JPH0335824A - Method for deep drawing titanium sheet - Google Patents

Method for deep drawing titanium sheet

Info

Publication number
JPH0335824A
JPH0335824A JP1171634A JP17163489A JPH0335824A JP H0335824 A JPH0335824 A JP H0335824A JP 1171634 A JP1171634 A JP 1171634A JP 17163489 A JP17163489 A JP 17163489A JP H0335824 A JPH0335824 A JP H0335824A
Authority
JP
Japan
Prior art keywords
titanium
titanium sheet
deep
sheet
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171634A
Other languages
Japanese (ja)
Other versions
JPH067966B2 (en
Inventor
Tetsuo Ogami
大上 哲郎
Masayoshi Kondo
正義 近藤
Seiichi Soeda
添田 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1171634A priority Critical patent/JPH067966B2/en
Publication of JPH0335824A publication Critical patent/JPH0335824A/en
Publication of JPH067966B2 publication Critical patent/JPH067966B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To prevent seizure in composite forming by forming a titanium sheet with sandwiching fluoroplastic or polyolefin sheets having a specified thickness between both sides of the titanium sheet. CONSTITUTION:The titanium sheet 4 is deep-drawn by using a punch 1, a die 2 and a blank holder 3. Then the titanium sheet is formed with sandwiching the fluoroplastic or polyolefin sheets 5, 5 having a thickness 0.07-0.2mm between both sides of the titanium sheets 4. In this way, the deep drawing limits of the titanium sheet can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はチタン薄板を用いた流し台用シンク、浴槽、
自動車部品など深絞り部品の成形方法に関するものであ
る。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides a sink for a sink, a bathtub, and a bathtub using thin titanium plates.
This relates to a method for forming deep drawn parts such as automobile parts.

(従来の技術) チタンはその持つ強度と耐蝕性から航空機をはじめ、化
学プラントや船舶などに広く使用されており、最近では
チタン薄板を深絞り成形して流し台用シンク、浴槽、自
動車部品などの深絞り部品へ適用することが検討され始
めた。しかし、チタンは深絞り成形を行う場合、金型に
焼き付きを生じ易いため、板にかじり疵を生じて商品価
値をそこねるだけでなく、成形限界が低下するため適用
が制限されていた。
(Prior technology) Due to its strength and corrosion resistance, titanium is widely used in aircraft, chemical plants, ships, etc. Recently, titanium thin sheets have been deep-drawn and used for sinks, bathtubs, automobile parts, etc. Application to deep-drawn parts has begun to be considered. However, when performing deep drawing, titanium tends to seize in the mold, which not only causes galling defects on the plate and impairs its commercial value, but also reduces the forming limit, which limits its application.

金型に焼き付きを生じ易い理由は以下のようである。チ
タンは元来鋼中の炭素や窒素と親和しやすく、TiCや
TiN等の化合物をつくりやすく、鋼中炭素を多く含む
工具鋼を金型に用いると、金型表面とチタン表面が接触
した場合にTiCが生成して、金型表面について焼き付
きを生じるのである。
The reason why seizure tends to occur in the mold is as follows. Titanium naturally has a good affinity with carbon and nitrogen in steel, making it easy to form compounds such as TiC and TiN. When tool steel containing a large amount of carbon in steel is used for a mold, if the surface of the mold comes into contact with the surface of titanium, TiC is generated on the surface of the mold, causing burn-in on the surface of the mold.

このTiCは硬質であり、工具鋼よりも軟質のチタン薄
板の表面を更に削ってかじり疵を生ずるだけでなく、金
型とチタン間の摩擦係数が増加するため、チタンが流入
しにくくなり成形限界が低下するのである。
This TiC is hard, and not only does it further scrape the surface of the thin titanium plate, which is softer than tool steel, causing galling, but it also increases the coefficient of friction between the mold and titanium, making it difficult for titanium to flow in and reaching the forming limit. decreases.

このように工具鋼を使用した金型を用いると焼き付きが
生ずるので、他のプラスチック金型やセメント金型など
を用いる方法も考えられるが、これらの工具は一般的で
ない上に、工具の寸法や表面仕上げの精度及び耐久性に
問題がある。
If a mold made of tool steel is used in this way, seizure will occur, so it is possible to use other plastic molds or cement molds, but these tools are not common, and the size and size of the tool There are problems with the accuracy and durability of the surface finish.

また、潤滑油として極圧添加剤などの入った汗滑油や高
粘度の潤滑油を用いることも考えられ2が、この場合も
チタンと金型の金属接触は避はしれず焼き付き防止は困
難であると共に、成形後O潤滑油の除去工程が必要とな
り製造コストの上多となる。
It is also possible to use sweat oil or high viscosity lubricant containing extreme pressure additives as the lubricant2, but in this case as well, metal contact between the titanium and the mold is unavoidable and it is difficult to prevent seizure. In addition, a step for removing O lubricating oil is required after molding, which increases manufacturing costs.

(発明が解決しようとする課題) 工具鋼を用いた金型によりチタン薄板を深絞上成形する
場合に生ずる焼き付きを防止することlチタン薄板の深
絞り成形限界を向上させると共C。
(Problems to be Solved by the Invention) To prevent seizure that occurs when deep-drawing a thin titanium plate using a mold using tool steel.1 To improve the deep-drawing limit of a thin titanium plate.C.

製品の表面品質向上に不可欠である。It is essential for improving the surface quality of products.

本発明は張出成形と絞り成形とを同時に行うt合成形に
対して焼き付き防止可能なチタン薄板6成形方法を提供
するものである。
The present invention provides a method for forming a thin titanium plate 6 that can prevent seizure in a t-composite type in which stretch forming and drawing are performed simultaneously.

(課題を解決するための手段) 本発明者らはかかる問題点を解決する為にFF検討した
結果完成したもので、チタン薄板の深遷り成形において
、厚さ0.07關から0.21嘗の弗素本脂またはポリ
オレフィンのシートを両面にはさ/で成形することを特
徴とするチタンの薄板の深絞り成形方法である。
(Means for Solving the Problems) In order to solve the above problems, the present inventors completed an FF study, and in deep deterioration forming of titanium thin plates, the thickness ranges from 0.07 to 0.21. This is a deep drawing method for thin titanium plates, which is characterized by forming sheets of fluorine resin or polyolefin on both sides with scissors.

(作  用) 本発明によりチタン薄板を深絞り成形する場合に生ずる
焼き付きを防止することができる理由は以下のように考
えられる。
(Function) The reason why the present invention can prevent seizure that occurs when deep drawing a titanium thin plate is considered to be as follows.

第1図は弗素樹脂またはポリオレフィンのシートを両面
にはさんでチタン薄板を成形する方法を示したもので、
1はポンチ、2はグイ、3はしわ押え、4はチタン薄板
、5は弗素樹脂またはポリオレフィンのシートである。
Figure 1 shows a method for forming a thin titanium plate by sandwiching fluororesin or polyolefin sheets on both sides.
1 is a punch, 2 is a gooey, 3 is a wrinkle presser, 4 is a thin titanium plate, and 5 is a fluororesin or polyolefin sheet.

第1表はチタン薄板の材質及び板厚、弗素樹脂またはポ
リオレフィンのシートの使用方法及び厚さを変化させた
場合の限界絞り比及び金型への焼き付き程度を円筒深絞
り成形及び角筒深絞り成形について調査したものである
Table 1 shows the material and thickness of the titanium thin plate, the usage method and thickness of the fluororesin or polyolefin sheet, and the critical drawing ratio and degree of seizure on the mold for cylindrical deep drawing and square cylinder deep drawing. This is a survey of molding.

ここで、限界絞り比とはしわ及び割れが発生しない成形
可能な最大のブランクの大きさをポンチ寸法で除した値
であり、円筒深絞り成形の場合はブランクの直径をポン
チの直径で除した値、角筒深絞り成形の場合は正方形ブ
ランクの一辺の長さをポンチの一辺の長さで除した値で
ある。
Here, the critical drawing ratio is the value obtained by dividing the maximum blank size that can be formed without wrinkles or cracks by the punch dimension, and in the case of cylindrical deep drawing, it is the value obtained by dividing the blank diameter by the punch diameter. In the case of square cylinder deep drawing, it is the value obtained by dividing the length of one side of the square blank by the length of one side of the punch.

この限界絞り比が高いほど成形性が良く、円買。The higher the limit drawing ratio, the better the formability, and the higher the limit drawing ratio, the better the formability.

形状や正方形形状のポンチだけでなく、長刀形ル状やそ
の他の複雑な形状による成形を行う場合でも成形性が向
上する。
Formability is improved not only when forming with a square or square punch, but also when forming into a long sword shape or other complex shapes.

第2表は用いたチタン薄板の含有成分とその棚械的特性
を示したものであり、1種及び2種はJ I S  H
4600の区分の代表例として板厚0.85uの場合を
比較している。
Table 2 shows the ingredients contained in the titanium thin plates used and their mechanical properties. Types 1 and 2 are JIS H
As a representative example of the 4600 classification, a case with a plate thickness of 0.85u is compared.

第2図は第2表のうちJIS1種の板厚0.95mmの
チタン薄板を用いて、−辺75關の正方形形状の角筒ポ
ンチを用いて成形した場合について、ポリテトラプルオ
ロエチレンのシートの厚さを変化させた場合の限界絞り
比と、ポリテトラフルオロエチレンのシートの破損状態
を示すグラフである。
Figure 2 shows a polytetrafluoroethylene sheet formed from a JIS 1 type titanium thin plate with a thickness of 0.95 mm in Table 2 using a rectangular cylinder punch with a square shape of 75 sides. 3 is a graph showing the critical drawing ratio and the failure state of a polytetrafluoroethylene sheet when the thickness of the polytetrafluoroethylene sheet is changed.

第1図に示すように弗素樹脂またはポリオレフィンのシ
ートを両面にはさんで成形すると、第1表及び第2図に
示すように限界絞り比が大幅に向上する。
When a fluororesin or polyolefin sheet is sandwiched between both sides and molded as shown in FIG. 1, the critical drawing ratio is greatly improved as shown in Table 1 and FIG. 2.

例えば、142図に示すように、JIS  1種の板厚
0.9tsmを用いて一辺75mmの正方形形状の角筒
ポンチによる成形を行う場合、ポリテトラプルオロエチ
レンを使用せず防錆油を両面に塗って成形すると、限界
絞り比が2.07であるのに対し、厚さ0.07〜0.
20gmのポリテトラフルオロエチレンを両面に置いて
成形すると限界絞り比が2.80に達し前者に比して0
.73も向上する。
For example, as shown in Figure 142, when forming with a square cylinder punch of 75 mm on a side using JIS 1 type plate thickness 0.9 tsm, do not use polytetrafluoroethylene and apply anti-rust oil to both sides. When it is coated and molded, the limiting drawing ratio is 2.07, but the thickness is 0.07~0.
When molding with 20 gm of polytetrafluoroethylene placed on both sides, the critical drawing ratio reaches 2.80, which is 0 compared to the former.
.. 73 will also improve.

この限界絞り比の向上効果は、普通鋼の鋼板を成形する
場合で比較して考えると信じられない効果である。例え
ば、普通鋼の冷間圧延鋼板の場合、JIS規格のG3L
41に示される一般用鋼板(SPCC)から絞り用鋼板
(SPCD)及び深絞り用鋼板(S P CE)となる
につれて、限界絞り比が0,1前後ずつ向上するのが普
通である。
This effect of improving the limit drawing ratio is an incredible effect when compared with the case of forming a steel plate of ordinary steel. For example, in the case of cold-rolled steel sheets made of ordinary steel, G3L according to the JIS standard.
As the steel plate for general use (SPCC) shown in No. 41 is changed to steel plate for drawing (SPCD) and steel plate for deep drawing (S P CE), the critical drawing ratio usually increases by around 0.1.

即ち、材料グレードを2ランク上げて5pccから5P
CEへ変えても、限界絞り比は0.2前後しか向上しな
いのである。これに対してチタン薄板にポリテトラフル
オロエチレンのシートを両面にはさんで成形した場合は
、はさまない場合に比ベて0.73も限界絞り比が向上
し、材料グレードの変化よりも格段の深絞り成形性の向
上効果があることが分かる。
In other words, raise the material grade by 2 ranks and increase from 5pcc to 5P.
Even if you change to CE, the limit drawing ratio will only improve by around 0.2. On the other hand, when polytetrafluoroethylene sheets are sandwiched between both sides of a thin titanium plate and formed, the critical drawing ratio is improved by 0.73 compared to when there is no sandwiching, which is much more significant than changing the material grade. It can be seen that this has the effect of improving deep drawing formability.

ただし、このポリテトラプルオロエチレンのシートも薄
過ぎると、成形途中で破損して焼き付きを生じて限界絞
り比の低下を招くため、厚さは0.07mm以上が良い
、。また、■すぎる場合は製造コストの上昇となるだけ
でな(、成形時にフランジ部に生ずるしわがチタン薄板
にプリントされやすくなり、限界絞り比の低下を招くた
め0.2mを上限とした。
However, if this polytetrafluoroethylene sheet is too thin, it will break during molding and cause seizure, leading to a decrease in the critical drawing ratio, so the thickness should preferably be 0.07 mm or more. Moreover, if it is too large, it will not only increase the manufacturing cost (but also cause wrinkles that occur on the flange part during molding to be easily printed on the titanium thin plate, causing a decrease in the critical drawing ratio. Therefore, the upper limit was set at 0.2 m.

また、ポリテトラフルオロエチレンのシートを片面だけ
に使用しても、使用しない面に焼き付きが生ずるため、
限界絞り比の向上も小さく適当ではない。ポリテトラフ
ルオロエチレンのシートがない場合は、他の弗素樹脂の
シートまたはポリエチレンやポリプロピレンなどのポリ
オレフィン系のシートを用いてもよいが、限界絞り比の
向上効果は小さくなる。
In addition, even if a polytetrafluoroethylene sheet is used on only one side, it will cause burn-in on the unused side.
The improvement in the limit drawing ratio is also small and not appropriate. If a polytetrafluoroethylene sheet is not available, another fluororesin sheet or a polyolefin sheet such as polyethylene or polypropylene may be used, but the effect of improving the critical drawing ratio will be small.

また、第1図のように弗素樹脂またはポリオレフィン系
のシートを両面にはさんで成形する他のメリットとして
以下の点が上げられる。
Further, as shown in FIG. 1, other advantages of molding by sandwiching fluororesin or polyolefin sheets on both sides include the following points.

先ず、チタンの表面粗度なと表面仕上げの状態によらず
高い限界絞り比が得られることである。
First, a high limiting drawing ratio can be obtained regardless of the surface roughness of titanium or the state of the surface finish.

弗素樹脂またはポリオレフィン系のシートが両面にあっ
て潤滑剤の役目を果たし、そのシートの厚さが0.07
から0.2mmであれば成形完了までシートが破損しな
いため、チタンの表面と金型表面が直接接触せず、チタ
ンの表面粗度など表面仕上げの影響を受けにくいためで
ある。
Fluororesin or polyolefin sheets are on both sides and act as a lubricant, and the thickness of the sheet is 0.07 mm.
This is because if the thickness is 0.2 mm, the sheet will not be damaged until the molding is completed, so the titanium surface and the mold surface will not come into direct contact and will not be affected by the surface finish such as the surface roughness of titanium.

次に、潤滑油として極圧添加剤の入ったものや高粘度の
ものを使う必要がなく、成形後の脱脂工程の省略または
簡略化が図れる。
Next, there is no need to use lubricating oil containing extreme pressure additives or high viscosity, and the degreasing process after molding can be omitted or simplified.

(発明の効果) この発明はチタン薄板の深絞り成形に対して極めて有効
である。また、深絞り成形だけでなく、金型を用いた他
の張出成形及び複雑な形状で絞り成形と張出成形が同時
に行われる複合成形に対しても焼き付き防止の効果があ
り、極めて応用範囲の広いものである。
(Effects of the Invention) The present invention is extremely effective for deep drawing of titanium thin plates. In addition, it has a seizure prevention effect not only for deep drawing, but also for other stretch forming using molds and composite forming where drawing and stretch forming are performed simultaneously for complex shapes, and has a wide range of applications. It is wide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリテトラフルオロエチレンのシートを両面に
はさんでチタン薄板を成形する本発明の説明図、第2図
はポリテトラプルオロエチレンのシート厚さの変化に刻
する限界絞り比及びポリテトラフルオロエチレンのシー
ト破損状態を示す図表である。 代 理 人  弁理士  茶野木 立 失策2図 れ θl           θ2
Figure 1 is an explanatory diagram of the present invention in which a titanium thin plate is formed by sandwiching a polytetrafluoroethylene sheet on both sides, and Figure 2 shows the critical drawing ratio and polytetrafluoroethylene sheet thickness change. It is a chart showing the state of sheet damage of tetrafluoroethylene. Agent Patent Attorney Tate Chanogi Mistake 2 θl θ2

Claims (1)

【特許請求の範囲】[Claims] チタン薄板の深絞り成形において、厚さ0.07mmか
ら0.2mmの弗素樹脂またはポリオレフィンのシート
を両面にはさんで成形することを特徴とするチタン薄板
の深絞り成形方法。
1. A method for deep drawing a thin titanium plate, which comprises forming a sheet of fluororesin or polyolefin having a thickness of 0.07 mm to 0.2 mm on both sides.
JP1171634A 1989-07-03 1989-07-03 Deep drawing method for titanium sheet Expired - Lifetime JPH067966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1171634A JPH067966B2 (en) 1989-07-03 1989-07-03 Deep drawing method for titanium sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1171634A JPH067966B2 (en) 1989-07-03 1989-07-03 Deep drawing method for titanium sheet

Publications (2)

Publication Number Publication Date
JPH0335824A true JPH0335824A (en) 1991-02-15
JPH067966B2 JPH067966B2 (en) 1994-02-02

Family

ID=15926830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1171634A Expired - Lifetime JPH067966B2 (en) 1989-07-03 1989-07-03 Deep drawing method for titanium sheet

Country Status (1)

Country Link
JP (1) JPH067966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151343A (en) * 2013-02-08 2014-08-25 Showa Denko Packaging Co Ltd Metal plate drawing method
KR20180028194A (en) * 2016-09-08 2018-03-16 주식회사 엘지화학 Battery Case Forming Device Equipped with Punch Head of Low Friction Force

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513702A (en) * 1974-06-28 1976-01-13 Hitachi Ltd Hatsukososhio mochiita hyojisochi
JPS5518171A (en) * 1978-07-27 1980-02-08 Fujitsu Ltd Carrier wave reproducing device
JPS55149727A (en) * 1979-05-11 1980-11-21 Furukawa Alum Co Ltd Press forming method for sheet of aluminum or aluminum-alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513702A (en) * 1974-06-28 1976-01-13 Hitachi Ltd Hatsukososhio mochiita hyojisochi
JPS5518171A (en) * 1978-07-27 1980-02-08 Fujitsu Ltd Carrier wave reproducing device
JPS55149727A (en) * 1979-05-11 1980-11-21 Furukawa Alum Co Ltd Press forming method for sheet of aluminum or aluminum-alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014151343A (en) * 2013-02-08 2014-08-25 Showa Denko Packaging Co Ltd Metal plate drawing method
KR20180028194A (en) * 2016-09-08 2018-03-16 주식회사 엘지화학 Battery Case Forming Device Equipped with Punch Head of Low Friction Force

Also Published As

Publication number Publication date
JPH067966B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
Hu et al. Tribological behaviour of DLC-films and their application in micro deep drawing
US4824898A (en) Shaped article of a tetrafluoroethylene polymer
CN104624767A (en) Forming method of large-deep-drawing-ratio micro-deep-drawn part
Yagami et al. Effect of alternating blank holder motion of drawing and wrinkle elimination on deep-drawability
CN109054951A (en) A kind of stamping processing solid lubricant film and preparation method thereof of aluminum alloy plate materials
JPH0335824A (en) Method for deep drawing titanium sheet
JPH07269680A (en) Insert molding
JP5376669B2 (en) Metal member press working method and die for press working
US4354370A (en) Method for deep drawing sheet metal
EP4219122A1 (en) Pouch-type battery case forming device including volatile lubricant supply part and method for manufacturing pouch-type battery case by using same
Tisza et al. Preliminary studies on the determination of FLD for single point incremental sheet metal forming
Abe et al. Improvement of formability in ironing of stainless steel drawn cups using low friction cermet dies
Hayakawa et al. Effect of workpiece surface topography on friction in cold forging using environmentally-friendly lubricant
Kim et al. Springback and side-wall curl of galvanized and galvalume steel sheet
JPH04351229A (en) Method for executing warm deep-drawing of aluminum alloy sheet
Venkatesh et al. A note on mathematical models of cup drawing by the Guerin and Marform processes
KR100812039B1 (en) A METHOD FOR DETERMINING BLANK SHAPE for SINK MANUFACTURING PROCESS
JP2001219219A (en) Method and die for bending metal plate
Burford Frictional and geometric effects in punch-stretch sheet metal formability testing
TWI813801B (en) Die for stamping and stamping method
JPH0584525A (en) Method for pressing aluminum alloy plate
KR102408096B1 (en) Method for designing molding condition of pressing die
Patil et al. Developing a progressive draw with ironing tool for manufacturing a solenoid casing
Bae et al. Experimental determination of the optimum blank shape in rectangular cup drawing
RU2655636C1 (en) Method for testing sheet materials to axiosymmetrical drawing