JPH033526B2 - - Google Patents

Info

Publication number
JPH033526B2
JPH033526B2 JP1616383A JP1616383A JPH033526B2 JP H033526 B2 JPH033526 B2 JP H033526B2 JP 1616383 A JP1616383 A JP 1616383A JP 1616383 A JP1616383 A JP 1616383A JP H033526 B2 JPH033526 B2 JP H033526B2
Authority
JP
Japan
Prior art keywords
forming
roll
strip
pass
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1616383A
Other languages
Japanese (ja)
Other versions
JPS59144521A (en
Inventor
Takaaki Toyooka
Yoshitomi Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1616383A priority Critical patent/JPS59144521A/en
Publication of JPS59144521A publication Critical patent/JPS59144521A/en
Publication of JPH033526B2 publication Critical patent/JPH033526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0822Guiding or aligning the edges of the bent sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Description

【発明の詳細な説明】 本発明は、円筒状に成形された帯板を、複数の
フインパスロールによつて順次管周方向に圧下し
て、素管に仕上成形する電縫鋼管のフインパスロ
ール成形における圧下制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fin pass for an electric resistance welded steel pipe in which a cylindrical strip is rolled down in the circumferential direction of the pipe by a plurality of fin pass rolls to finish form it into a blank pipe. This invention relates to a rolling reduction control method in roll forming.

一般に、電縫鋼管はケージロール成形方式、ス
テツプロール成形方式、セミケージロール成形方
式等に基づく製造設備によつて製造されている。
すなわち、例えば第1図および第2図に示すケー
ジロール成形方式に基づく製造設備において、帯
板10は、成形初期、中期のブレイクダウンロー
ル12、エツジフオーミングロール14、アウト
サイドケージロール16、インサイドケージロー
ル18において逐次円筒形状に成形された後、仕
上成形ロールであるランダム型の第1フインパス
ロール(1F)20、第2フインパスロール(2
F)22、第3フインパスロール(3F)24に
おいて順次管周方向に圧下されることにより、エ
ツジ部10aの安定な成形を図りつゝ所定の管形
状寸法の素管26に仕上成形される。上記各フイ
ンパスロール20,22,24により管周方向に
圧下された素管26は、継目両エツジ部26aが
高周波加熱され、スクイズロール28によつてア
プセツト溶接されて電縫鋼管29となる。なお、
第1図および第2図において、20a,22a,
24aは上ロールを示し、20b,22b,24
bはサイドロールを示し、20c,22c,24
cは下ロールを示す。また、第3図に第1フイン
パスロール20による素管成形状態を示す。
Generally, electric resistance welded steel pipes are manufactured using manufacturing equipment based on cage roll forming, step roll forming, semi-cage roll forming, and the like.
That is, in the manufacturing equipment based on the cage roll forming method shown in FIGS. 1 and 2, for example, the strip plate 10 is formed by a breakdown roll 12 in the initial and middle stages of forming, an edge forming roll 14, an outside cage roll 16, and an inside roll. After being sequentially formed into a cylindrical shape on the cage roll 18, a random type first fine pass roll (1F) 20 and a second fine pass roll (2
F) 22, the third fin pass roll (3F) 24 sequentially rolls down the pipe in the circumferential direction, thereby stably forming the edge portion 10a, and finish forming the blank pipe 26 into a predetermined pipe shape and size. . The raw pipe 26 rolled down in the circumferential direction by the fin pass rolls 20, 22, and 24 is subjected to high-frequency heating at both seam edge portions 26a, and is upset-welded by the squeeze rolls 28 to become an electric resistance welded steel pipe 29. In addition,
In FIG. 1 and FIG. 2, 20a, 22a,
24a indicates the upper roll, 20b, 22b, 24
b indicates side roll, 20c, 22c, 24
c indicates the lower roll. Further, FIG. 3 shows the state of forming the raw tube by the first fin pass roll 20.

上記電縫鋼管の製造工程においては、帯板両エ
ツジの成形状態が極めて重要であり、このエツジ
成形が不良である場合には、溶接部の形状品質の
低下、材料歩留りの低下を招来する。特に、帯板
の先後端部は、成形の非定常域となつて帯板に加
えられる拘束が弱いことから、帯板が変動し易
く、また、長手方向の張力の作用も減少するため
に、左右両エツジの非対称曲げ成形ならびにエツ
ジウエーブ発生等の成形不良を招き、材料歩留り
面より大きな問題となつている。
In the manufacturing process of the above-mentioned electric resistance welded steel pipe, the forming condition of both edges of the strip is extremely important, and if the edge forming is defective, this will lead to a decrease in the shape quality of the welded part and a decrease in material yield. In particular, the front and rear ends of the strip are unsteady regions of forming and the restraint applied to the strip is weak, making the strip easy to fluctuate, and the action of longitudinal tension is also reduced. This results in forming defects such as asymmetrical bending of both left and right edges and the generation of edge waves, which is a bigger problem than the material yield.

ところで、前記電縫鋼管の成形方法にあつて
は、タンデム型フインパスロールの各圧下量およ
び圧下配分等の圧下条件が帯板エツジの成形性に
及ぼす影響は極めて大きく、このフインパスロー
ルの圧下条件の選択如何によつては、エツジウエ
ーブなどのエツジ成形不良を生じ、スクイズロー
ルでの安定した溶接が困難となる。
By the way, in the above-mentioned method for forming ERW steel pipes, the rolling conditions such as the amount of reduction and the distribution of the rolling reduction of the tandem type fine pass rolls have a very large influence on the formability of the strip edge. Depending on the selection of conditions, edge forming defects such as edge waves may occur, making stable welding with a squeeze roll difficult.

このため、エツジ成形の安定化を図ることがで
きる適正フインパス圧下量および適正圧下配分の
選定が極めて重要な管理要素となつている。そこ
で、種々の実験、研究により適正フインパス圧下
量および適正圧下配分を検討したところ、特に、
圧下配分のエツジ成形性に及ぼす影響が大きいこ
とが認められ、適正フインパス成形条件として
は、フインパストータル圧下量を0.5%〜1.5%の
範囲として、フインパスの圧下配分を、第1フイ
ンパスロールの圧下量を大とし、それに後続する
他のフインパスロールの圧下量を段階的に減少す
るという第1フインパスロール強圧下型の傾斜圧
下配分とすることが望ましいことが明らかとな
り、実操業においてこの成形条件が採用され、エ
ツジ成形の安定化が図られている。
For this reason, selection of an appropriate fine pass reduction amount and appropriate reduction distribution that can stabilize edge forming has become an extremely important management element. Therefore, we conducted various experiments and research to examine the appropriate amount of reduction and distribution of reduction in the fine pass, and found that, in particular,
It has been recognized that the roll reduction distribution has a large effect on edge formability, and the appropriate fine pass forming conditions are to set the total roll reduction amount of the fine pass in the range of 0.5% to 1.5%, and to adjust the roll reduction distribution of the fine pass to the first fine pass roll. It has become clear that it is desirable to use a gradient reduction distribution for the first fine pass roll with strong reduction, in which the reduction amount is large and the reduction amounts of the other subsequent fine pass rolls are gradually reduced. The molding conditions have been adopted to stabilize edge molding.

しかしながら、上記第1フインパスロール強圧
下型の傾斜圧下配分条件による場合には、帯板定
常部のエツジ成形は極めて安定するものの、帯板
先後端部の非定常成形域におけるエツジ成型形状
は依然として改善されず、エツジウエーブ発生等
による成形不良が多発し、溶接不良による材料歩
留りの低下を生じている。
However, when using the inclined reduction distribution conditions of the first fine-pass roll strong reduction die, although the edge forming in the steady part of the strip is extremely stable, the edge forming shape in the unsteady forming area of the leading and trailing ends of the strip is still This has not been improved, resulting in frequent forming defects due to edge waves, etc., and a decrease in material yield due to welding defects.

本発明は、帯板の非定常成形域としての先端部
および後端部のエツジ成形形状を安定化し、該先
後端部の溶接部形状品質を良好にするとともに、
帯板の定常成形域としての中間部のエツジ成形の
安定化をも図ることにより、材料歩留りの高いか
つ溶接部形状品質の優れた電縫鋼管を製造可能と
する電縫鋼管のフインパスロール成形における圧
下制御方法を提供することを目的とする。
The present invention stabilizes the edge forming shape of the leading end and trailing end as unsteady forming areas of the strip plate, improves the quality of the welded part shape of the leading end and trailing end, and
Fin pass roll forming of ERW steel pipes that makes it possible to manufacture ERW steel pipes with high material yield and excellent welded part shape quality by stabilizing the edge forming of the middle part as the steady forming area of the strip. The purpose of the present invention is to provide a method for controlling the reduction in pressure.

上記目的を達成するために、本発明は、円筒状
に成形された帯板円、複数のフインパスロールに
よつて順次管周方向に圧下して、素管に仕上成形
する電縫鋼管のフインパスロール成形における圧
下制御方法において、非定常成形域としての帯板
先端部および後端部に対しては、、各フインパス
ロールの圧下量を相互に略同等とする均等圧下配
分とし、定常成形域としての帯板中間部に対して
は、第1フインパスロールの圧下量を比較的に大
とし、後続する他のフインパスロールの圧下量を
段階的に減少する傾斜圧下配分とするようにした
ものである。
In order to achieve the above object, the present invention provides fins of an electric resistance welded steel pipe that are finished formed into a blank pipe by sequentially rolling down a cylindrical strip circle in the pipe circumferential direction with a plurality of fin pass rolls. In the rolling reduction control method in pass roll forming, for the tip and rear ends of the strip as unsteady forming areas, the rolling reduction amount of each fine pass roll is approximately equal to each other, and the rolling reduction is distributed evenly, and steady forming is performed. For the intermediate part of the strip plate as a zone, the rolling reduction amount of the first fine pass roll is relatively large, and the rolling reduction amount of the other succeeding fine pass rolls is gradually reduced, so that an inclined rolling distribution is adopted. This is what I did.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明は、エツジ成形不良のない適正なフイン
パス圧下成形条件範囲を得るべくなされた、この
発明者等の数多くの実験、研究の結果に基づいて
なされたものであり、帯板長手方向の全長、すな
わち成形の非定常域である帯板先後端部および定
常成形域である帯板中間部でのタンデム型フイン
パスロールの適正圧下配分を明らかにし、帯板の
長手方向位置によつてフインパスロールの圧下配
分をダイナミツクに変更し、その圧下制御を行な
うようにするものである。
The present invention was made based on the results of numerous experiments and studies conducted by the inventors in order to obtain an appropriate range of fine pass reduction forming conditions without edge forming defects. In other words, we clarified the appropriate reduction distribution of the tandem type fin pass rolls at the front and rear ends of the strip, which are the unsteady forming region, and the middle part of the strip, which is the steady forming region. This is to dynamically change the distribution of the reduction in pressure and control the reduction.

この発明者等の実験、研究の結果得られたタン
デム型フインパスロールの適正圧下配分条件範囲
は以下の通りである。
The appropriate rolling reduction distribution condition range for tandem type fin pass rolls obtained as a result of experiments and research by the inventors is as follows.

まず、成形の非定常域である帯板先後端部にお
けるエツジ成形不良の発生しないフインパス適正
圧下配分条件()は、第4図Aに斜線領域で示
す如く、第1フインパスロール(1F)の圧下率r1
(各スタンドの圧下率riは第iスタンド出側素管
外周長liを用いて、ri=100lo(li-1/li)で表わされ
る)を1とした場合の、第2フインパスロール
(2F)、第3フインパスロール(3F)の圧下率r2
r3が、それぞれ0.5〜1.0の範囲内で、かつr1≧r2
r3を満足するものである。すなわち、このフイン
パス適正圧下配分条件範囲()は略均等圧下配
分に近いフインパス成形条件である。なお、第2
フインパスロール(2F)、第3フインパスロール
(3F)の圧下率r2,r3が、上記フインパスロール
適正圧下配分条件範囲()を逸脱し、1.0を超
える領域Pにある場合には帯板先後端部における
エツジウエーブの発生ならびにエツジの円周方向
座屈の発生が顕著となり、素管エツジ部に過大な
増肉を発生する可能性がある。また、第2フイン
パスロール(2F)、第3フインパスロール(3F)
の圧下率r2,r3が、上記フインパス適正圧下配分
条件範囲()を逸脱し、0.5より小なる領域Q
にある場合には、帯板先後端部におけるエツジウ
エーブの発生が顕著となり、先端フラワー形状不
良を発生する可能性がある。
First, the proper fin pass rolling reduction distribution conditions () that do not cause edge forming defects at the leading and trailing ends of the strip, which is an unsteady region of forming, are as shown by the shaded area in Figure 4A, for the first fin pass roll (1F). Reduction rate r 1
(The rolling reduction ratio r i of each stand is expressed as r i =100l o (l i-1 /l i ) using the outer circumference length l i of the exit side of the i-th stand). The rolling reduction ratio r 2 of the second fine pass roll (2F) and the third fine pass roll (3F),
r 3 is within the range of 0.5 to 1.0, and r 1 ≧ r 2
It satisfies r3 . That is, this fine pass appropriate rolling reduction distribution condition range () is a fine pass forming condition close to a substantially uniform rolling reduction distribution. In addition, the second
If the rolling reduction ratios r 2 and r 3 of the fine pass roll (2F) and the third fine pass roll (3F) deviate from the above-mentioned fine pass roll appropriate rolling reduction distribution condition range () and are in the region P exceeding 1.0. The occurrence of edge waves and buckling in the circumferential direction of the edges at the tip and rear end of the strip becomes significant, and there is a possibility that excessive thickening will occur at the edge of the raw pipe. In addition, the second fine pass roll (2F), the third fine pass roll (3F)
The area Q in which the rolling reduction ratios r 2 and r 3 of
In this case, the occurrence of edge waves at the tip and rear end of the band plate becomes noticeable, and there is a possibility that a defect in the shape of the tip flower occurs.

次に、帯板定常成形域としての帯板中間部にお
けるエツジ成形不の発生しないフインパス適正圧
下配分条件範囲()は、第4図Bに斜線領域で
示す如く、第1フインパスロール(1F)の圧下
率r1を1とした場合の、第2フインパスロール
(2F)、第3フインパスロール(3F)の圧下率r2
r3が、それぞれr2=0.1〜0.5、r3=0〜0.3の範囲
内で、かつr1>r2>r3を満足するものである。す
なわち、このフインパス適正圧下配分条件範囲
()は、第1フインパスロール(1F)の圧下率
を最も大とし、それに後続する他のフインパスロ
ールの圧下率を段階的に減少するという、第1フ
インパスロール強圧下の傾斜圧下配分のフインパ
成形条件である。なお、第2フインパスロール
(2F)、第3フインパスロール(3F)の圧下率r2
r3が、上記フインパス適正圧下配分条件範囲
()を逸脱し、第4図Bの領域Rにある場合に
はエツジウエーブの発生ならびにエツジの円周方
向座屈の発生が顕著になるとともにエツジ部に過
大な増肉を生ずる。また、その圧下率r2,r3が第
4図Bの領域Sにある場合には、エツジウエーブ
の発生が顕著になるとともに、溶接時におけるエ
ツジの上下変動による溶接の不安定ならびに溶接
シームの捩れ等を発生する可能性がある。
Next, as shown by the shaded area in FIG. 4B, the range of appropriate rolling reduction conditions for the fine pass in which edge forming failure does not occur in the middle part of the strip as the steady forming area of the strip is as shown by the shaded area in FIG. 4B. The rolling reduction ratio r 2 of the second fine pass roll (2F) and the third fine pass roll (3F) when the rolling reduction ratio r 1 of is 1,
r 3 is within the range of r 2 =0.1 to 0.5 and r 3 =0 to 0.3, and satisfies r 1 > r 2 > r 3 . In other words, this fine pass appropriate rolling reduction distribution condition range () is a first fine pass where the rolling reduction ratio of the first fine pass roll (1F) is the largest and the rolling reduction ratios of the other succeeding fine pass rolls are decreased in stages. This is the condition for forming the fin pass with a gradient reduction distribution under strong pressure of the fin pass roll. In addition, the rolling reduction ratio r 2 of the second fine pass roll (2F) and the third fine pass roll (3F),
If r 3 deviates from the above-mentioned fin path appropriate reduction distribution condition range () and is in the region R of FIG. This results in excessive thickening. In addition, when the reduction ratios r 2 and r 3 are in the region S of Fig. 4B, the occurrence of edge waves becomes noticeable, and the welding becomes unstable due to vertical fluctuations of the edges during welding, and the weld seam Twisting, etc. may occur.

ところで、本発明によるフインパス適正圧下配
分条件における、フインパストータル圧下率は、
実験、研究の結果、0.5〜1.5%の範囲に設定すれ
ば良好であることが認められている。
By the way, the fine pass total rolling reduction rate under the fine pass proper rolling reduction distribution conditions according to the present invention is as follows:
As a result of experiments and research, it has been found that setting the content in the range of 0.5 to 1.5% is satisfactory.

第5図は、本発明におけるフインパス適正圧下
配分条件範囲(),()を得るために行なつた
一連の実験、研究の中から、フインパス圧下配分
条件の非定常成形域である帯板先後端部および定
常成形域である帯板中間部のエツジウエーブ急峻
度(d/ls)(第6図に示すように、エツジウエ
ーブの深さdをエツジウエーブのスパンlsで割つ
た値)に及ぼす影響を1例を示すものである。第
5図において△印は第4図AのL1に示すフイン
パス圧下配分条件によつて成形を行なつた場合の
結果であり、帯板定常部のエツジウエーブは大き
いが、帯板先後端部でのエツジウエーブが小さ
く、エツジ成形が安定していることが認められ
る。他方、第5図の〇印は第4図BのL2に示す
フインパス圧下配分条件によつて成形を行なつた
場合の結果であり、帯板定常部のエツジウエーブ
は極めて小さく、成形が安定しているが、帯板先
後端部でのエツジウエーブが大きく、成形が不安
定であることが認められる。また、エツジウエー
ブ急峻度(d/ls)の溶接部品質への影響を詳細
に調査したところ、その急峻度(d/ls)が20×
10-4以下であれば問題にならないことが認められ
ている。
Figure 5 shows the tip and rear ends of the strip, which is an unsteady forming area under the fine pass rolling distribution conditions, from a series of experiments and research conducted to obtain the fine pass appropriate rolling reduction distribution condition ranges () and () in the present invention. and the edge wave steepness (d/l s ) at the middle part of the strip, which is the steady forming area (as shown in Figure 6, the value obtained by dividing the edge wave depth d by the edge wave span l s ). The following is an example of the influence that can have. In Fig. 5, the mark △ indicates the result when forming is carried out under the fine pass rolling reduction distribution conditions shown in L1 of Fig. 4A . It is confirmed that the edge wave is small and the edge forming is stable. On the other hand, the circle mark in Figure 5 is the result when forming is performed under the fine pass reduction distribution conditions shown in L2 in Figure 4B , and the edge waves in the steady section of the strip are extremely small and the forming is stable. However, it is recognized that the edge waves at the leading and trailing ends of the strip are large and the forming is unstable. In addition, a detailed investigation into the effect of edge wave steepness (d/l s ) on weld quality revealed that the steepness (d/l s ) was 20×
It is recognized that there is no problem if it is less than 10 -4 .

以上の結果より、非定常成形域である帯板先後
端部では、適正圧下配分条件()にて成形を行
ない、帯板定常成形域である帯板中間部では適正
圧下配分条件()にて成形を行なえば、帯板の
エツジ成形は極めて安定するが明らかである。す
なわち、帯板の先端部、定常部、後端部のそれぞ
れの位置において、フインパス圧下配分を、第4
図に示した各適正圧下配分条件(),()の範
囲で変更することによつて、帯板のエツジ成形不
良を大幅に改善することが可能となり、溶接部品
質形状の優れた電縫鋼管の製造が可能となるとと
もに、材料歩留りの向上を図ることが可能とな
る。
From the above results, forming is performed under the appropriate rolling distribution conditions () at the leading and trailing ends of the strip, which are the unsteady forming region, and under the proper rolling distribution conditions () at the middle section of the strip, which is the steady forming region. Once formed, it is clear that the edge forming of the strip is extremely stable. In other words, at each position of the tip, steady portion, and rear end of the strip, the fine pass reduction distribution is
By changing the appropriate reduction distribution conditions () and () shown in the figure, it is possible to significantly improve the edge forming defects of the strip, resulting in an ERW steel pipe with excellent weld quality and shape. It becomes possible to manufacture the same, and it also becomes possible to improve the material yield.

次に、本発明による具体的な実施手順について
説明する。
Next, specific implementation procedures according to the present invention will be explained.

第7図は、本発明におけるフインパスロール圧
下制御方法を示す説明図である。まず、帯板通板
前にタンデム型フインパスロールの圧下を、第4
図Aに示す適正圧下配分条件範囲()の圧下配
分に設定し、その後帯板を挿入し、成形を行な
う。帯板先端部の非定常成形域Aの範囲において
は、適正圧下配分条件範囲()の圧下配分で成
形を実施し、帯板先端X点を過ぎ、定常成形域S
の成形においては、ダンデム型フインパスロール
の圧下を第4図Bに示す適正圧下配分条件範囲
()の圧下配分に変更し、その圧下配分条件に
よつて成形を行なう。帯板後端Y点から、すなわ
ち非定常成形域Bの範囲においては、適正圧下配
分条件範囲()の圧下配分に再び変更し、その
圧下配分条件によつて成形を行なう。ところで、
非定常成形域A,Bの範囲は、予め管の外径、板
厚および素材の強度等に基づいて定められる。ま
た、X点、Y点におけるフインパスロールの圧下
配分変更は、実際には第7図の破線a−bおよび
c−dに示すように、圧下変更に若干の時間を要
し、その間の成形条件は、適正圧下配分条件範囲
(),()を逸脱する場合があるが、短時間の
成形であるために、成形不良の発生はない。
FIG. 7 is an explanatory diagram showing the fin pass roll reduction control method in the present invention. First, before threading the strip, the rolling of the tandem type fin pass roll is carried out at the fourth
The rolling distribution is set to the appropriate rolling distribution condition range () shown in Figure A, and then the strip is inserted and forming is performed. In the range of the unsteady forming area A at the tip of the strip, forming is performed with the reduction distribution within the appropriate reduction distribution condition range (), and after passing point X at the tip of the strip, the steady forming area S
In the forming, the rolling reduction of the tandem type fine pass rolls is changed to the rolling reduction distribution within the proper rolling distribution condition range () shown in FIG. 4B, and forming is performed under the rolling reduction distribution conditions. From point Y at the rear end of the strip, that is, in the unsteady forming area B, the rolling distribution is changed again to the proper rolling distribution condition range (), and forming is performed under the rolling distribution condition. by the way,
The ranges of the unsteady forming regions A and B are determined in advance based on the outer diameter of the tube, the plate thickness, the strength of the material, etc. In addition, changing the rolling reduction distribution of the fine pass rolls at points X and Y actually requires some time to change the rolling reduction, as shown by broken lines a-b and c-d in FIG. Although the conditions may deviate from the appropriate rolling reduction distribution condition range (), (), since the molding is for a short time, no molding defects occur.

なお、本発明におけるダンデム型フインパスロ
ールのダイナミツク制御は、第3図に示す4ロー
ルタイプのフインパスロール20の場合には、少
なくとも上ロール20aおよび両サイドロール2
0bの3個以上のロールを(2ロールタイプのフ
インパスロールの場合には少なくとも上ロール
を)油圧圧下制御または電動圧下制御機構とし
て、成形時に所定の圧下量となるように、上ロー
ルおよび両サイドロール(2ロールタイプのフイ
ンパスロールの場合には上ロール)をダイナミツ
クに移動せしめ、フインパスの圧下量を変更可能
とするものである。
Note that, in the case of the 4-roll type fin pass roll 20 shown in FIG.
Three or more rolls of 0b (at least the upper roll in the case of a two-roll type fine pass roll) are controlled by a hydraulic reduction control mechanism or an electric reduction control mechanism to control the upper roll and both rollers so that a predetermined reduction amount is achieved during forming. The side roll (in the case of a two-roll type fin pass roll, the upper roll) is dynamically moved to make it possible to change the amount of reduction of the fin pass.

また、フインパスロールの設定位置変更に関し
ては、各圧下制御ロールの任意基準点を座標管理
し、所定の圧下を加えるためには、これらのロー
ルの基準点の移動すべき座標点を予め計算し、そ
の座標点に各ロールの基準点を移動可能とする各
ロールの移動量および移動方向を演算し、各ロー
ルをその演算結果に応じて移動せしめられば良
い。更に、フインパスロールの各ロールギヤツプ
を測定し、その値が所定の値となるような制御機
構を備えれば、本発明によるフインパスのダイナ
ミツク圧下制御の精度を高めることが可能とな
る。
In addition, when changing the setting position of the fine pass rolls, coordinates are managed for the arbitrary reference points of each rolling reduction control roll, and in order to apply a prescribed rolling reduction, the coordinate points to which the reference points of these rolls should be moved must be calculated in advance. , the amount and direction of movement of each roll that allows the reference point of each roll to be moved to the coordinate point may be calculated, and each roll may be moved in accordance with the calculation result. Furthermore, if a control mechanism is provided that measures each roll gap of the fin pass roll and makes the measured value a predetermined value, it is possible to improve the accuracy of the dynamic reduction control of the fin pass according to the present invention.

本発明によれば、例えば、従来エツジウエーブ
の発生が問題になつていた肉厚t/外径Dが1%
前後の高強度薄肉電縫鋼管をも安定して製造する
ことが可能となる。
According to the present invention, for example, the wall thickness t/outer diameter D, which has conventionally caused a problem of generation of edge waves, is 1%.
It is also possible to stably manufacture front and rear high-strength, thin-walled electric resistance welded steel pipes.

また、本発明は、ケージロール成形方式による
電縫鋼管製造設備に限らず、ステツプロール成形
方式もしくはセミケージロール方式等の製造設備
によるフインパスロール成形にも同様に適用可能
である。
Further, the present invention is not limited to the electric resistance welded steel pipe manufacturing equipment using the cage roll forming method, but is similarly applicable to fin pass roll forming using manufacturing equipment such as the step roll forming method or the semi-cage roll method.

以上のように、本発明に係る電縫鋼管のフイン
パスロール成形における圧下制御方法は、非定常
成形域としての帯板先端部および後端部に対して
は、各フインパスロールの圧下量を相互に略同等
とする均等圧下配分とし、定常成形域としての帯
板中間部に対しては、第1フインパスロールの圧
下量を比較的に大とし、後続する他のフインパス
ロールの圧下量を段階的に減少する傾斜圧下配分
とするようにしたものである。したがつて、本発
明によれば、帯板の非定常成形域としての先後端
部のエツジ成形形状を安定化してその先後端部の
溶接部形状品質を良好にするとともに、帯板の形
状成形域としての中間部におけるエツジ成形の安
定化をも図ることが可能となり、材料歩留りの高
い、かつ溶接部形状品質の優れた電縫鋼管を安定
的に製造することが可能となる。
As described above, the rolling reduction control method in fine pass roll forming of an ERW steel pipe according to the present invention is based on the rolling reduction amount of each fine pass roll for the tip and rear ends of the strip as unsteady forming regions. The rolling reduction is distributed evenly so that they are approximately equal to each other, and the rolling reduction amount of the first fine pass roll is relatively large for the middle part of the strip serving as a steady forming area, and the rolling reduction amount of the other succeeding fine pass rolls is set relatively large. This is a gradient reduction distribution that decreases stepwise. Therefore, according to the present invention, the edge forming shape of the leading and trailing ends as an unsteady forming area of the strip is stabilized, the shape quality of the welded part at the leading and trailing ends is improved, and the shape forming of the strip is improved. It is also possible to stabilize the edge forming in the middle part as a region, and it becomes possible to stably manufacture an electric resistance welded steel pipe with a high material yield and excellent welded part shape quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はケージロール方式に基づく電縫鋼管の
素管成形過程を示す平面図、第2図は第1図の側
面図、第3図は第2図の―線に沿う拡大断面
図、第4図A,Bは本発明によるフインパス適正
圧下配分条件範囲(),()を示す線図、第5
図はフインパス圧下配分が帯板長手方向の各成形
位置におけるエツジウエーブ発生に及ぼす影響状
態を示す線図、第6図はエツジウエーブの評価方
法を示す模式図、第7図は本発明によるフインパ
スロール圧下配分制御方法を示す模式図である。 10…帯板、10a…帯板エツジ部、20…第
1フインパスロール(1F)、22…第2フインパ
スロール(2F)、24…第3フインパスロール
(3F)、26…素管。
Fig. 1 is a plan view showing the process of forming an ERW steel pipe using the cage roll method, Fig. 2 is a side view of Fig. 1, Fig. 3 is an enlarged sectional view taken along line - in Fig. 2, 4. Figures A and B are diagrams showing the fine pass appropriate reduction distribution condition ranges () and () according to the present invention;
The figure is a diagram showing the influence of the fin pass reduction distribution on the generation of edge waves at each forming position in the longitudinal direction of the strip, Figure 6 is a schematic diagram showing the edge wave evaluation method, and Figure 7 is the fin pass according to the present invention. It is a schematic diagram which shows the roll reduction distribution control method. DESCRIPTION OF SYMBOLS 10... Band plate, 10a... Band plate edge part, 20... First fin pass roll (1F), 22... Second fin pass roll (2F), 24... Third fin pass roll (3F), 26... Base pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状に成形された帯板を、複数のフインパ
スロールによつて順次管周方向に圧下して、素管
に仕上成形する電縫鋼管のフインパスロール成形
における圧下制御方法において、非定常成形域と
しての帯板先端部および後端部に対しては、各フ
インパスロールの圧下量を相互に略同等とする均
等圧下配分とし、定常成形域としての帯板中間部
に対しては、第1フインパスロールの圧下量を比
較的に大とし、後続する他のフインパスロールの
圧下量を段階的に減少する傾斜圧下配分とするこ
とを特徴とする電縫鋼管のフインパスロール成形
における圧下制御方法。
1 In a roll-down control method in fine-pass roll forming of an ERW steel pipe, in which a cylindrical strip is sequentially rolled down in the tube circumferential direction by a plurality of fine-pass rolls to form a blank pipe, an unsteady For the tip and rear ends of the strip, which serve as the forming area, the rolling reduction of each fin pass roll is distributed evenly so that they are approximately equal to each other, and for the middle part of the strip, which serves as the steady forming area, Fin pass roll forming of an ERW steel pipe characterized in that the rolling reduction amount of the first fine pass roll is relatively large and the rolling reduction amount of the other succeeding fine pass rolls is gradually reduced. Rolling down control method.
JP1616383A 1983-02-04 1983-02-04 Draft controlling method in fin pass roll forming of electric welded steel pipe Granted JPS59144521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1616383A JPS59144521A (en) 1983-02-04 1983-02-04 Draft controlling method in fin pass roll forming of electric welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1616383A JPS59144521A (en) 1983-02-04 1983-02-04 Draft controlling method in fin pass roll forming of electric welded steel pipe

Publications (2)

Publication Number Publication Date
JPS59144521A JPS59144521A (en) 1984-08-18
JPH033526B2 true JPH033526B2 (en) 1991-01-18

Family

ID=11908835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1616383A Granted JPS59144521A (en) 1983-02-04 1983-02-04 Draft controlling method in fin pass roll forming of electric welded steel pipe

Country Status (1)

Country Link
JP (1) JPS59144521A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102395B2 (en) * 1986-12-26 1995-11-08 株式会社中田製作所 Material guide method to the fin roll and its guide roll stand

Also Published As

Publication number Publication date
JPS59144521A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
DE3220029C2 (en)
US2959849A (en) Method and apparatus for making pipe
US4590781A (en) Method for forming an electric resistance welded steel pipe
JPH033526B2 (en)
US4568015A (en) Method of forming electric welded steel tube
JPH08117829A (en) Cold rolling method for steel sheet
JPH09504738A (en) Variable flange beam blank and continuous casting method
JPS61115685A (en) Manufacture of seam welded steel tube
JP2994202B2 (en) Manufacturing method of ERW steel pipe with excellent roundness
EP0133245B1 (en) A method for forming an electric resistance welded steel pipe
JPH02104419A (en) Manufacture of welded pipe
JPS63281713A (en) Production of electric resistance welded tube
JP3342953B2 (en) Manufacturing method of ERW steel pipe
RU2090281C1 (en) Method of making welded steel tubes
JPS60206507A (en) Method for rolling seamless steel pipe by mandrel mill system
JPS6036348B2 (en) Initial roll gap setting method and roll gap setting correction method for fin pass rolls of ERW steel pipes
CA1239778A (en) Method for forming an electric resistance welded steel pipe
JPH0371204B2 (en)
SU1611487A1 (en) Method of producing welded tubes
JP3185612B2 (en) ERW pipe manufacturing method
JPH012708A (en) Continuous elongation rolling method of pipe and its rolling machine
JPH01181920A (en) Method for controlling rolling reduction of end part of band plate for electric resistance welded tube
JPS58151912A (en) Production of electric welded steel pipe having high straightness
JPS60108118A (en) Fin pass roll forming method of blank pipe for electric welded steel pipe
JPS6186026A (en) Edge working method at formation of electric welded steel