saturable reactor current control
JP2572433B2 (en) Power supply for arc welding and cutting
US3302097A (en) Electrical apparatus
JPS6118405B2 (en)
US3351843A (en) Electrical apparatus
US4173039A (en) Current based power supply
US3527996A (en) Switching voltage regulator using time ratio control with forced commutation
JP2564453B2 (en) Power supply for plasma processing machine
KR900000799B1 (en) Arc welding device
JP2905540B2 (en) Power supply for pulse arc welding