JPH033569B2 - - Google Patents

Info

Publication number
JPH033569B2
JPH033569B2 JP58037860A JP3786083A JPH033569B2 JP H033569 B2 JPH033569 B2 JP H033569B2 JP 58037860 A JP58037860 A JP 58037860A JP 3786083 A JP3786083 A JP 3786083A JP H033569 B2 JPH033569 B2 JP H033569B2
Authority
JP
Japan
Prior art keywords
rubber
vulcanized
unvulcanized rubber
molded product
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037860A
Other languages
Japanese (ja)
Other versions
JPS59162030A (en
Inventor
Mijuro Takechi
Hiroshi Harima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP58037860A priority Critical patent/JPS59162030A/en
Publication of JPS59162030A publication Critical patent/JPS59162030A/en
Publication of JPH033569B2 publication Critical patent/JPH033569B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、未加硫ゴム成形物を複合化して加硫
ゴム製品を能率よく製造する方法に関する。 ゴム工場では、未加硫ゴム成形物を同配合もし
くは配合を異にする未加硫ゴム成形物やその加硫
成形物等の同種成形物またはプラスチツク成形物
や金属板等の異種成形物と組合せて複合化し、次
いで未加硫ゴム成形物を加硫し、加硫ゴム製品ま
たは半製品を製造することが多い。成形された未
加硫ゴム成形物は、複合化して加硫するまでの間
に一時的な貯蔵のために未加硫ゴム成形物を重ね
て置くことが多いが、その際未加硫ゴムの粘着性
のために未加硫ゴム成形物のゴム同志が密着して
しまつたり、複合化するのに密着している部分を
切り離すことが必要であり、またひどい場合には
成形し直す必要があつたりして、ゴム製品を能率
よく製造するには問題があつた。また、未加硫ゴ
ム成形物を作業台や貯蔵用の台に放置した場合、
未加硫ゴムがそれらの台に密着してしまい、密着
部分をはがす作業が必要となり、ゴム製品を製造
する作業性が著しく低下することがある。さらに
複合化に際して正確に組立てるために手直しを必
要とする場合があり、未加硫ゴム成形物と同種ま
たは異種の成形物との密着を防止する必要があ
る。 このような未加硫ゴム成形物における未加硫ゴ
ムの同種または異種の成形物に対する密着するの
をふせぎ、能率よくゴム製品を製造する方法とし
て、未加硫ゴム成形物と同種または異種の成形物
との間にポリエチレンフイルムを挿入したり、未
加硫ゴム成形物をポリエチレンフイルムを敷いた
上に置いておく方法がとられているが、この方法
は、ポリエチレンフイルムを除去するのに手間が
かかり、また除去し切れないポリエチレンフイル
ムの小片が混入した場合、加硫して得られるゴム
製品の性能の低下を引き起すという問題を有する
ものであつた。 本発明者等は、上記のような従来技術の問題を
解消すべく、種々検討した結果、未加硫ゴムから
なる成形物および該成形物と同種または異種の
成形物を複合化した後加硫することにより加硫
ゴム製品を製造するにあたり、40〜100℃の融点
を有する加硫可能な結晶性重合体のフイルムを前
記成形物()と前記成形物()との間に介在
せて複合化した後、加硫することにより、未加硫
ゴムからなる成形物()のゴムが前記成形物
()のゴム、プラスチツクまたは金属等と密着
するのを防止することができ、また複合化する際
に正確に組立てることができ、しかも前記フイル
ムを取り去ることなしに複合化して加硫しても前
記フイルムを形成している結晶性重合体が加硫温
度で未加硫ゴム中へ拡散し、しかも未加硫ゴムと
共加硫するので、得られる加硫ゴム製品の低下が
ほとんどみとめられず、加硫ゴム製品を能率よく
製造することができることを見出し、本発明を完
成するに至つた。 本発明において、未加硫ゴムからなる成形物
()とは、天然ゴム(NR)、シス−1,4−ポ
リイソプレンゴム(IR)、ポリブタジエンゴム
(BR)、スチレン−ブタジエン共重合ゴム
(SBR)、スチレン−イソプレン共重合ゴム
(SIR)、アクリロニトリル−ブタジエン共重合ゴ
ム(NBR)、アクリロニトリル−イソプレン共重
合ゴム(NIR)、クロロプレンゴム(CR)、エチ
レン−プロピレン共重合ゴム(EPRまたは
EPDM)またはブチルゴム(IIR)等のゴム、ま
たはそれらの混合物に、イオウで代表される加硫
剤、加硫促進剤、活性剤、金属酸化物、金属炭酸
塩、脂肪酸もしくはその誘導体等の加硫促進助
剤、さらに必要に応じて充填剤、ゴム補強剤、ゴ
ム軟化剤、可塑剤、老化防止剤、酸化防止剤、オ
ゾン劣化防止剤、紫外線吸収剤、染剤、顔料また
は粘着付与樹脂を配合して未加硫ゴム組成物と
し、該組成物をシート状、板状、棒状またはホー
ス状に成形したものを意味する。本発明において
は、イオウを配合した粘着性の未加硫ゴム成形物
に顕著な効果が認められる。なお、成形物は、化
学繊維、ガラス繊維、それらの織布、付織布、金
属コード、金属板で補強されていてもよい。 また未加硫ゴム成形物()と同種の成形物と
は前述した未加硫ゴム成形物(′)そのもの、
該成形物と配合を異にする未加硫ゴム成形物
(″)またはそれらの加硫成形物()を意味
し、異種の成形物とは、プラスチツクスからなる
成形物または金属板等を意味する。 さらに、ゴム製品とは、未加硫ゴム成形物
()と、前記未加硫ゴム成形物(′)、未加硫
ゴム成形物(″)もしくは加硫成形物()
等の同種成形物、またはプラスチツクスからなる
成形物もしくは金属材料(例えば鉄、スチールも
しくは銅)等の成形物等の異種成形物を積層し、
加硫して得られた製品あるいは半製品をいい、例
えばタイヤ、ベルト、ホース、履物、ゴム弘布、
ゴムロールまたは防振ゴム等の各種ゴム製品、あ
るいはそれらの半製品等が挙げられる。 本発明においては、40〜100℃の融点を有する
加硫可能な結晶性重合体のフイルムを使用するこ
とが大きな特徴であり、種々の効果があるので以
下に説明する。 本発明において、フイルムの形で用いられる加
硫可能な結晶性重合体の融点が高いと、加硫に際
して未加硫ゴム成形物()を作るために配合し
た加硫剤(イオウ)、加硫促進剤または加硫促進
助剤等のゴム配合薬品がフイルムの形で用いられ
る加硫可能な結晶性重合体へ十分に拡散せず、加
硫して得られるゴム製品の性能を低下させるの
で、フイルムの形で用いられる加硫可能な結晶性
重合体の融点は100℃を越えないことが必要であ
る。一方、その融点が低いと常温でのフイルム強
度が不足するので、その融点は40℃以上である必
要がある。 なお、本発明において融点とは示差熱分析によ
つて得られた結晶の融解による吸熱ピークの最も
高温側の吸熱ピークの温度を意味する。 また、本発明においてフイルムの形で用いられ
る40〜100℃の融点を有する結晶性重合体は未加
硫ゴム成形物()中の未加硫ゴムと共加硫しな
い前記フイルムを取り除かないまま加硫すると加
硫ゴム製品の物性、特に成形物の界面での強度が
低下させるので、加硫可能で、しかも未加硫ゴム
と共加硫する必要がある。 このような条件を満たす重合体としては、ブタ
ジエン、イソプレンまたはクロロプレン等の共役
ジエンからなる結晶性重合体であればよく、最も
好ましい例としては、トランス−1,4−ポリイ
ソプレンまたはシンジオタクチツク−1,2−ポ
リブタジエンが挙げられる。とりわけ、トランス
−1,4−ポリイソプレンが最適である。これら
の結晶性重合体の結晶化度が低いと、該重合体か
ら得られるフイルムの強度が不充分となるので、
前記重合体は高い立体規則性を示す構造をとる必
要があり、例えばトランス−1,4−ポリイソプ
レンの場合には90%以上、好ましくは95%以上の
トランス−1,4−結合を含有することが望まし
く、またシンジオタクチツク−1,2−ポリブタ
ジエンの場合には90%以上、好ましくは95%以上
の1,2−結合を有することが望ましい。 このような結晶性重合体としては、バラタやガ
ツタパーチヤのようなトランス−1,4−ポリイ
ソプレンの天然物、または常法によつて重合した
ものが挙げられる。本発明で好ましく用いられる
トランス−1,4−ポリイソプレンの場合にはイ
ソプレン単量体をチーグラー系触媒を用いて重合
することによつて、またシンジオタクチツク−
1,2−ポリブタジエンの場合にはブタジエン単
量体をアニオン型触媒を用いて重合することによ
つて得られる。 このような結晶性重合体は、押出機を用いる常
法によりフイルムとされる。その際、本発明の主
旨を損わない範囲で天然ゴム、合成シス−1,4
−ポリイソレンゴム(IR)、ポリブタジエンゴム
(BR)、スチレン−ジエン共重合ゴム(SBRまた
はSIR)、アクリロニトリル−ジエン共重合ゴム
(NBRまたはNIR)等の合成ゴムを配合してもよ
い。また通常ゴム工場で使用される老化防止剤、
酸化防止剤、オゾン劣化防止剤、紫外線吸収剤、
染料、顔料、ゴム補強剤、充填剤、ゴム軟化剤、
可塑剤または粘着付与樹脂等のゴム配合薬品を配
合してもよい。なお、得られたフイルムの片面に
はゴム系粘着剤を塗布しておいてもよい。 このようにして得られる結晶性重合体のフイル
ムは、その厚さが薄過ぎると未加硫ゴム成形物
()または他の成形物()に貼り付けたりま
たはそれらの間に挿入したりした場合、強度が不
充分となり、また厚過ぎると得られる加硫ゴム製
品の物性を低下させるので、5〜200ミクロン、
とりわけ20〜100ミクロンの厚さを有することが
望ましい。 このようにして得られるフイルムは、常法によ
つて得られる未加硫ゴム成形物()および該成
形物と同種または異種の成形物()との間に介
在するように配置される。その方法としては。前
記成形物()に前記フイルムを貼り付けてお
き、前記成形物()を配置する方法とか、前記
成形物()に前記フイルムをのせておき、前記
成形物()を置換する方法とか、種々のバリエ
ーシヨンが考えられる。なお、成形物()にフ
イルムを貼り付けておくと、複合化が極めて容易
であり、成形物を貯蔵するために積み重ねてお
いたときにゴム同志の密着が認められないのみな
らず、例えば複合化をドラム上でおこなつた場
合、ドラムからの脱着が容易であるというメリツ
トをも有する。 このようにして、40〜100℃の融点を有する加
硫可能な重合体のフイルムの介在した未加硫ゴム
成形物と該成形物と同種または異種の成形物
とからなる複合化したものが得られるが、未加硫
ゴム成形物()が該成形物()または前記成
形物()に密着していないので極めて容易に、
かつ複合化すべき位置に容易に配置することがで
きる。そのため、複合化の作業は極めて能率よく
行なうことができる。特に2本以上の成形物を複
合化する際にメリツトが多い。 このようにして得られた複合化したものは、常
法により100℃以上、好ましくはイオウが加硫し
やすい120℃以上で加硫されて、ゴム製品とされ
る。40〜100℃の融点を有する加硫可能な重合体
のフイルムは加硫時に溶解し、未加硫ゴム成形物
()中に拡散し、未加硫ゴムと共加硫する。そ
のため、成形物の界面が容易に剥離されるという
ことはない。 以下、実施例によつて本発明を具体的に説明す
るが、本発明はこれらの実施例によつて何ら限定
されるものではない。 比較例 1 8インチオープンロールを用いて第1表に示し
た配合により、合成シス−1,4−ポリイソプレ
ンゴムの未加硫ゴム組成物を混練りし、厚さ3mm
の未加硫ゴムシートを分出した。この未加硫ゴム
シートから15cm×15cmの大きさの試片を2枚切り
出し、ピツタリと重ね、その1辺に沿つてヨコ5
cm×タテ15cmの大きさのテフロンシートを挿入
し、未加硫ゴムシートを複合化したものを作つ
た。次いでこの複合化したものを135℃で60分間
プレス加硫し、加硫ゴムシートを得た。加硫ゴム
シートからテフロンシートを取り除いて目視した
ところ、2枚の未加硫ゴムシートが一体となつて
加硫された部分(A部分)とテフロンシートの存
在のために一体化せず各々加部された部分(B部
分またはB′部分)とをあわせ有する加硫ゴムシ
ートが得られていることが判つた。なお、未加硫
ゴムシートを複合化したもの前記のものはプレス
せずに2枚重ねておくと未加硫ゴム同志が密着
し、分離することが極めて困難なものであつた。 前記加硫ゴムシートより、挿入したテフロンシ
ートのタテ方向と垂直な方向、すなわち挿入した
テフロンシートのヨコ方向に平行になるように幅
1cmの試片を切り出し、B部分およびB′部分を
チヤツクにはさみ、50cm/分の引張速度で90度剥
離試験に供した。剥離試験ではA部分の剥離はま
つたく認められず、チヤツクはさみ部分(B部分
またはB′部分)で切断が起つたが、その時の応
力は87Kg/cm2であつた。
The present invention relates to a method for efficiently manufacturing vulcanized rubber products by compositing unvulcanized rubber moldings. In rubber factories, unvulcanized rubber moldings are combined with similar moldings such as unvulcanized rubber moldings and vulcanized moldings of the same or different compositions, or dissimilar moldings such as plastic moldings and metal plates. The unvulcanized rubber molded product is then vulcanized to produce a vulcanized rubber product or semi-finished product. Molded unvulcanized rubber moldings are often stacked on top of each other for temporary storage until they are composited and vulcanized. Due to its tackiness, the rubber parts of unvulcanized rubber moldings may stick together, or it may be necessary to separate the parts that are in close contact with each other to form a composite, and in severe cases, it may be necessary to re-mold. This created problems in efficiently manufacturing rubber products. In addition, if unvulcanized rubber moldings are left on a workbench or storage table,
The unvulcanized rubber adheres to these tables, and it is necessary to peel off the adhered portion, which may significantly reduce the workability of manufacturing rubber products. Furthermore, in order to assemble accurately in compounding, it may be necessary to modify the product, and it is necessary to prevent the unvulcanized rubber molded product from coming into close contact with molded products of the same or different type. As a method for efficiently manufacturing rubber products by preventing the unvulcanized rubber from adhering to moldings of the same or different type in such unvulcanized rubber moldings, molding of the same or different type as the unvulcanized rubber molding is Methods of inserting a polyethylene film between objects or placing an unvulcanized rubber molded object on a polyethylene film are used, but this method requires time and effort to remove the polyethylene film. In addition, if small pieces of polyethylene film that cannot be completely removed are mixed in, there is a problem in that the performance of the rubber product obtained by vulcanization deteriorates. In order to solve the problems of the prior art as described above, the inventors of the present invention have made various studies and found that a molded article made of unvulcanized rubber and a molded article of the same or different type as the unvulcanized rubber are combined and then vulcanized. In producing a vulcanized rubber product, a film of a vulcanizable crystalline polymer having a melting point of 40 to 100°C is interposed between the molded product () and the composite material (). By vulcanizing the molded product () made of unvulcanized rubber, it is possible to prevent the rubber of the molded product () from coming into close contact with the rubber, plastic, metal, etc. of the molded product (), and also to compound it. Even if the film is composited and vulcanized without removing the film, the crystalline polymer forming the film diffuses into the unvulcanized rubber at the vulcanization temperature. Moreover, since the process is co-vulcanized with unvulcanized rubber, the resulting vulcanized rubber products show almost no deterioration, and the inventors have discovered that vulcanized rubber products can be manufactured efficiently, leading to the completion of the present invention. In the present invention, molded products made of unvulcanized rubber () include natural rubber (NR), cis-1,4-polyisoprene rubber (IR), polybutadiene rubber (BR), and styrene-butadiene copolymer rubber (SBR). ), styrene-isoprene copolymer rubber (SIR), acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-isoprene copolymer rubber (NIR), chloroprene rubber (CR), ethylene-propylene copolymer rubber (EPR or
Vulcanization of vulcanizing agents such as sulfur, vulcanization accelerators, activators, metal oxides, metal carbonates, fatty acids or their derivatives, etc. to rubber such as EPDM) or butyl rubber (IIR), or mixtures thereof. Contains accelerators, fillers, rubber reinforcing agents, rubber softeners, plasticizers, anti-aging agents, antioxidants, anti-ozonants, ultraviolet absorbers, dyes, pigments or tackifying resins as required. It means an unvulcanized rubber composition formed by molding the composition into a sheet, plate, rod, or hose shape. In the present invention, remarkable effects are observed in adhesive unvulcanized rubber molded products containing sulfur. The molded product may be reinforced with chemical fibers, glass fibers, woven fabrics or attached woven fabrics thereof, metal cords, or metal plates. In addition, molded products of the same type as the unvulcanized rubber molded product () include the aforementioned unvulcanized rubber molded product (′) itself;
It means an unvulcanized rubber molded product ('') or a vulcanized molded product () having a different composition from the molded product, and a different type of molded product means a molded product made of plastics or a metal plate, etc. Furthermore, rubber products include unvulcanized rubber molded products (), unvulcanized rubber molded products ('), unvulcanized rubber molded products (''), or vulcanized molded products ().
or different types of moldings such as moldings made of plastics or moldings of metal materials (e.g. iron, steel or copper),
Refers to products or semi-finished products obtained by vulcanization, such as tires, belts, hoses, footwear, rubber cloth, etc.
Examples include various rubber products such as rubber rolls and anti-vibration rubber, and semi-finished products thereof. A major feature of the present invention is the use of a vulcanizable crystalline polymer film having a melting point of 40 to 100°C, which has various effects, which will be explained below. In the present invention, if the vulcanizable crystalline polymer used in the form of a film has a high melting point, the vulcanizing agent (sulfur) blended to make the unvulcanized rubber molding () during vulcanization, Rubber compounding chemicals such as accelerators or vulcanization accelerators do not diffuse sufficiently into the vulcanizable crystalline polymer used in film form, reducing the performance of the rubber product obtained by vulcanization. It is necessary that the melting point of the vulcanizable crystalline polymer used in film form does not exceed 100°C. On the other hand, if the melting point is low, the film strength at room temperature will be insufficient, so the melting point needs to be 40°C or higher. In the present invention, the melting point refers to the temperature of the endothermic peak on the highest temperature side of the endothermic peak due to melting of the crystal obtained by differential thermal analysis. In addition, the crystalline polymer having a melting point of 40 to 100°C used in the form of a film in the present invention is not co-cured with the unvulcanized rubber in the unvulcanized rubber molded product (), but is vulcanized without removing the film. Since curing deteriorates the physical properties of the vulcanized rubber product, especially the strength at the interface of the molded product, it is necessary to be able to vulcanize it and to co-vulcanize it with unvulcanized rubber. Polymers satisfying these conditions may be crystalline polymers made of conjugated dienes such as butadiene, isoprene, or chloroprene, and the most preferred examples are trans-1,4-polyisoprene or syndiotactic polymers. 1,2-polybutadiene is mentioned. In particular, trans-1,4-polyisoprene is most suitable. If the crystallinity of these crystalline polymers is low, the strength of the film obtained from the polymer will be insufficient.
The polymer needs to have a structure exhibiting high stereoregularity; for example, in the case of trans-1,4-polyisoprene, it contains 90% or more, preferably 95% or more of trans-1,4-bonds. In the case of syndiotactic-1,2-polybutadiene, it is desirable to have 1,2-bonds of 90% or more, preferably 95% or more. Examples of such crystalline polymers include natural products of trans-1,4-polyisoprene such as balata and gutta percha, or those polymerized by conventional methods. In the case of trans-1,4-polyisoprene, which is preferably used in the present invention, isoprene monomers are polymerized using a Ziegler catalyst or syndiotactic.
In the case of 1,2-polybutadiene, it can be obtained by polymerizing butadiene monomers using an anionic catalyst. Such a crystalline polymer is made into a film by a conventional method using an extruder. At that time, natural rubber, synthetic cis-1,4
- Synthetic rubbers such as polyisolene rubber (IR), polybutadiene rubber (BR), styrene-diene copolymer rubber (SBR or SIR), acrylonitrile-diene copolymer rubber (NBR or NIR) may be blended. Also an anti-aging agent, usually used in rubber factories,
Antioxidants, antiozonants, ultraviolet absorbers,
Dyes, pigments, rubber reinforcing agents, fillers, rubber softeners,
Rubber compounding chemicals such as plasticizers or tackifying resins may also be blended. Note that a rubber adhesive may be applied to one side of the obtained film. If the film of the crystalline polymer obtained in this way is too thin, it may not be applied to or inserted between unvulcanized rubber moldings () or other moldings (). 5 to 200 microns, because the strength will be insufficient and if it is too thick, the physical properties of the resulting vulcanized rubber product will deteriorate.
It is especially desirable to have a thickness of 20 to 100 microns. The film thus obtained is placed between an unvulcanized rubber molded product obtained by a conventional method and a molded product of the same or different type as the unvulcanized rubber molded product. As for the method. There are various methods such as pasting the film on the molded product () and arranging the molded product (), placing the film on the molded product () and replacing the molded product (), etc. Variations are possible. Note that if a film is attached to the molded product (), it will be extremely easy to compose it, and when the molded products are stacked for storage, not only will the rubber not adhere to each other, but for example, composite When the conversion is performed on a drum, it also has the advantage that it is easy to attach and detach from the drum. In this way, a composite product consisting of an unvulcanized rubber molded article interposed with a film of a vulcanizable polymer having a melting point of 40 to 100°C and a molded article of the same or different type as the unvulcanized rubber molded article is obtained. However, since the unvulcanized rubber molded product () is not in close contact with the molded product () or the molded product (), it is extremely easy to
In addition, it can be easily placed at the location where it is to be combined. Therefore, the compositing work can be performed extremely efficiently. There are many advantages especially when combining two or more molded products. The composite thus obtained is vulcanized by a conventional method at 100°C or higher, preferably 120°C or higher, where sulfur is easily vulcanized, to form a rubber product. A film of vulcanizable polymer with a melting point of 40-100° C. dissolves during vulcanization, diffuses into the unvulcanized rubber molding () and covulcanizes with the unvulcanized rubber. Therefore, the interface of the molded product will not be easily peeled off. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way. Comparative Example 1 An unvulcanized rubber composition of synthetic cis-1,4-polyisoprene rubber was kneaded using an 8-inch open roll according to the formulation shown in Table 1, and the mixture was kneaded to a thickness of 3 mm.
An unvulcanized rubber sheet was separated. Cut out two specimens of 15cm x 15cm from this unvulcanized rubber sheet, stack them tightly, and cut them horizontally 5cm along one side.
A Teflon sheet measuring 15 cm x 15 cm was inserted to create a composite of unvulcanized rubber sheets. This composite was then press-vulcanized at 135°C for 60 minutes to obtain a vulcanized rubber sheet. When the Teflon sheet was removed from the vulcanized rubber sheet and visually inspected, there was a part where the two unvulcanized rubber sheets were vulcanized together (part A), and a part where the two unvulcanized rubber sheets were vulcanized together, and a part where they were not integrated due to the presence of the Teflon sheet and were vulcanized separately. It was found that a vulcanized rubber sheet having both a part (B part or B' part) was obtained. In addition, when the above-mentioned composite sheet of unvulcanized rubber sheets is stacked without being pressed, the unvulcanized rubber sticks together and is extremely difficult to separate. Cut out a 1 cm wide specimen from the vulcanized rubber sheet in a direction perpendicular to the vertical direction of the inserted Teflon sheet, that is, parallel to the horizontal direction of the inserted Teflon sheet, and use parts B and B' as chucks. A 90 degree peel test was performed using scissors and a tensile speed of 50 cm/min. In the peel test, no peeling was observed at part A, and breakage occurred at the chuck scissors part (part B or B'), but the stress at that time was 87 kg/cm 2 .

【表】【table】

【表】 実施例 1 比較例1と同様にして調製した分出しシート
(2mm×15cm×15cm)の1辺に沿つてヨコ5cm×
タテ15cmのテフロンシートを置き、さらにテフロ
ンシートで覆われていない部分に融点67℃のトラ
ンス−1,4−ポリイソプレン(シス−1,4結
合量;99%、クラレイソプレンケミカル(株)製クラ
プレンTP−301)を押出し成形して得られた厚さ
50ミクロンのシート(10cm×15cm)をピツタリ重
ねて置き、さらに分出しシートを前記の分出しシ
ートとピツタリするように重ねて置き、プレスし
て複合体をつくつた。プレスした後、2枚の分出
しシートを両側から引つ張つたところ、容易に剥
離するものであつた。なお、2週間後に調べてみ
たところ、前記の剥離性はまつたくかわらないも
のであつた。 次いで、前記複合体を、実施例1と同様にして
135℃で60分間プレス加硫した。得られた加硫ゴ
ムシートの断面を目視したところ、トランス−
1,4−ポリイソプレンを介在させた部分ではそ
の存在は確認されず、上下2枚のシートは完全に
一体化していた。この加硫ゴムシートについて比
較例1と同様にして90度剥離試験を実施した。こ
の場合、比較例1と同様つかみ部分で切断し、そ
の時の応力は86Kg/cm2であつた。これは比較例1
のトランス−1,4−ポリイソプレンのフイルム
を介在させずに加硫ゴムシートを製造した場合と
ほとんど同じ値であり、本実施例においてもトラ
ンス−1,4−ポリイソプレンフイルムを介して
重ね合せた2枚の未加硫ゴムシートが加硫の際に
完全に一体化したことを示すものと推定される。 比較例 2 比較例1と同様にして作製した厚さ2mmの未加
硫ゴムシートを2枚重ねて、135℃で60分間プレ
ス加硫し、加硫ゴムシートを得た。 前記加硫ゴムシートよりJIS3号ダンベルを打ち
抜き、50cm/分の引張速度で引張試験を実施し
た。その結果を第2表に示した。 実施例 2 比較例1と同様にして作製した厚さ2mmの未加
硫ゴムシート2枚の間に、融点67℃のトランス−
1,4−ポリイソプレン(クラプレンTP−301)
のフイルム(厚さ、50ミクロン)をはさんで重
ね、プレスして複合化した。両側の未加硫ゴムシ
ートを引張つたところ、それらは容易に剥離し
た。 次いで複合化したものを135℃で60分間プレス
加硫し、加硫ゴムシートを得た。このシートにつ
いて比較例2と同様にして引張試験を実施したと
ころ、第2表に示した結果が得られた。 比較例2との比較から、トランス−1,4−ポ
リイソプレンフイルムを介在させておいても加硫
ゴムシートの引張特性は何ら影響を受けないこと
が判る。
[Table] Example 1 A dispensing sheet (2 mm x 15 cm x 15 cm) prepared in the same manner as Comparative Example 1 was placed along one side by 5 cm horizontally.
Place a 15cm tall Teflon sheet, and place trans-1,4-polyisoprene with a melting point of 67℃ (cis-1,4 bond content: 99%) on the part not covered with the Teflon sheet. Thickness obtained by extruding TP-301)
The 50 micron sheets (10 cm x 15 cm) were placed tightly on top of each other, and then the dispensed sheet was placed on top of the dispensed sheet and pressed to form a composite. After pressing, when the two divided sheets were pulled from both sides, they were easily peeled off. In addition, when examined two weeks later, the above-mentioned releasability remained unchanged. The complex was then prepared in the same manner as in Example 1.
Press vulcanization was performed at 135°C for 60 minutes. Visual inspection of the cross section of the obtained vulcanized rubber sheet revealed that trans-
Its presence was not confirmed in the portion where 1,4-polyisoprene was interposed, and the upper and lower two sheets were completely integrated. A 90 degree peel test was conducted on this vulcanized rubber sheet in the same manner as in Comparative Example 1. In this case, as in Comparative Example 1, cutting was performed at the gripping portion, and the stress at that time was 86 Kg/cm 2 . This is comparative example 1
This is almost the same value as when a vulcanized rubber sheet was manufactured without intervening a trans-1,4-polyisoprene film, and in this example also, when laminating the vulcanized rubber sheet with a trans-1,4-polyisoprene film interposed, This is presumed to indicate that the two unvulcanized rubber sheets were completely integrated during vulcanization. Comparative Example 2 Two unvulcanized rubber sheets with a thickness of 2 mm produced in the same manner as in Comparative Example 1 were stacked and press-vulcanized at 135° C. for 60 minutes to obtain a vulcanized rubber sheet. JIS No. 3 dumbbells were punched out from the vulcanized rubber sheet, and a tensile test was conducted at a tensile speed of 50 cm/min. The results are shown in Table 2. Example 2 A transformer with a melting point of 67°C was placed between two unvulcanized rubber sheets with a thickness of 2 mm produced in the same manner as in Comparative Example 1.
1,4-Polyisoprene (Kuraprene TP-301)
films (thickness, 50 microns) were stacked on top of each other and pressed to form a composite. When the unvulcanized rubber sheets on both sides were pulled, they were easily peeled off. The composite was then press-vulcanized at 135°C for 60 minutes to obtain a vulcanized rubber sheet. When this sheet was subjected to a tensile test in the same manner as in Comparative Example 2, the results shown in Table 2 were obtained. A comparison with Comparative Example 2 shows that the tensile properties of the vulcanized rubber sheet are not affected in any way by the presence of the trans-1,4-polyisoprene film.

【表】 実施例 3 トランス−1,4−ポリイソプレンを押出し成
形して得られた厚さ50ミクロンのシートの代り
に、融点が75℃であるシンジオタクチツク−1,
2−ポリブタジエン(1,2結合量、90%以上;
日本合成ゴム(株)製JSR RB820)を押出し成して
得られた厚さ30ミクロンのシートを用いる他は、
実施例1と同様にして未加硫ゴムシートの2枚、
その間にシンジオタクチツク−1,2−ポリブタ
ジエンの挿入された複合化したものを作つた。な
お、これをプレスして未加硫ゴムシートの剥離性
を調べたところ、剥離性は極めて良好なものであ
つた。次いで前記の複合化したものを135℃で60
分間プレス加硫し、加硫ゴムシートを得た。 この加硫ゴムシートを用いて比較例1と同様に
して90度剥離試験を実施したところ、つかみ部分
で切断が起こり、その応力は84Kg/cm2であり、比
較例1の結果とほとんど変らないものであつた。
したがつて、シンジオタクチツク−1,2−ポリ
ブタジエンを未加硫ゴムシート間に介在させても
その加硫物々性は何ら影響されないことが判る。
[Table] Example 3 Instead of a 50 micron thick sheet obtained by extrusion of trans-1,4-polyisoprene, syndiotactic-1 having a melting point of 75°C
2-polybutadiene (1,2 bond amount, 90% or more;
In addition to using a 30 micron thick sheet obtained by extruding JSR RB820 manufactured by Japan Synthetic Rubber Co., Ltd.,
Two unvulcanized rubber sheets were prepared in the same manner as in Example 1,
In the meantime, a composite product in which syndiotactic-1,2-polybutadiene was inserted was prepared. In addition, when this was pressed and the releasability of the unvulcanized rubber sheet was examined, the releasability was extremely good. Next, the above composite was heated at 135℃ for 60 minutes.
Press vulcanization was performed for a minute to obtain a vulcanized rubber sheet. When a 90 degree peel test was carried out using this vulcanized rubber sheet in the same manner as Comparative Example 1, breakage occurred at the gripping part, and the stress was 84 Kg/cm 2 , which is almost the same as the result of Comparative Example 1. It was hot.
Therefore, it can be seen that even if syndiotactic-1,2-polybutadiene is interposed between unvulcanized rubber sheets, the physical properties of the vulcanized product are not affected at all.

Claims (1)

【特許請求の範囲】 1 未加硫ゴムからなる成形物()および該成
形物と同種または異種の成形物()を複合化し
た後加硫することにより加硫ゴム製品を製造する
にあたり、40〜100℃の融点を有する加硫可能な
結晶性重合体のフイルムを前記成形物()と前
記成形物()との間に介在させて複合化した
後、加硫することを特徴とするゴム製品の製造方
法。 2 40〜100℃の融点を有する加硫可能な結晶性
重合体が、トランス−1,4−ポリイソプレンで
ある特許請求の範囲第1項記載の製造方法。 3 40〜100℃の融点を有する加硫可能な結晶性
重合体が、シンジオタクチツク−1,2−ポリブ
タジエンである特許請求の範囲第1項記載の製造
方法。 4 フイルムが、5〜200ミクロンの厚さを有す
ることを特徴とする特許請求の範囲第1項記載の
製造方法。
[Claims] 1. In manufacturing a vulcanized rubber product by vulcanizing a molded product made of unvulcanized rubber and a molded product of the same or different type as the molded product, A rubber characterized in that a film of a vulcanizable crystalline polymer having a melting point of ~100°C is interposed between the molded product () and the molded product () to form a composite, and then vulcanized. How the product is manufactured. 2. The manufacturing method according to claim 1, wherein the vulcanizable crystalline polymer having a melting point of 40 to 100°C is trans-1,4-polyisoprene. 3. The manufacturing method according to claim 1, wherein the vulcanizable crystalline polymer having a melting point of 40 to 100°C is syndiotactic-1,2-polybutadiene. 4. The manufacturing method according to claim 1, wherein the film has a thickness of 5 to 200 microns.
JP58037860A 1983-03-07 1983-03-07 Manufacture of rubber product Granted JPS59162030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037860A JPS59162030A (en) 1983-03-07 1983-03-07 Manufacture of rubber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037860A JPS59162030A (en) 1983-03-07 1983-03-07 Manufacture of rubber product

Publications (2)

Publication Number Publication Date
JPS59162030A JPS59162030A (en) 1984-09-12
JPH033569B2 true JPH033569B2 (en) 1991-01-18

Family

ID=12509297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037860A Granted JPS59162030A (en) 1983-03-07 1983-03-07 Manufacture of rubber product

Country Status (1)

Country Link
JP (1) JPS59162030A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018167A1 (en) * 1997-10-08 1999-04-15 Bridgestone Corporation Adhesive rubber composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824383A (en) * 1996-10-25 1998-10-20 The Goodyear Tire & Rubber Company Methods of securing splices in curable rubber articles
JP4575095B2 (en) * 2004-09-27 2010-11-04 株式会社ブリヂストン Manufacturing method of rubber crawler

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146879A (en) * 1978-05-10 1979-11-16 Bridgestone Corp Hot-melt bonding of vulcanized rubber
JPS57185367A (en) * 1981-05-11 1982-11-15 Kuraray Co Ltd Adhesive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146879A (en) * 1978-05-10 1979-11-16 Bridgestone Corp Hot-melt bonding of vulcanized rubber
JPS57185367A (en) * 1981-05-11 1982-11-15 Kuraray Co Ltd Adhesive composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999018167A1 (en) * 1997-10-08 1999-04-15 Bridgestone Corporation Adhesive rubber composition

Also Published As

Publication number Publication date
JPS59162030A (en) 1984-09-12

Similar Documents

Publication Publication Date Title
JP4983922B2 (en) Pneumatic tire
CN101370652A (en) Low-permeable rubber laminate and pneumatic tire using same
US4017654A (en) Cured rubber article and method of preparation
JP2010502770A (en) Shrink label of oriented polystyrene film with small rubber particle and low rubber particle gel content and containing block copolymer
US4808657A (en) Rubbery adhesive cements
JPH02155811A (en) Tire having decorative sidewall
CN108165205A (en) A kind of hot-melt adhesive composition and its application method
EP3393777B1 (en) Self-sealing tyre for vehicle wheels
JP2868205B2 (en) Composite material combining thermoplastic elastomer and vulcanized elastomer
US5645674A (en) Methods for achieving improved bond strength between unvulcanized and vulcanized rubbers
JPH033569B2 (en)
WO2014129509A1 (en) Rubber composition, method for producing tire using said rubber composition, and rubbery member for tires which is produced using said rubber composition
JP2009035681A (en) Rubber cement composition
JPH0233737B2 (en)
CN113621204B (en) BOPP double-sided heat-sealing laser anti-counterfeiting base film and preparation method thereof
WO2021106413A1 (en) Rubber-metal complex, tire, and rubber article
EP0173834A1 (en) Method of improving green strength properties of vulcanizable rubber
US20040127652A1 (en) Rubber composition which contains a tack retention additive and tire with component thereof
US3639525A (en) Raw mixture of rubbery isobutylene polymer with crystalline trans-1 4-conjugated diolefin polymer
JPS60247547A (en) Manufacture of precured tread for renewed tire
JPH05170935A (en) Production of bonded composite material of thermoplastic elastomer and rubber
JP7401740B2 (en) Thermoplastic resin compositions, laminates and pneumatic tires
US3038829A (en) Laminated article
JPH04119830A (en) Manufacture of pneumatic tire
JP7406068B2 (en) Inner liners, laminates and pneumatic tires