JPH03355B2 - - Google Patents

Info

Publication number
JPH03355B2
JPH03355B2 JP60253736A JP25373685A JPH03355B2 JP H03355 B2 JPH03355 B2 JP H03355B2 JP 60253736 A JP60253736 A JP 60253736A JP 25373685 A JP25373685 A JP 25373685A JP H03355 B2 JPH03355 B2 JP H03355B2
Authority
JP
Japan
Prior art keywords
sic
coupling agent
silane coupling
sic whiskers
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60253736A
Other languages
Japanese (ja)
Other versions
JPS62113800A (en
Inventor
Shigeto Mori
Mitsuo Enomoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP60253736A priority Critical patent/JPS62113800A/en
Publication of JPS62113800A publication Critical patent/JPS62113800A/en
Publication of JPH03355B2 publication Critical patent/JPH03355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Reinforced Plastic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、繊維強化樹脂複合材を製造する際に
強化材として使用するSiCウイスカーの表面改質
方法に関する。 「従来の技術」 SiCウイスカーは比強度、比弾性率などがすぐ
れ、また熱的、化学的安定性が高いことから例え
ば繊維強化樹脂複合材用の強化材として有用され
ている。一般に、マトリツクス樹脂に有機質強化
材を複合して機械的諸特性の強度向上をはかるた
めには、無機質強化材がマトリツクス樹脂成分と
界面化学反応により充分に結合することが重要で
ある。しかし、SiCは本質的にマトリツクス脂と
の界面濡れ性が悪く、強固な結合組織構造を形成
することが困難である。 そこで、SiCウイスカーとマトリツクス樹脂と
の界面結合反応を促進し、強固な結合組織構造を
形成するために、例えばシランカツプリング剤で
処理する方法がある。シランカツプリング剤は、
同一分子中に有機相と無機相にそれぞれ反応して
化学的に結合する2種類の異なつた反応基を有し
ている。この反応基との界面化学反応を介して無
機フイラーと有機ポリマーマトリツクスとを化学
的に結合させ、あるいは親和性を高めて、複合材
の物性向上にすぐれた機能を発揮することができ
る。 「発明が解決しようとする問題点」 しかしなら、SiCは化学的に安定であり、表面
を化学的に不活性であるために、シランカツプリ
ング剤で処理しても化学結合し難く、マトリツク
ス樹脂との強固な結合組織構造を形成することが
困難である。そのため複合材の強度特性の向上効
果が充分でない欠点があつた。 本発明は、この欠点を排除してすぐれたカツプ
リング効果を発揮し得る、SiCウイスカーの表面
を化学的に改質する方法を提供するものである。 「問題点を解決するための手段」 本発明は、SiCウイスカーを酸化処理して表面
にSiO2の薄膜を形成した後シランカツプリング
剤を含む溶液中に分散させ、次いで過乾燥する
ことを構成的特徴とするSiCウイスカーの表面改
質方法である。 SiCは表面が化学的に不活性であるために、そ
のままシランカツプリング剤で処理しても反応基
と化学結合し難く、充分なカツプリング効果を発
揮することができない。 本発明においては、SiCウイスカーの表面を酸
化処理にすることにより、その表面にSiO2の均
一な薄膜を形成させるものである。SiO2は、そ
の内部は正四面体の中心にケイ素が存在し、頂点
に酸素が位置した安定な結合のくり返しで構成さ
れるが、表面にはシラノールと呼ばれる水酸基な
どの活性な官能基が存在し化学的に極めて反応性
が強い。このSiO2の表面の化学的活性を利用し
て、シランカツプリング剤の反応基との親和性を
高め、化学的に結合させることができる。SiCウ
イスカーの表面に形成したSiO2の薄膜により、
シランカツプリング剤で処理したSiCウイスカー
は、マトリツクス樹脂との界面濡れ性が向上して
化学的に結合し、強固な結合組織構造が形成され
る SiCウイスカーを酸化処理する場合、表面に形
成するSiO2はSiCウイスカーの強化機能を損わな
いためにできるだけ薄いことが望ましい。SiCウ
イスカーの酸化処理は大気中で加熱処理すること
により行なわれるが、SiO2の均一な薄膜を形成
させるために空気と充分に接触させ乍ら、比較的
短時間で熱処理する。酸化処理条件としては、大
気中700〜900℃の温度で10〜60分間加熱処理する
ことが好ましく、また空気と良好に接触できるよ
うに充分な空隙を保持すること、例えばSiCウイ
スカーを0.05〜0.4g/cm3の充填密度で処理する
ことが好適である。 酸化処理して表面にSiO2の薄膜を形成したSiC
ウイスカーは、シランカツプリング剤を含む溶液
中に分散させて、必要に応じ加熱し乍ら撹拌処理
することによりSiCウイスカーをシランカツプリ
ング剤と化学的に結合させることができる。これ
を過乾燥処理することによりシランカツプリン
グ剤と化学的に結合したSiCウイスカーが得られ
る。 このSiCウイスカーを強化材として樹脂複合材
を製造する場合、過時に予め所定形状のSiCウ
イスカープリフオームを形成し、このプリフオー
ムに液状のマトリツクス樹脂を圧入、硬化させる
方法、あるいは混練機を用いてSiCウイスカーと
マトリツクス樹脂を混練した後混練物を所定形状
に成形硬化する方法、などの手段により製造する
ことができる。 「作用」 上記説明のように、本発明はSiCウイスカーを
酸化処理して、その表面にSiO2の均一な薄膜を
形成させるものである。SiO2の表面にはシラノ
ールなどの化学的活性に富む官能基が露出してお
り、シランカツプリング剤を含む溶液中で処理す
ることによりシランカツプリング剤と化学的に結
合される。このようにして表面性状を改質した
SiCウイスカーは、マトリツクス樹脂との複合化
に際し界面においてシランカツプリング剤を介し
て強固な結合組織構造を形成することができる。 「実施例」 密度3.18g/cm3、直径0.5〜1.5μm、長さ50〜
100μmのβ型SiCウイスカーを磁性るつぼ中に
0.15〜0.20g/cm3の嵩密度に充填して電気炉に装
入し、大気中で温度および時間を変えて酸化処理
を行なつた。この酸化処理をしたSiCウイスカー
をシランカツプリング剤としてγ−アミノプロピ
ルトリエトキシシラン(信越化学(株)KBE903)を
用い、トルエンを溶媒として濃度3%の溶液中に
分散させ撹拌処理を施した後過乾燥してSiCウ
イスカーの表面を改質した。 この表面改質したSiCウイスカーを、マトリツ
クス樹脂としてエポキシ樹脂を用いてVf値が2
%になるように設定配合してロールにより混練し
た。この混練物を板状体(100×80×5mm)に成
形・硬化処理して樹脂複合材を製造し、その機械
的強度特性を測定して表に示した。 表には、比較のために酸化処理を行なわずそれ
以外はすべて発明例と同じ方法で製造した樹脂複
合材について同様の測定を行ない、その結果を併
記した。また、酸化処理条件が本発明は好ましい
範囲をはずれる場合については参考例として同表
中に併記した。
"Industrial Application Field" The present invention relates to a method for surface modification of SiC whiskers used as reinforcing materials when manufacturing fiber-reinforced resin composite materials. ``Prior Art'' SiC whiskers have excellent specific strength and specific modulus, as well as high thermal and chemical stability, so they are useful, for example, as reinforcing materials for fiber-reinforced resin composites. Generally, in order to improve the strength of various mechanical properties by combining an organic reinforcing material with a matrix resin, it is important that the inorganic reinforcing material is sufficiently bonded with the matrix resin component through an interfacial chemical reaction. However, SiC inherently has poor interfacial wettability with matrix fat, making it difficult to form a strong connective tissue structure. Therefore, in order to promote the interfacial bonding reaction between the SiC whiskers and the matrix resin and form a strong connective tissue structure, there is a method of treating with a silane coupling agent, for example. Silane coupling agent is
It has two different types of reactive groups in the same molecule that react and chemically bond to the organic phase and the inorganic phase, respectively. By chemically bonding the inorganic filler and the organic polymer matrix through a surface chemical reaction with this reactive group, or by increasing their affinity, it is possible to exhibit an excellent function in improving the physical properties of the composite material. ``Problems to be solved by the invention'' However, SiC is chemically stable and has a chemically inert surface, so it is difficult to chemically bond even when treated with a silane coupling agent, making it difficult to bond with matrix resin. It is difficult to form a strong connective tissue structure. Therefore, there was a drawback that the effect of improving the strength characteristics of the composite material was not sufficient. The present invention provides a method for chemically modifying the surface of SiC whiskers, which eliminates this drawback and can exhibit an excellent coupling effect. "Means for Solving the Problems" The present invention comprises oxidizing SiC whiskers to form a thin film of SiO 2 on the surface, then dispersing them in a solution containing a silane coupling agent, and then over-drying them. This is a method for surface modification of SiC whiskers. Since the surface of SiC is chemically inert, even if it is directly treated with a silane coupling agent, it is difficult to chemically bond with reactive groups and cannot exhibit a sufficient coupling effect. In the present invention, a uniform thin film of SiO 2 is formed on the surface of the SiC whisker by subjecting it to oxidation treatment. SiO 2 is composed of repeating stable bonds with silicon at the center of a regular tetrahedron and oxygen at the apex, but on the surface there are active functional groups such as hydroxyl groups called silanols. It is chemically extremely reactive. This chemical activity on the surface of SiO 2 can be used to increase its affinity with the reactive groups of the silane coupling agent, allowing for chemical bonding. Due to the thin film of SiO 2 formed on the surface of SiC whiskers,
SiC whiskers treated with a silane coupling agent have improved interfacial wettability with the matrix resin and are chemically bonded, forming a strong connective tissue structure. 2 is desirably as thin as possible so as not to impair the strengthening function of the SiC whisker. The oxidation treatment of SiC whiskers is carried out by heat treatment in the air, and in order to form a uniform thin film of SiO 2 , the heat treatment is carried out in a relatively short time with sufficient contact with air. As for the oxidation treatment conditions, it is preferable to perform heat treatment in the air at a temperature of 700 to 900°C for 10 to 60 minutes, and to maintain sufficient voids for good contact with air, for example, SiC whiskers should be 0.05 to 0.4 It is preferred to work with a packing density of g/cm 3 . SiC with oxidation treatment to form a thin film of SiO 2 on the surface
The SiC whiskers can be chemically bonded to the silane coupling agent by dispersing the whiskers in a solution containing the silane coupling agent and stirring the solution while heating if necessary. By over-drying this, SiC whiskers chemically bonded to the silane coupling agent can be obtained. When producing a resin composite material using SiC whiskers as a reinforcing material, a SiC whisker preform having a predetermined shape is formed in advance, and a liquid matrix resin is press-fitted into this preform and hardened, or SiC It can be manufactured by a method such as kneading whiskers and matrix resin and then molding and curing the kneaded product into a predetermined shape. "Operation" As explained above, the present invention oxidizes SiC whiskers to form a uniform thin film of SiO 2 on their surfaces. Chemically active functional groups such as silanol are exposed on the surface of SiO 2 and are chemically bonded to the silane coupling agent by treatment in a solution containing the silane coupling agent. In this way, the surface properties were modified.
SiC whiskers can form a strong connective tissue structure via a silane coupling agent at the interface when combined with a matrix resin. "Example" Density 3.18g/ cm3 , diameter 0.5~1.5μm, length 50~
100μm β-type SiC whiskers in a magnetic crucible
The material was filled to a bulk density of 0.15 to 0.20 g/cm 3 and charged into an electric furnace, and oxidation treatment was performed in the atmosphere at varying temperatures and times. The oxidized SiC whiskers were dispersed in a solution with a concentration of 3% using toluene as a solvent using γ-aminopropyltriethoxysilane (Shin-Etsu Chemical Co., Ltd. KBE903) as a silane coupling agent, and then stirred. The surface of SiC whiskers was modified by over-drying. This surface-modified SiC whisker was used as a matrix resin to achieve a Vf value of 2.
% and kneaded with a roll. This kneaded material was molded into a plate-shaped body (100 x 80 x 5 mm) and cured to produce a resin composite material, and its mechanical strength characteristics were measured and shown in the table. For comparison, similar measurements were performed on a resin composite material manufactured in the same manner as in the invention example without oxidation treatment, and the results are also listed in the table. In addition, cases where the oxidation treatment conditions are outside the preferred range of the present invention are also listed in the same table as reference examples.

【表】 表の結果から、SiCウイスカーを表面処理する
ことにより樹脂複合材の機械的強度特性が大巾に
向上することが判明する。 「発明の効果」 上記説明で明らかなように、本発明によるSiC
ウイスカーの表面を酸化処理することによりシラ
ンカツプリング剤と強固な化学的結合をさせるこ
とができる。その結果、マトリツクス樹脂との界
面結合機能が増大して機械的強度特性のすぐれた
SiCウイスカー強化樹脂複合材を製造することが
できる。
[Table] From the results in the table, it is clear that the mechanical strength properties of the resin composite material are greatly improved by surface treatment of SiC whiskers. “Effects of the Invention” As is clear from the above explanation, SiC according to the present invention
By oxidizing the surface of the whisker, it is possible to form a strong chemical bond with the silane coupling agent. As a result, the interfacial bonding function with the matrix resin increases, resulting in excellent mechanical strength properties.
SiC whisker-reinforced resin composites can be produced.

Claims (1)

【特許請求の範囲】 1 SiCウイスカーを酸化処理して表面にSiO2
薄膜を形成した後シランカツプリング剤を含む溶
液中に分散させ、次いで過、乾燥することを特
徴とするSiCウイスカーの表面改質方法。 2 酸化処理を、大気中700〜900℃の温度で10〜
60分間加熱することにより行なう特許請求の範囲
第1項記載のSiCウイスカーの表面改質方法。
[Claims] 1. A surface of a SiC whisker, which is characterized in that the SiC whisker is oxidized to form a thin film of SiO 2 on the surface, then dispersed in a solution containing a silane coupling agent, and then filtered and dried. Modification method. 2 Oxidation treatment in the air at a temperature of 700 to 900℃ for 10 to 10 minutes.
A method for surface modification of SiC whiskers according to claim 1, which is carried out by heating for 60 minutes.
JP60253736A 1985-11-14 1985-11-14 Method for modifying surface of sic whisker Granted JPS62113800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60253736A JPS62113800A (en) 1985-11-14 1985-11-14 Method for modifying surface of sic whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253736A JPS62113800A (en) 1985-11-14 1985-11-14 Method for modifying surface of sic whisker

Publications (2)

Publication Number Publication Date
JPS62113800A JPS62113800A (en) 1987-05-25
JPH03355B2 true JPH03355B2 (en) 1991-01-07

Family

ID=17255422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253736A Granted JPS62113800A (en) 1985-11-14 1985-11-14 Method for modifying surface of sic whisker

Country Status (1)

Country Link
JP (1) JPS62113800A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059987A1 (en) * 2011-09-06 2013-03-07 Advanced Composite Materials, Llc Functionalized Silicon Carbide And Functionalized Inorganic Whiskers For Improving Abrasion Resistance Of Polymers
CN104831364B (en) * 2015-05-18 2017-07-04 金正大诺泰尔化学有限公司 A kind of modified method in calcium sulfate crystal whiskers surface

Also Published As

Publication number Publication date
JPS62113800A (en) 1987-05-25

Similar Documents

Publication Publication Date Title
US4460638A (en) Fiber reinforced glass matrix composites
JPS6316350B2 (en)
JPH0317787B2 (en)
US5665848A (en) Crosslinkers for silazane polymers
JPH03355B2 (en)
EP0832047A1 (en) Silicon carboxide composite reinforced with ceramic fibers having a surface enriched in boron nitride
JPH10183010A (en) Method for deflocculating silicic acid and use of deflocculated silicic acid as filler in silicone rubber mixture
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JPS6410582B2 (en)
JPH0311603B2 (en)
JP3396119B2 (en) Method for producing Si-containing glassy carbon material
JPS6058190B2 (en) Method for manufacturing silicon nitride-silicon carbide molded body
JPH0430972B2 (en)
JP2737591B2 (en) Whisker surface modification method
JPS63312328A (en) Production of polyimide polymer reinforced with sic whisker
JP3396116B2 (en) Method for producing Si-containing glassy carbon material
JPH0565544B2 (en)
JPH0561232B2 (en)
JPH10167832A (en) Production of filament reinforced silicon carbide composition material
JP3439241B2 (en) Manufacturing method of composite reinforcement for manufacturing functionally graded metal matrix composites
JPH02307872A (en) Production of sic whisker-reinforced ceramic composite material
JPS60210600A (en) Method for strengthening formed whisker body
JPS647632B2 (en)
Wu et al. Preceramic Polymer Applications-Processing and Modifications by Chemical Means
JPH02307900A (en) Formation of si3n4 coating film on sic whisker