JPH0335424A - Method and device for crystallization of optical disk recording film - Google Patents

Method and device for crystallization of optical disk recording film

Info

Publication number
JPH0335424A
JPH0335424A JP1169818A JP16981889A JPH0335424A JP H0335424 A JPH0335424 A JP H0335424A JP 1169818 A JP1169818 A JP 1169818A JP 16981889 A JP16981889 A JP 16981889A JP H0335424 A JPH0335424 A JP H0335424A
Authority
JP
Japan
Prior art keywords
recording film
power
light
time
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169818A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
宏明 池田
Masaharu Ishigaki
正治 石垣
Nobuhiro Tokujiyuku
徳宿 伸弘
Koichi Moriya
宏一 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1169818A priority Critical patent/JPH0335424A/en
Publication of JPH0335424A publication Critical patent/JPH0335424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To obtain the recording film having a uniform crystal state without generating the thermal damage of a plastic substrate by maintaining the light emission power for the prescribed time after the start of light emission lower than the light emission power for the prescribed time thereafter at the time of irradiating the recording film formed on the substrate with a flash. CONSTITUTION:The flash 6 with which the recording film 4 formed on the substrate 3 is irradiated heats the recording film 4 to a low temp. for the prescribed time after the start of the light emission and heats the recording film 4 to a high temp. before the prescribed time thereafter. Crystal nuclei are densely formed in the recording film 4 during the time when the recording film is kept heated to the low temp. The crystal nuclei grow to crystal grains during the time when the recording film is kept heated to the high temp. The recording film 4 having the uniform crystal state is obtd. in this way and since the crystal is grown, the recording film 4 having the uniform crystal state is obtd. Not so much high power is needed for growing the crystal and, therefore, the temp. rise of the plastic substrate 3 is reduced and the thermal damage is no longer generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基板上に形成した非晶質状態の記録膜を、−括
して結晶状態へ変化させる光ディスク記録膜の結晶化方
法および結晶化装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for crystallizing an optical disk recording film and a crystallization method for collectively changing an amorphous recording film formed on a substrate to a crystalline state. Regarding equipment.

〔従来の技術〕[Conventional technology]

光ディスク記録膜(以下、記録膜と記す1)に情報を記
録するには、例えばレーザ光等の光ビームエネルギ等を
上記記録膜に与えて、この記4&換の構造状態を他の構
造状態に物理的に変化さすて行うことができる。このよ
うな記録膜としてはカルコゲン化物が知られており、カ
ルコゲン化物は例えば非晶質状態と結晶状態の異る2つ
の構造状態をとることができる6例えば、光ビームを上
記記録膜に照射し加熱昇温し徐冷するとこの記録膜は結
晶化し、パルス幅の短い光ビームを照射し、急熱急冷す
ると非晶質状態となる。
In order to record information on an optical disc recording film (hereinafter referred to as recording film 1), for example, light beam energy such as a laser beam is applied to the recording film to change the structural state of the above structure into another structural state. It can be done without physically changing it. Chalcogenides are known as such recording films, and chalcogenides can take two different structural states, for example, an amorphous state and a crystalline state.6 For example, when the recording film is irradiated with a light beam, This recording film crystallizes when heated and slowly cooled, and becomes amorphous when it is irradiated with a light beam with a short pulse width and rapidly heated and cooled.

上記記gk膜を用いたときの記録方法として、非晶質状
態から結晶状態に変化させて記録を行う方法と、結晶状
態から非晶質状態に変化させて記録を行う方法がある0
例えば1μm以下の短波長記録を行うときには、急熱急
冷により得られる非晶質状態に変化させて記録を行う後
者の方法が記録時におけるピット間の熱的干渉が少なく
、有利である。しかし、記録膜の形成時には通常、非晶
質状態であるため、上記記録方法を用いる場合、この記
録膜をあらかじめ結晶状態にしておく必要がある。
As recording methods when using the above-mentioned GK film, there are two methods: a method in which recording is performed by changing from an amorphous state to a crystalline state, and a method in which recording is performed by changing from a crystalline state to an amorphous state.
For example, when recording short wavelengths of 1 μm or less, the latter method of changing the recording material to an amorphous state obtained by rapid heating and cooling is advantageous because there is less thermal interference between pits during recording. However, since the recording film is usually in an amorphous state when it is formed, it is necessary to bring the recording film into a crystalline state in advance when using the above recording method.

上記記録膜な非晶質状態から結晶状態に変化させる方法
として、レンズで絞ったレーザビームを回転する光ディ
スクの記録膜に連続して照射し、1トラツクずつあるい
は複数トラックまとめて加熱し結晶化する方法が知られ
ているが、生産性向上の観点からは、例えば特開昭62
−25053iS号公報記載のようにグラスチック基板
に形成した非晶質状態の記録膜に高出力の閃光を短時間
照射し、この記録膜全体を一括して結晶化温度より高い
温度に加熱して結晶化する方法が挙げられる。
As a method for changing the recording film from an amorphous state to a crystalline state, the recording film of a rotating optical disk is continuously irradiated with a laser beam focused by a lens, and each track or multiple tracks are heated and crystallized. Although methods are known, from the viewpoint of improving productivity, for example,
As described in Publication No. 25053iS, an amorphous recording film formed on a glass substrate is irradiated with high-power flash light for a short time, and the entire recording film is heated at once to a temperature higher than the crystallization temperature. An example is a method of crystallization.

しかし、記録膜の結晶化温度は、加熱時間が短くなる程
高温にたり、一般にはグラスチック基板の熱変形温度を
はるかに越えてしまい、記録膜材料組成によっては異る
から、閃光照射でも基板は熱ダメージを受ける。
However, the crystallization temperature of the recording film becomes higher as the heating time becomes shorter, and generally far exceeds the thermal deformation temperature of the glass substrate, and varies depending on the composition of the recording film material. suffers heat damage.

〔発明が解決しようとするl1題〕 上記従来技術は記録膜の結晶化メカニズムに対応した、
発光パワーとその時間変化について配慮されておらず、
グラスチック基板の熱ダメージ防止と記録膜の結晶化を
両立させることが回動であった。
[11 Problems to be Solved by the Invention] The above-mentioned conventional technology deals with the crystallization mechanism of the recording film.
No consideration is given to the luminous power and its change over time.
Rotation was the key to both preventing thermal damage to the glass substrate and crystallizing the recording film.

本発明は、プラスチック基板の熱ダメージを生じること
なく力負な結晶状態の記録膜を得ることのできる光ディ
スク記録膜の結晶方法および装置を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for crystallizing an optical disk recording film, which can obtain a recording film in a strong crystalline state without causing thermal damage to a plastic substrate.

C11題を解決するための手段〕 上記目的を達成するために、基板上に形成した記録膜に
閃光を照射する際、発光開始から所定時間までの発光パ
ワーを、それ以降の所定時間までの発光パワーより低く
保持するようにした。
Means for Solving Problem C11] In order to achieve the above object, when irradiating a recording film formed on a substrate with flash light, the light emission power from the start of light emission up to a predetermined time is changed to the light emission power up to a predetermined time thereafter. I tried to keep it lower than the power.

〔作用〕[Effect]

基板上に形成した記録層に照射した閃光は、発光開始か
ら所定の時間まで記録膜を低い温度に加熱し、それ以降
の所定時間まで記録膜を高い温度に加熱する。低い温度
に加熱されている間、上記記録膜中には結晶核がち密に
形成され、次に高い温度に加熱されている間、この結晶
核が結晶粒に成長するので、その結果均質な結晶状態の
記録膜が得られる。非晶質状態から結晶状態への構造状
態の変化は結晶核形成と結晶成長の2つの過程を経て起
こることが知られている。上記記録膜ではガラス転移温
度以上のある温度で結晶核形成速度は最も大きくなるが
、それよりも高い温度では小さくなる。また、上記結晶
核形成速度が最も大きくなる温度よりもさらに高い温度
で結晶成長速度は最も大きくなるが、それよりも高い!
度では小さくなる。結晶成長が起こる高温では結晶核形
成は起こらない。
The flash of light irradiated onto the recording layer formed on the substrate heats the recording film to a low temperature until a predetermined time from the start of light emission, and heats the recording film to a high temperature until a predetermined time thereafter. While being heated to a low temperature, crystal nuclei are densely formed in the recording film, and while being heated to a high temperature, these crystal nuclei grow into crystal grains, resulting in homogeneous crystals. A state recording film is obtained. It is known that the change in structural state from an amorphous state to a crystalline state occurs through two processes: crystal nucleation and crystal growth. In the above recording film, the rate of crystal nucleation is highest at a certain temperature above the glass transition temperature, but decreases at temperatures higher than that. Furthermore, the crystal growth rate is highest at a temperature even higher than the temperature at which the crystal nucleation rate is highest, but it is higher than that!
It becomes smaller in degrees. Crystal nucleation does not occur at high temperatures where crystal growth occurs.

このとき、基板に形成した上記記録層は、この記録膜に
より高い発光パワーで閃光を照射して加熱し、結晶成長
速度が最も大きくなる温度まで一気に昇温すると、結晶
核形成が起こる温度を保持する時間がより短くなり結晶
核形成数はより少なくなる。一方、この記録膜に上記発
光パワーより低いパワーで閃光を照射して加熱し、結晶
成長が起る温度よりわずかに低い温度までゆっくり昇温
すると、結晶核形成が起る温度を保持する時間がより長
くなり結晶核形成数はより多くなる。そこで、記録膜を
発光開始から所定の時間低いパワーで加熱し、結晶核を
多く形成し、それ以降の所定の時間高いパワーで加熱し
結晶を成長させれば均質な結晶状態の記録膜が得られる
。このとき、結晶核が多く形成されているので、結晶を
成長させるために、それほどパワーを高くしなくてすむ
ので、プラスチック基板の温度上昇は少く、熱ダメージ
が発生しない。
At this time, the recording layer formed on the substrate is heated by irradiating flash light with high emission power, and when the temperature is raised all at once to the temperature at which the crystal growth rate is maximum, the temperature at which crystal nucleation occurs is maintained. The time taken for this to occur is shorter, and the number of crystal nuclei formed is smaller. On the other hand, if this recording film is heated by irradiating a flash of light with a power lower than the above-mentioned emission power, and the temperature is slowly raised to a temperature slightly lower than the temperature at which crystal growth occurs, it takes time to maintain the temperature at which crystal nucleus formation occurs. As the length increases, the number of crystal nuclei formed increases. Therefore, if the recording film is heated at low power for a predetermined period of time from the start of light emission to form many crystal nuclei, and then heated at high power for a predetermined period of time to grow crystals, a recording film with a homogeneous crystalline state can be obtained. It will be done. At this time, since many crystal nuclei are formed, it is not necessary to increase the power so much in order to grow the crystals, so the temperature rise of the plastic substrate is small and no thermal damage occurs.

〔実施例〕〔Example〕

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕 第4図は本発明で用いた結晶化装置の要部断面図とポリ
カーボネート樹脂基板(以下、基板と記す)5.5b−
8e−Bi紀録換(以下、記録膜と記す)4、索外縁硬
化型樹脂保#!に膜(以下、保護膜と記す)5から或る
光ディスクに閃光6を照射している様子を示したもので
ある。7は閃光ランプであり、記録膜4が大きな吸収を
得る波長域に発光パワーをもつキセノンフラッジ為ラン
プを用いている。このとき、基板5、保@gisはキセ
ノン7ラツシ島ランプ7の閃光6をほとんど吸収しない
で透過するので発熱することはなく、記録膜4のみが加
熱される。
[Example 1] Figure 4 is a sectional view of the main parts of the crystallization apparatus used in the present invention and a polycarbonate resin substrate (hereinafter referred to as the substrate) 5.5b-
8e-Bi recording film (hereinafter referred to as recording film) 4, cable outer edge hardening type resin preservation #! This figure shows how a certain optical disk is irradiated with flash light 6 from a film (hereinafter referred to as a protective film) 5. Reference numeral 7 denotes a flash lamp, and a xenon flash lamp is used which has a light emitting power in a wavelength range where the recording film 4 has a large absorption. At this time, the substrate 5 and the light beam 6 transmit the flash light 6 from the xenon lamp 7 without absorbing it, so no heat is generated, and only the recording film 4 is heated.

まず、基板5の上に厚さ110nmの記録膜4を形成し
、さらにその上に厚さ20μmの保@膜5を形成した0
次に、この光ディスクに、第5図に示すような発光回路
のブロック図に従い、キセノンフラッシュラングを第1
図に示すように、発光開始から所定の時間経過するまで
低い発光パワーを保持し、それ以降所定の時間経過する
まで高い発光パワーを保持するように制御し、閃光を照
射した。なお、第5図において、51はスイッチ回路、
52.54は発光回路、55は遅延回路、55は閃光ラ
ンプである。このような時間対発光パワーの関係から、
第2因に示す時間対記録膜温度の特性が得られる。この
とき、基板3および保″ia膜5に熱ダメージは発生し
なかった。また、このとき記録[4の結晶状態をX線回
折で調べたところ、均質な結晶状態に変化したことがわ
かった。
First, a recording film 4 with a thickness of 110 nm was formed on a substrate 5, and a storage film 5 with a thickness of 20 μm was further formed on it.
Next, a xenon flash rung is placed on this optical disc in accordance with the block diagram of the light emitting circuit shown in FIG.
As shown in the figure, flash light was emitted by maintaining low emission power until a predetermined time elapsed from the start of light emission, and then maintaining high emission power until a predetermined time elapsed thereafter. In addition, in FIG. 5, 51 is a switch circuit;
52 and 54 are light emitting circuits, 55 are delay circuits, and 55 are flash lamps. From this relationship between time and luminous power,
The characteristic of time versus recording film temperature shown in the second factor is obtained. At this time, no thermal damage occurred to the substrate 3 and the protective IA film 5. In addition, when the crystal state of record [4] was examined by X-ray diffraction, it was found that the crystal state had changed to a homogeneous crystal state. .

従来、第5図に示す発光1を照射して結晶化が行われて
いたが、プラスチック基板に熱ダメージが発生した0本
実施例で用いた発光2では、発光1に比べて記録膜に与
える結晶化に必要なエネルイー量が少なくなるので、プ
ラスチック基板の温度が上がらず、熱ダメージが発生し
ないと考えられる。
Conventionally, crystallization was performed by irradiating the light emission 1 shown in FIG. Since the amount of energy required for crystallization is reduced, the temperature of the plastic substrate does not rise and it is thought that thermal damage will not occur.

本実施例では、2つの異るパワーを所定時間保持する発
光を照射したが、5つ以上の異るパワーでも構わない、
また、発光パワーの立上り、立下りをほぼ垂直に描いた
が、これよりもなだらかに傾斜していても構わず、種々
の変形が可能である。
In this example, light emission was emitted to maintain two different powers for a predetermined time, but five or more different powers may be used.
Further, although the rise and fall of the light emitting power are drawn almost vertically, they may be sloped more gently than this, and various modifications are possible.

〔実施例2〕 実施fPIllと同じm或の光ディスクに、キセノンフ
ラッシュラングを第5図に示す発光回路のブロック図に
従い第6図に示す所定の時間間隔Δt、で発光し、発光
パワーが順次大きくなり、それぞれ所定時間その発光パ
ワーを保持するように制御し、閃光を照射した。この時
間対発光パワーの関係から、第7図に示す時間対記録膜
温度の特性が得られる。このとき、基板5および豫@膜
5に熱ダメージは発生しなかった。また、このときX線
回折でこの記録膜4は均質な結晶状態に変化したことが
わかった。
[Example 2] A xenon flash rung was emitted on the same optical disk as the implementation fPIll at a predetermined time interval Δt shown in FIG. 6 according to the block diagram of the light emitting circuit shown in FIG. 5, and the light emitting power was gradually increased. The light emitting power was controlled to be maintained for a predetermined period of time, and a flash was emitted. From this relationship between time and emitted light power, the characteristics of time versus recording film temperature shown in FIG. 7 can be obtained. At this time, no thermal damage occurred to the substrate 5 and the film 5. Further, at this time, it was found by X-ray diffraction that the recording film 4 had changed to a homogeneous crystalline state.

本実施例では、キセノンフラッシュラングの発光時間間
隔をΔt、と任意に決めたが、Δt、ツ0としても、Δ
t1鱈ωとしてもよく、この間で種々の時間を選ぶこと
が可能である。
In this example, the emission time interval of the xenon flash rung was arbitrarily determined as Δt, but even if Δt is 0, Δ
It may be set to t1 cod ω, and various times can be selected between these times.

〔実施例3〕 まず実施例1と同じ構成の光ディスクに、キセノンフラ
ッシュラングを第5図に示す発光回路のブロック図に従
い第8図に示すように、発光開始から所定の時間経過す
るまで、発光バフ−が低いピークバフ−に達した後低下
し、それ以降所定の時間が経過するまで、発光パワーが
再び上昇し高いピークパワーに違した後低下するように
制御し、閃光を照射した。この時間対発光パワーの関係
から、第9図に示す時間対記録膜温度の特性が得られる
。このとき、基板3および保護膜5に熱ダメージは発生
しなかった。また、このときX線回折でこの記録膜4は
均質な結晶状態に変化したことがわかった。
[Example 3] First, a xenon flash rung was placed on an optical disk having the same configuration as in Example 1, and as shown in FIG. 8 according to the block diagram of the light emitting circuit shown in FIG. Flash light was irradiated by controlling the buff to decrease after reaching a low peak buff, and thereafter increase the luminous power again until a predetermined time elapsed, reach a high peak power, and then decrease. From this relationship between time and emission power, the characteristics of time versus recording film temperature shown in FIG. 9 can be obtained. At this time, no thermal damage occurred to the substrate 3 and the protective film 5. Further, at this time, it was found by X-ray diffraction that the recording film 4 had changed to a homogeneous crystalline state.

従来、第10図に示す発光8を照射して結晶化が行われ
ていたが、プラスチック基板に熱ダメージが発生した0
本夾施例で用いた発光9では発光8に比べて記録膜に与
える結晶化に必要なエネルギー量が少くなるのでプラス
チック基板の温度が上がらず、熱ダメージが発生しない
と考えられる。
Conventionally, crystallization was performed by irradiating the light emission 8 shown in Fig. 10, but this method caused thermal damage to the plastic substrate.
In the case of the light emission 9 used in this example, the amount of energy required for crystallization imparted to the recording film is smaller than in the case of the light emission 8, so the temperature of the plastic substrate does not rise and it is considered that no thermal damage occurs.

本実施例では、2つの異るピークパワーを持つ発光を照
射したが、5つ以上の異るピークパワーを持っても構わ
ない。また本実施例では、発光パワーの立上り立下りを
急峻に、ピーク部をとがらせて描いたが、立上り、立下
りをなだらかにしたり、ピーク部を円弧にしても構わず
種々の変形が可能である。
In this embodiment, the light emitted has two different peak powers, but the light may have five or more different peak powers. Furthermore, in this example, the rise and fall of the light emitting power are depicted as being steep and the peak portions are pointed, but various modifications are possible, such as making the rise and fall gentle, or making the peak portions arcuate. be.

〔実施例4〕 第11図は、本実m例で用いた閃光ランプを放電させる
ための回路の一例を示す回路である。
[Embodiment 4] FIG. 11 shows an example of a circuit for discharging the flash lamp used in this practical example.

10はキセノン7ラツシエランプ、C,@ C2はコン
デンサ、Trはトランス、R1,R2は抵抗、Sはサイ
リスタ、11はスイッチ回路である。C4はメインコン
デンサであり、充電回路(図示せず)により所定の電圧
まで充電されるようになっている。
10 is a xenon 7 lasier lamp, C and C2 are capacitors, Tr is a transformer, R1 and R2 are resistors, S is a thyristor, and 11 is a switch circuit. C4 is a main capacitor, which is charged to a predetermined voltage by a charging circuit (not shown).

メインコンデンサC4の一方の電極はキセノンランプ1
0の陽極12に接続され他方の電極は陰極15に接続さ
れている。スイッチ回路11よりサイリスタSのゲート
端子にオン信号を与えると、トランスTrにコンデンサ
C2の放電による電流が流れ?1の昇圧作用により高電
圧がキセノン7ラツシエランプ10のトリガー電極14
に印加される。これにより、キセノン7ラツシエランプ
10内のガスがイオン化されて、内部抵抗減少し、この
キセノンフラッシュランプ10の両極間に一瞬に放電が
行われて発光がなされる。このとき、発光時間は、11
00nからjQmjI程度である。
One electrode of the main capacitor C4 is the xenon lamp 1
0 and the other electrode is connected to the cathode 15. When an on signal is applied from the switch circuit 11 to the gate terminal of the thyristor S, a current flows through the transformer Tr due to the discharge of the capacitor C2. 1, a high voltage is applied to the trigger electrode 14 of the xenon 7 Lassie lamp 10.
is applied to As a result, the gas within the xenon 7 lasier lamp 10 is ionized, internal resistance is reduced, and a discharge is instantaneously generated between the two poles of the xenon flash lamp 10, causing light to be emitted. At this time, the luminescence time is 11
It is approximately from 00n to jQmjI.

実施例1と同じ構成の光ディスクに、キセノンフラッシ
ュランプ第11図に示す発光回路に従い第12図に示す
所定の時間間隔Δt2で発光し、発光開始から所定の時
間経過するまで発光パワーは所定のパワーに達した後低
下し、また、発光パワーは順次大きくなるように制御し
、閃光を照射した。この時間対発光パワーの関係から、
第15図に示す時間対記録膜温度の特性が得られる。こ
のとき、基板5および保護膜5に熱ダメージは発生しな
かった。また、このときX線回折でこの記録Ps4は均
質な結晶状態に変化したことがわかった。
On an optical disk having the same configuration as in Example 1, a xenon flash lamp emits light at a predetermined time interval Δt2 shown in FIG. 12 according to the light emitting circuit shown in FIG. The light emission power was controlled so that the light emission power was gradually increased, and then a flash was emitted. From this relationship between time and luminous power,
The characteristics of recording film temperature versus time shown in FIG. 15 are obtained. At this time, no thermal damage occurred to the substrate 5 and the protective film 5. Moreover, at this time, it was found by X-ray diffraction that this record Ps4 had changed to a homogeneous crystalline state.

本実施例では、キセノン7ラツシ島ラングの発光時間Δ
t2を任意に決めたが、Δt2=0としても、Δt2り
ωとしてもよく、この間で種々の時間を選ぶことができ
る。また、5回以上発光させても構わない。
In this example, the luminescence time Δ of xenon 7
Although t2 was arbitrarily determined, it is also possible to set Δt2=0 or Δt2 to ω, and various times can be selected between these values. Further, the light may be emitted five times or more.

〔実施例5〕 実施例1と同じ構成の光ディスクに、キセノン7ラツシ
エラングをHz図に示す発光回路に従い第14図に示す
ように、発光パワーが発光開始からピークに達するまで
の時間Δt5とピークに達してから発光が停止するまで
の時間Δt4との関係をΔ1.≧Δt4となるように発
光させて閃光を照射した。このとき、時間対発光パワー
の関係から、第15図に示す時間対記録膜@度の特性が
得られる。このとき、基板5および保fill!5に熱
ダメージは発生しなかった。また、このときX線回折で
この記録膜4は均質な結晶状態に変化したことがわかっ
た。
[Example 5] On an optical disk having the same configuration as in Example 1, a xenon 7 lattice lamp was applied according to the light emitting circuit shown in the Hz diagram, and as shown in Fig. 14, the light emitting power reached the peak at the time Δt5 from the start of light emission until reaching the peak. The relationship between the time Δt4 and the time from when the light emission stops until the light emission stops is expressed as Δ1. Flash light was irradiated by emitting light such that ≧Δt4. At this time, from the relationship between time and emitted light power, the characteristics of time versus recording film@degree shown in FIG. 15 can be obtained. At this time, the board 5 and the fill! No heat damage occurred in 5. Further, at this time, it was found by X-ray diffraction that the recording film 4 had changed to a homogeneous crystalline state.

本実施例では、基板上に形成した直後の非晶質状態の記
録膜について結晶状態に変化させる方法を説明したが、
レーザビームを用いて記録を行った後の非晶質状態の記
録膜であっても構わない。
In this example, a method for changing an amorphous recording film to a crystalline state immediately after being formed on a substrate was explained.
The recording film may be in an amorphous state after recording using a laser beam.

また、本実施例では、カルコゲン化物から或る記録膜に
ついて説明したが、これ以外の金属でありても、有機材
料であっても、その他どのような材料であっても構わた
い、また、本実施例では、光源としてキセノン7ラツシ
&2ンプを用いたが、他の2ングでも、またレーザビー
ムでも構わない。
Further, in this example, a certain recording film was explained using a chalcogenide, but it is also possible to use other metals, organic materials, or any other materials. In the embodiment, a xenon 7-ray and 2-amp was used as the light source, but other 2-amps or a laser beam may also be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光ディスク記録膜な非晶質状態から結
晶状態へ構造状態を変化させる場合に、低温で記録膜に
多数の結晶核を形成させれば高温で結晶成長させるパワ
ーを低くできるので、プラスチック基板の温度が上昇せ
ず、基板の熱ダメージが生じないといった効果がある。
According to the present invention, when changing the structural state of an optical disc recording film from an amorphous state to a crystalline state, by forming a large number of crystal nuclei in the recording film at a low temperature, the power for crystal growth at a high temperature can be lowered. This has the effect that the temperature of the plastic substrate does not rise and thermal damage to the substrate does not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による場合の時間対発光パワー特性の一
例を示す特性図、第2図は本発明による場合の時間対記
録膜温度特性の一例を示す特性図、第5図は本発明によ
る場合の時間対発光パワー特性と従来のそれとを比較し
て示す特性図、第4図は記録膜の断面構造を示す断面図
、第5図はキセノンランプの駆動回路を示すブロック図
、第6図は本発明による場合の時間対発光パワー特性の
他の例を示す特性図、第7図は本発明による場合の時間
対記録膜温度特性の他の例を示す特性図、第8図は本発
明による場合の時間対発光パワー特性の別の例を示す特
性図、第9図は本発明による場合の時間対記録膜温度特
性の別の例を示す特性図、第10は本発明による場合の
時間対発光パワー特性の更に別の例を示す特性図、第1
1図は本発明において用いる駆動回路を示す回路図、第
12図は本発明による場合の時間対発光パワー特性の更
に他の例を示す特性図、第15図は本発明による場合の
時間対記録膜温度特性の更に他の例を示す特性図、第1
4図は本発明による場合の時間対発光パワー特性のなお
更に別の例を示す特性図、第15図は本発明による場合
の時間対記録膜温度特性のなお更に別の例を示す特性図
である。 1.8・・・従来装置によるキセノンランプの時間対発
光パワーの特性図、 2.9・・・本発明の装置によるキセノンランプの時間
対発光パワーの特性図、 5・・・ポリカーボネート樹脂基板 4・・・5b−s・−Bi系記録膜、 5・・・紫外線硬化型樹脂保@膜、 0・・・キセノンランプ。
FIG. 1 is a characteristic diagram showing an example of the time vs. emission power characteristic according to the present invention, FIG. 2 is a characteristic diagram showing an example of the time vs. recording film temperature characteristic according to the present invention, and FIG. 5 is a characteristic diagram showing an example of the time vs. recording film temperature characteristic according to the present invention. Fig. 4 is a sectional view showing the cross-sectional structure of the recording film, Fig. 5 is a block diagram showing the xenon lamp drive circuit, Fig. 6 FIG. 7 is a characteristic diagram showing another example of the time vs. recording film temperature characteristic according to the present invention, and FIG. 8 is a characteristic diagram showing another example of the time vs. recording film temperature characteristic according to the present invention. FIG. 9 is a characteristic diagram showing another example of the time vs. recording film temperature characteristic in the case of the present invention. FIG. 10 is a characteristic diagram showing another example of the time vs. recording film temperature characteristic in the case of the present invention. Characteristic diagram showing yet another example of emission power characteristics, 1st
Fig. 1 is a circuit diagram showing the drive circuit used in the present invention, Fig. 12 is a characteristic diagram showing still another example of the time versus emission power characteristic in the case of the present invention, and Fig. 15 is the time versus recording in the case of the present invention. Characteristic diagram showing still another example of film temperature characteristics, 1st
FIG. 4 is a characteristic diagram showing still another example of the time vs. emission power characteristic in the case of the present invention, and FIG. 15 is a characteristic diagram showing still another example of the time vs. recording film temperature characteristic in the case of the present invention. be. 1.8...Characteristic diagram of luminous power versus time of a xenon lamp using a conventional device, 2.9...Characteristic diagram of luminous power versus time of a xenon lamp using a device of the present invention, 5...Polycarbonate resin substrate 4 ...5b-s-Bi-based recording film, 5...ultraviolet curing resin retention film, 0...xenon lamp.

Claims (1)

【特許請求の範囲】 1、基板上に形成した記録膜に照射する光源の発光パワ
ーを、発光開始から或る第1の所定時間経過するまでは
、それ以降の第2の所定時間を経過するまでのそれより
も低く保持して該記録膜に記録のための結晶化を行うこ
とを特徴とする光ディスク記録膜の結晶化方法。 2、基板上に形成した記録膜に照射する光源の発光パワ
ーを、発光開始から或る第1の所定時間経過するまでの
間には、発光パワーが上昇して相対的に低いピークパワ
ーに達した後低下する如く推移させ、それ以降の第2の
所定時間を経過するまでの間には、発光パワーが再び上
昇して相対的に高いピークパワーに達した後低下する如
く推移させ、それによって前記記録膜に記録のための結
晶化を行うことを特徴とする光ディスク記録膜の結晶化
方法。 3、基板上に形成した記録膜に照射する光源を所定の時
間間隔で繰り返し発光させ、その際発光パワーが順次大
きくなるようにして前記記録膜に記録のための結晶化を
行うことを特徴とする光ディスク記録膜の結晶化方法。 4、基板上に形成した記録膜に照射する光源の発光時間
について、発光開始から発光パワーがピークに達する迄
の時間をΔt3、ピークに達した後発光が停止するに至
るまでの時間をΔを4とするとき、Δt3≧Δt4の関
係をもたせて前記記録膜に記録のための結晶化を行うこ
とを特徴とする光ディスク記録膜の結晶化方法。 5、基板上に形成した記録膜に照射する光源を持ち、そ
の発光パワーを、発光開始から所定時間経過するまでは
或るパワーに保持させ、その後は順次該パワーが高くな
るように発光パワーを駆動して前記記録膜に記録のため
の結晶化を行う前記光源の駆動回路を具備したことを特
徴とする光ディスク記録膜の結晶化装置。 6、基板上に形成した記録膜に照射する光源を持ち、そ
の発光パワーを発光開始から或る第1の所定時間経過す
るまでの間には、発光パワーが上昇して相対的に低いピ
ークパワーに達した後低下する如く推移し、それ以降の
第2の所定時間を経過するまでの間には、発光パワーが
再び上昇して相対的に高いピークパワーに達した後低下
する如く推移するように駆動して前記記録膜に記録のた
めの結晶化を行う前記光源の駆動回路を具備したことを
特徴とする光ディスク記録膜の結晶化装置。 7、基板上に形成した記録膜に照射する光源を持ち、該
光源を所定の時間間隔で繰り返し発光させ、その際発光
パワーが順次大きくなるように駆動して前記記録績に記
録のための結晶化を行う前記光源の駆動回路を具備した
ことを特徴とする光ディスク記録膜の結晶化装置。 8、基板上に形成した記録膜に照射する光源を持ち、該
光源の発光時間について、発光開始から発光パワーがピ
ークに達する迄の時間をΔt3、ピークに達した後発光
が停止するに至るまでの時間をΔt4とするとき、Δt
3≧Δt4の関係をもたせるように前記光源を駆動して
前記記録膜に記録のための結晶化を行う前記光源の駆動
回路を具備したことを特徴とする光ディスク記録膜の結
晶化装置。
[Claims] 1. The light emitting power of the light source that irradiates the recording film formed on the substrate is adjusted until a first predetermined time has elapsed from the start of light emission, and a second predetermined time thereafter has elapsed. 1. A method for crystallizing an optical disc recording film, which comprises performing crystallization for recording on the recording film while maintaining the temperature lower than that previously used. 2. The light emitting power of the light source that irradiates the recording film formed on the substrate increases until a certain first predetermined time elapses from the start of light emission until it reaches a relatively low peak power. After that, until the second predetermined time elapses, the emission power increases again to reach a relatively high peak power, and then decreases. A method for crystallizing an optical disc recording film, characterized in that the recording film is crystallized for recording. 3. A light source that irradiates a recording film formed on a substrate repeatedly emits light at predetermined time intervals, and at that time, the light emission power is gradually increased to crystallize the recording film for recording. A method for crystallizing an optical disc recording film. 4. Regarding the emission time of the light source that irradiates the recording film formed on the substrate, Δt3 is the time from the start of emission until the emission power reaches its peak, and Δ is the time from when the emission stops after reaching the peak. 4, a method for crystallizing an optical disc recording film, characterized in that crystallization for recording is performed on the recording film with a relationship of Δt3≧Δt4. 5. Have a light source that irradiates the recording film formed on the substrate, keep the light emitting power at a certain power until a predetermined time has elapsed from the start of light emission, and then gradually increase the light emitting power so that the power increases. An apparatus for crystallizing an optical disc recording film, comprising a drive circuit for the light source that is driven to perform crystallization for recording on the recording film. 6. Having a light source that irradiates the recording film formed on the substrate, the light emitting power increases until a first predetermined time elapses from the start of light emission, and the light emitting power increases to a relatively low peak power. After reaching a relatively high peak power, the emission power decreases, and after that, until the second predetermined time period elapses, the emission power increases again, reaches a relatively high peak power, and then decreases. 1. An apparatus for crystallizing an optical disc recording film, comprising: a drive circuit for the light source that is driven to perform crystallization for recording on the recording film. 7. It has a light source that irradiates the recording film formed on the substrate, and causes the light source to emit light repeatedly at predetermined time intervals, and at that time, drives the light source so that the emitted light power increases sequentially to form a crystal for recording on the record. 1. An apparatus for crystallizing an optical disc recording film, comprising a drive circuit for the light source that performs crystallization. 8. Have a light source that irradiates the recording film formed on the substrate, and regarding the light emission time of the light source, the time from the start of light emission until the light emission power reaches the peak is Δt3, and the time until the light emission stops after reaching the peak. When the time of Δt4 is Δt4, Δt
An apparatus for crystallizing an optical disc recording film, comprising: a drive circuit for the light source that drives the light source so as to provide a relationship of 3≧Δt4 to crystallize the recording film for recording.
JP1169818A 1989-07-03 1989-07-03 Method and device for crystallization of optical disk recording film Pending JPH0335424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169818A JPH0335424A (en) 1989-07-03 1989-07-03 Method and device for crystallization of optical disk recording film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169818A JPH0335424A (en) 1989-07-03 1989-07-03 Method and device for crystallization of optical disk recording film

Publications (1)

Publication Number Publication Date
JPH0335424A true JPH0335424A (en) 1991-02-15

Family

ID=15893468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169818A Pending JPH0335424A (en) 1989-07-03 1989-07-03 Method and device for crystallization of optical disk recording film

Country Status (1)

Country Link
JP (1) JPH0335424A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706179A2 (en) 1994-09-27 1996-04-10 Matsushita Electric Industrial Co., Ltd. Production process of optical information recording medium and production apparatus therefor
US5684778A (en) * 1994-09-27 1997-11-04 Matsushita Electric Industrial Co., Ltd. Initialization process for a phase change recording medium with a zero level drop in flash light emission
WO2000031730A1 (en) * 1998-11-24 2000-06-02 Plasmon Limited Optical data storage
WO2001004888A1 (en) * 1999-07-12 2001-01-18 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
EP1256114A1 (en) * 2000-01-26 2002-11-13 Energy Conversion Devices, Inc. Method for intializing a data storage device
CN1133983C (en) * 1995-09-25 2004-01-07 索尼株式会社 Method of and apparatus for initializing optical recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706179A2 (en) 1994-09-27 1996-04-10 Matsushita Electric Industrial Co., Ltd. Production process of optical information recording medium and production apparatus therefor
EP0706179A3 (en) * 1994-09-27 1996-08-28 Matsushita Electric Ind Co Ltd Production process of optical information recording medium and production apparatus therefor
US5684778A (en) * 1994-09-27 1997-11-04 Matsushita Electric Industrial Co., Ltd. Initialization process for a phase change recording medium with a zero level drop in flash light emission
EP1006518A1 (en) * 1994-09-27 2000-06-07 Matsushita Electric Industrial Co., Ltd. Production process of optical information recording medium and production apparatus thereof
CN1133983C (en) * 1995-09-25 2004-01-07 索尼株式会社 Method of and apparatus for initializing optical recording medium
WO2000031730A1 (en) * 1998-11-24 2000-06-02 Plasmon Limited Optical data storage
WO2001004888A1 (en) * 1999-07-12 2001-01-18 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
US6807142B1 (en) 1999-07-12 2004-10-19 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for initializing the same
EP1256114A1 (en) * 2000-01-26 2002-11-13 Energy Conversion Devices, Inc. Method for intializing a data storage device
EP1256114A4 (en) * 2000-01-26 2007-06-13 Energy Conversion Devices Inc Method for intializing a data storage device

Similar Documents

Publication Publication Date Title
Khulbe et al. Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge 2 Sb 2.3 Te 5 films
US7608144B2 (en) Pulse sequencing lateral growth method
US5107482A (en) Optical information recording method and apparatus and recording medium used therefor
US4980879A (en) Optical information recording and erasing method using two laser beams on a phase change optical recording medium
DE60314268T2 (en) Recording method and recording alloy
JPH0335424A (en) Method and device for crystallization of optical disk recording film
US6452891B1 (en) Method for initializing a data storage device
KR20030097630A (en) Method and device for recording marks in an information layer of an optical record carrier
US20130029499A1 (en) Methods of thermally processing a substrate
EP1473712A1 (en) Optical recording medium and method for recording information on optical recording medium
JP2574885B2 (en) Method and apparatus for crystallizing optical information recording medium
KR100617035B1 (en) Device for Crystallization Silicon
JPS63261553A (en) Method for crystallizing optical information recording medium
US20020166043A1 (en) Formatting optical disks
US9001632B2 (en) Information device and method for performing information processing
JP2003006859A (en) Optical information recording method and optical information recording medium
JPH0770093B2 (en) Crystallization method of optical information recording medium
JP3257211B2 (en) Information recording medium initialization device
JPH05116455A (en) Phase-change optical recording medium
JPH03178050A (en) Optical information recording, reproducing and erasing member
Medvids et al. Reversible phase-change optical recording on SiO2-(Co+ Si)-SiO2-Si multilayer structure
JPH02210631A (en) Method for crystallization of recording film and device for crystallization of recording film for optical information recording medium
JPH0685234B2 (en) Optical information recording / erasing device
JP2000113518A (en) Production of phase transition type optical disk
JPS63298718A (en) Optical disk device