JPH0335040A - Highly oriented acrylic fiber-reinforced rubber composition - Google Patents

Highly oriented acrylic fiber-reinforced rubber composition

Info

Publication number
JPH0335040A
JPH0335040A JP1169203A JP16920389A JPH0335040A JP H0335040 A JPH0335040 A JP H0335040A JP 1169203 A JP1169203 A JP 1169203A JP 16920389 A JP16920389 A JP 16920389A JP H0335040 A JPH0335040 A JP H0335040A
Authority
JP
Japan
Prior art keywords
rubber
acrylic fiber
rubber composition
acrylic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1169203A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nishihara
良浩 西原
Hajime Ito
元 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP1169203A priority Critical patent/JPH0335040A/en
Publication of JPH0335040A publication Critical patent/JPH0335040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly oriented acrylic fiber-reinforced rubber composition excellent in strength, heat and oil resistance by blending a diene-based rubber with carbon black and acrylic fiber having a specific value or above of X-ray orientation degree in a specific proportion. CONSTITUTION:A rubber composition obtained by blending (A) 50-80wt.% diene- based rubber (preferably acrylonitrile-butadiene copolymer rubber) with (B) 1-30wt.% carbon black (e.g. furnace black for rubber), (C) 5-40wt.% acrylic fiber of >=95wt.% X-ray orientation degree, preferably containing >=90wt.% acrylonitrile units and having preferably >=10g/d, more preferably >=15g/d tensile strength, 0.1-10mm length of short fiber, 0.1-10d size of the short fiber and 10-1000 aspect ratio and, as necessary, various additives, mixing the components in a kneader while heating and vulcanizing the resultant mixture and molding the vulcanized mixture.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度、耐熱性、耐油性に優れたアクリル繊維
補強ゴム組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an acrylic fiber-reinforced rubber composition that has excellent strength, heat resistance, and oil resistance.

(従来の技術) ゴムの強度を上げる一般的な方法として、ゴムの中に各
種の補強材を埋め込む方法が知られている。しかしなが
らこれらの方法は、長繊維状の補強材をいりたん製織ま
たは製編し、その、上にゴムをライニングするものであ
り1非常に繁雑な工程を必要とする。そとて短繊維をゴ
ムの中に分散させることでゴム製品の補強が可能となれ
ば、その組成物の製造工程はゴムと添加材及び補強用短
m維を混合し、押し出し成形や射出成形することになり
、前述の長繊維からなる織編物を用いる方法に比較して
大幅に簡略化されることが期待される。
(Prior Art) As a general method of increasing the strength of rubber, a method of embedding various reinforcing materials into rubber is known. However, these methods involve weaving or knitting the reinforcing material in the form of long fibers and then lining the material with rubber, which requires a very complicated process. If rubber products could be reinforced by dispersing short fibers in rubber, the manufacturing process for the composition would involve mixing rubber, additives, and reinforcing short fibers, and then extrusion molding or injection molding. Therefore, it is expected that the method will be significantly simplified compared to the method using a woven or knitted fabric made of long fibers described above.

このような目的のため、たとえば特開昭57−1065
2号公報や特開昭58−105539号公報には、ジエ
ン系ゴムをミクロ有機短繊維で補強する技術が開示され
ている。しかし、これらの方法では補強効果を出すため
にはアモルファス部分のガラス転移温度が50℃以下か
または120℃以上で、その結晶部分の融点が160℃
以上であυ、平均短繊維長がa、S〜50μへ平均短繊
維径がIIL02〜山8μmといった極細の特殊壜形態
の繊維を添加する必要がある。
For such purposes, for example, Japanese Patent Application Laid-Open No. 57-1065
No. 2 and JP-A-58-105539 disclose techniques for reinforcing diene rubber with microorganic short fibers. However, in order to produce a reinforcing effect in these methods, the glass transition temperature of the amorphous part must be below 50°C or above 120°C, and the melting point of the crystalline part must be 160°C.
If the above is υ, it is necessary to add ultra-fine special bottle-shaped fibers with an average short fiber length of a and an average short fiber diameter of IIL02 to 8 μm to S~50 μm.

そして、ミクロ有機II!維を構成するポリマーの具体
例としてアインタクチツクボリプロピレン、ポリ−4−
メチル−1−ペンテン、ポリ弗化ビニリデン、ポリ塩化
ビニリデン、ポリーp −tert−ブチルスチレン、
ポリ−p−クロロスチレン、ポリジクロロスチレン、ポ
リ−α−メチルスチレン、ポリ−p−フェニルスチレン
、tt: I) −。
And Microorganic II! Specific examples of polymers constituting fibers include polypropylene, poly-4-
Methyl-1-pentene, polyvinylidene fluoride, polyvinylidene chloride, poly p-tert-butylstyrene,
Poly-p-chlorostyrene, polydichlorostyrene, poly-α-methylstyrene, poly-p-phenylstyrene, tt: I) -.

−ビニルベンジルアルコール、ポリ−p−ビニルベンジ
ルアルコール、ポリビニルナフタレン、ポリオキシメチ
レン、ポリ−ビスフェノールAカーボネート、1.4ポ
リ−2,3ジメチルブタジエン等が例示されているのみ
である。
-vinylbenzyl alcohol, poly-p-vinylbenzyl alcohol, polyvinylnaphthalene, polyoxymethylene, poly-bisphenol A carbonate, 1.4 poly-2,3 dimethylbutadiene, etc. are only exemplified.

(発明が解決しようとする課題) 本発明者らは上述した如き現状に鑑み、ジエン系ゴムに
対し上記特開昭57−10652号公報や特開昭58−
103539号公報に開示されるようなミクロ有機短繊
維以外の如何なる有機短繊維を配合することにより、抗
張力に優れる補強ゴム組成物としうるかについて鋭意検
討の結果、ジエン糸ゴムとカーボンブラック及びアクリ
ル繊維とを、各々特定の範囲の割合で組み合わせて配合
することにより、所期の目的を達成できることを見い出
し本発明に到達した。
(Problems to be Solved by the Invention) In view of the current situation as described above, the present inventors have investigated the diene rubber described in the above-mentioned JP-A-57-10652 and JP-A-58-
As a result of intensive studies on what organic short fibers other than the microorganic short fibers disclosed in Japanese Patent No. 103539 can be blended to create a reinforcing rubber composition with excellent tensile strength, diene thread rubber, carbon black, and acrylic fibers were combined. The present invention has been achieved by discovering that the desired objective can be achieved by combining and blending each in a specific range of proportions.

(課題を解決するための手段) 本発明の要旨とするところは、ジエン系ゴム50〜80
重景優、カーボンブラック1〜−50重量幅、“アクリ
ル繊維5〜4ON量係からなる組成物に於て、X線配向
度が95係以上であるアクリル繊維を使用することを特
徴とする高配向アクリル繊維補強ゴム組成物にある。本
発明のアクリル繊1aはXm配向度が95係以上ならば
特に限定はされない。一般にゴムの加硫はアミン等のア
ルカリの存在下しかも高温でかとなうが、その際#Ji
m中のアクリロニトリルポリマー分子の配向度が低い場
合、アミン等の加硫促進剤が繊維中に拡散しアクリロニ
トリルポリマーの分解を引きかこす。ところがX線配向
度が95傷以上のアクリル繊維はアクリロニトリルポリ
マー分子が繊維軸方向に規則正しく配列しているためア
ミン等の加硫促進剤が繊維中に拡散しなりためアクリル
繊維の劣化がほとんど釦こらない。
(Means for Solving the Problems) The gist of the present invention is that diene rubber 50-80
Masaru Shigege, carbon black 1~-50 weight range, ``In a composition consisting of acrylic fibers 5~4 ON weight ratio, high quality carbon black characterized by using acrylic fibers with an X-ray orientation degree of 95 coefficients or higher. Oriented acrylic fiber reinforced rubber composition.The acrylic fiber 1a of the present invention is not particularly limited as long as the degree of Xm orientation is 95 coefficients or more.Generally, vulcanization of rubber is carried out in the presence of an alkali such as an amine and at high temperature. However, at that time #Ji
If the degree of orientation of the acrylonitrile polymer molecules in m is low, vulcanization accelerators such as amines will diffuse into the fibers, causing decomposition of the acrylonitrile polymer. However, in acrylic fibers with an X-ray orientation of 95 scratches or more, the acrylonitrile polymer molecules are regularly arranged in the fiber axis direction, so vulcanization accelerators such as amines do not diffuse into the fibers, so acrylic fibers hardly deteriorate. do not have.

また、用いるアクリル繊維を構成する重合体組成として
は、アクリロニトリル単位が90重量嘔以上のものであ
ることが好ましい。またゴムを効果的に補強するために
は、強度の裏込アクリル繊維であるほうが好1しく、好
1しくば101F/11以上、更に好1しくは15 f
 / e(以上のものを用いるのが好ましい。更にアク
リル繊維の形態については、短繊維の長さが(11〜1
0+w、短繊維の繊度が(Ll(L〜10d1アスペク
ト比が10〜1aaoの範囲が好普しb0短繊維の長さ
が(Ll−未満では、ゴム組成物の補強を効果的に行う
ことが困難となり、また10■を越えるとゴム組成物へ
のアクリル繊維の分散性が低下し好ましくない。
Further, the polymer composition constituting the acrylic fiber used preferably has acrylonitrile units of 90 or more by weight. In order to effectively reinforce the rubber, it is preferable to use strong back-filled acrylic fiber, preferably 101F/11 or more, more preferably 15F/11 or more, and more preferably 15F/11 or more.
/ e (It is preferable to use the above. Furthermore, regarding the form of the acrylic fiber, the short fiber length is (11 to 1
0+w, the fineness of the short fibers is preferably (Ll (L~10d1), the aspect ratio is preferably in the range of 10~1aao, and the length of b0 short fibers is less than (Ll-), the rubber composition cannot be effectively reinforced. If it exceeds 10 cm, the dispersibility of the acrylic fibers in the rubber composition decreases, which is not preferable.

また短繊維の繊度が(Ll(1未満ではアクリル繊維の
分散性が低下し、逆に101を越えるとアクリル繊維の
有効表面積が相対的に減少し、十分な補強効果が得られ
ない。
Furthermore, if the fineness of the short fibers is less than 1 (Ll), the dispersibility of the acrylic fibers will decrease, and if it exceeds 101, the effective surface area of the acrylic fibers will be relatively reduced, making it impossible to obtain a sufficient reinforcing effect.

更に、アスペクト比が10未満ではアクリル繊維補強ゴ
ム組成物の抗張力は十分に高くなく、一方1000を越
えると、アクリル繊維のゴム組成物中への分散性が低下
するので好1しくない。
Furthermore, if the aspect ratio is less than 10, the tensile strength of the acrylic fiber-reinforced rubber composition will not be sufficiently high, while if it exceeds 1000, the dispersibility of the acrylic fibers in the rubber composition will decrease, which is not desirable.

アクリル繊維補強ゴム組成物中のアクリル繊維の含有量
が5重量優未満では補強効果がほとんどなく、一方40
1it4を越えると、得られるアクリル繊維補強ゴム組
成物を混練する工程における加工性が悪く好1しくない
If the content of acrylic fibers in the acrylic fiber reinforced rubber composition is less than 5% by weight, there is almost no reinforcing effect;
If it exceeds 1it4, the processability in the step of kneading the obtained acrylic fiber reinforced rubber composition is unfavorable.

本発明で用いるアクリル繊維はアクリロニトリル系重合
体を適当な溶媒に溶解したあと、湿式、乾湿式あるいは
乾式紡糸法によって得られるフィラメントを公知の方法
でカットして得られるものであるか、アクリル繊維補強
ゴム組成物の抗張力を高めるためには、引張り強度の高
いアクリル繊維を使用することが望1しく、このような
アクリル繊維は、例えば重量平均分子量20万以上の高
分子量のアクリロニトリル系ポリマーを原料にして、特
定の条件下で製造されるのである。係る目的に合うポリ
マーの重合法は、特開昭59−191704号、特開昭
61−12704号、特開昭61−14206号等に開
示されており%!た紡糸技術は特開昭6゜−13980
9号、特開昭60−139810号、特開昭61−11
9708号、特開昭61−119710号、特開昭61
−167013号、特開昭62−57910号等の公報
に開示されている。
The acrylic fiber used in the present invention can be obtained by dissolving an acrylonitrile polymer in a suitable solvent and then cutting filaments obtained by wet, wet-dry or dry spinning methods, or by reinforcing acrylic fibers. In order to increase the tensile strength of the rubber composition, it is desirable to use acrylic fibers with high tensile strength. Such acrylic fibers are made from, for example, a high molecular weight acrylonitrile polymer with a weight average molecular weight of 200,000 or more. It is produced under specific conditions. Polymerization methods for polymers suitable for such purposes are disclosed in JP-A-59-191704, JP-A-61-12704, JP-A-61-14206, and the like. The spinning technology was published in Japanese Patent Application Publication No. 6゜-13980.
No. 9, JP-A-60-139810, JP-A-61-11
No. 9708, JP-A-61-119710, JP-A-61
-167013, Japanese Patent Application Laid-open No. 62-57910, and other publications.

!九本発明で用いられるジエン系ゴムトシテは、天然ゴ
ム、合成ボリイソプVンゴム、ブチルゴム、ハロゲン化
ブチルゴム、ポリブタジェンゴム、スチレン−ブタジェ
ン共重合体ゴム、アクリロニトリル−ブタジェン共重合
体ゴム、エチレンープロピレンージエン共重合体ゴム等
が挙げられるが、特にアクリル繊維との界面親和性の点
からは、アクリロニトリル−ブタジェン共重合体ゴムが
特に望ましい。
! The diene rubber used in the present invention includes natural rubber, synthetic polyisopropylene rubber, butyl rubber, halogenated butyl rubber, polybutadiene rubber, styrene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, and ethylene-propylene rubber. Examples include diene copolymer rubber, but acrylonitrile-butadiene copolymer rubber is particularly desirable from the viewpoint of interfacial affinity with acrylic fibers.

本発明で用いられるカーボンブラックは、特に限定され
るものではないが、例えばゴム用カーボンブラックのゴ
ム用ファーネス(日pIP。
The carbon black used in the present invention is not particularly limited, but for example, carbon black for rubber in a rubber furnace (Japan pIP).

FBIP、GBF)等が挙げられる。筐たアクリル繊維
補強ゴム組成物中のカーボンブラック含有量は、カーボ
ンブラフ21〜50重量優であることか必要である。
FBIP, GBF), etc. The carbon black content in the acrylic fiber-reinforced rubber composition must be 21 to 50% carbon bluff by weight.

カーボンブラック含有量が1重量幅未満では得られるア
”クリル繊維補強ゴム組成物からの成形物の抗張力が低
いのみならず、耐候性が著しく劣る。一方50重量憾を
越えると加工性が悪く好!シくない。
If the carbon black content is less than 1% by weight, the resulting molded product from the acrylic fiber-reinforced rubber composition will not only have low tensile strength but also extremely poor weather resistance.On the other hand, if it exceeds 50% by weight, the processability will be poor and unfavorable. !I don't like it.

本発明のアクリル繊維補強ゴム組成物には、更に加硫剤
、促進助剤、シリカ等の充填剤、軟化剤等の配合剤を通
常の配合量の範囲内で配合することができる。
The acrylic fiber-reinforced rubber composition of the present invention may further contain compounding agents such as a vulcanizing agent, a promoter, a filler such as silica, and a softening agent within the range of usual compounding amounts.

本発明のアクリル繊維補強ゴム組成物は、前述したアク
リル繊維、ジエン系ゴム及びカーボンブラック更に必要
に応じた各種添加剤を添加し、加熱処理を施し、加硫し
なから混練機で混合し、押し出し成形や射出成形を行う
ことにより得られる。
The acrylic fiber-reinforced rubber composition of the present invention is prepared by adding the aforementioned acrylic fibers, diene rubber, and carbon black, as well as various additives as necessary, subjecting them to heat treatment, and mixing them in a kneader without vulcanization. Obtained by extrusion molding or injection molding.

(実施例) 以下実施例にしたがって本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to Examples.

尚、xlI配向度は以下のようにして測定した。The degree of xlI orientation was measured as follows.

X線回折法によって、アクリル繊維の赤道方向の散乱角
2θ=17°付近の反射につき方位角方向の回折プロフ
ィルを得、グラフ上にベースラインを引きピークの半価
幅TIV4C度)より次式で求めた。
Using the X-ray diffraction method, a diffraction profile in the azimuthal direction was obtained for the reflection near the scattering angle 2θ = 17° in the equatorial direction of the acrylic fiber, and a baseline was drawn on the graph to calculate the peak half-value width TIV4C degrees) using the following formula. I asked for it.

 80 実施例1〜3.比較例1〜3 ゴム、短繊維、カーボンブラック及び添加剤を表1に示
した配合比で混合し、バンバリーミキサ−で160℃で
20分混練し、その後160℃で押し出し、直径3■、
長さ8箇のストランド状にカットした。これをさらにJ
工8  K6501記載の試験法にしたがったダンベル
試験片をサンプリングするために、160℃でシート状
に押し出した。試験に供した短H&雑物性及び形状と得
られたゴムシートの引張り試験はJ工13 16501
にしたがった。
80 Examples 1-3. Comparative Examples 1 to 3 Rubber, short fibers, carbon black, and additives were mixed at the compounding ratio shown in Table 1, kneaded in a Banbury mixer at 160°C for 20 minutes, and then extruded at 160°C to form a 3cm diameter
It was cut into strands of 8 lengths. Add this further to J
Technique 8 In order to sample a dumbbell test piece according to the test method described in K6501, it was extruded into a sheet at 160°C. The short H & miscellaneous property and shape used in the test and the tensile test of the obtained rubber sheet were determined by J Engineering 13 16501.
I followed it.

表 結果を表2に示した。table The results are shown in Table 2.

なお、表中アクリル繊維は、特開昭61−14206号
公報に記載された方法で得られたポリアクリロニトリル
を用いて、特開昭61−167013号公報に記載され
た紡糸法に従った。但し、ポリマー分子量及び延伸倍率
を変えることによって4水準のX線配向度を持つアクリ
ル繊維を供試した。
The acrylic fibers in the table were prepared using polyacrylonitrile obtained by the method described in JP-A No. 61-14206, and according to the spinning method described in JP-A-61-167013. However, acrylic fibers with four levels of X-ray orientation were tested by changing the polymer molecular weight and stretching ratio.

表 2 実施例4.比較例4 実施例1及び比較例3で用いたダンベル試験片を120
℃の乾燥機中に置いた。この時の抗張力保持率が50%
になる1での時間を比較した結果、実施例1の試験片は
比較例3の試験片に比べて1.7倍長く、本発明のアク
リル繊維補強ゴム組成物が耐熱性にも優れていることが
わかった。
Table 2 Example 4. Comparative Example 4 The dumbbell test piece used in Example 1 and Comparative Example 3 was
Placed in the dryer at °C. Tensile strength retention rate at this time is 50%
As a result of comparing the time at I understand.

実施例5.比較例5 実施例1及び比較例3で用−たダンベル試験片をJfB
 K2SO3に従って、40℃、22時間の耐油性テス
トに供した。その結果、実施例1の抗張力保持率は76
4、膨油ば105係であり、一方比較例3の抗張力保持
率ば59係、膨油は1234であり、本発明のアクリル
繊維補強ゴム組成物が耐油性にも優れていることがわか
った。
Example 5. Comparative Example 5 The dumbbell test pieces used in Example 1 and Comparative Example 3 were
It was subjected to an oil resistance test at 40° C. for 22 hours according to K2SO3. As a result, the tensile strength retention rate of Example 1 was 76
4. The swelling oil was 105%, while the tensile strength retention of Comparative Example 3 was 59% and the swelling oil was 1234, indicating that the acrylic fiber-reinforced rubber composition of the present invention also has excellent oil resistance. .

(発明の効果) このように本発明によるアクリル繊維補強ゴム組成物は
簡単なプロセスで容易に製造することができ、従来の長
繊維補強ゴム組成物に比較して、その製造工程が大幅に
簡略化されるだけでなく、該アクリル繊維補強ゴム組成
物が高い抗張力と耐熱性、耐油性を有しており、ホース
、パツキン、防振材、シール材等の各種ゴム製品用原料
として適性を示すので、産業上の利益は真に大である。
(Effects of the Invention) As described above, the acrylic fiber-reinforced rubber composition according to the present invention can be easily produced through a simple process, and the manufacturing process is significantly simpler than that of conventional long fiber-reinforced rubber compositions. The acrylic fiber-reinforced rubber composition has high tensile strength, heat resistance, and oil resistance, making it suitable as a raw material for various rubber products such as hoses, packing, vibration-proofing materials, and sealing materials. Therefore, the industrial benefits are truly large.

Claims (1)

【特許請求の範囲】[Claims] ジエン系ゴム50〜80重量%、カーボンブラック1〜
50重量%、アクリル繊維5〜40重量%からなる組成
物に於て、X線配向度が95%以上であるアクリル繊維
を使用することを特徴とする高配向アクリル繊維補強ゴ
ム組成物。
Diene rubber 50~80% by weight, carbon black 1~
A highly oriented acrylic fiber-reinforced rubber composition characterized in that the composition comprises 50% by weight of acrylic fibers and 5 to 40% by weight of acrylic fibers, using acrylic fibers having an X-ray orientation degree of 95% or more.
JP1169203A 1989-06-30 1989-06-30 Highly oriented acrylic fiber-reinforced rubber composition Pending JPH0335040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1169203A JPH0335040A (en) 1989-06-30 1989-06-30 Highly oriented acrylic fiber-reinforced rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1169203A JPH0335040A (en) 1989-06-30 1989-06-30 Highly oriented acrylic fiber-reinforced rubber composition

Publications (1)

Publication Number Publication Date
JPH0335040A true JPH0335040A (en) 1991-02-15

Family

ID=15882117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1169203A Pending JPH0335040A (en) 1989-06-30 1989-06-30 Highly oriented acrylic fiber-reinforced rubber composition

Country Status (1)

Country Link
JP (1) JPH0335040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328139A (en) * 1991-04-30 1992-11-17 Sumitomo Rubber Ind Ltd Short fiber-reinforced rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328139A (en) * 1991-04-30 1992-11-17 Sumitomo Rubber Ind Ltd Short fiber-reinforced rubber

Similar Documents

Publication Publication Date Title
US7652084B2 (en) Nanocomposite fibers and film containing polyolefin and surface-modified carbon nanotubes
CN1109069C (en) Popypropylene-based resin composition and injection molded article thereof
AU2005250102B2 (en) Novel propylene polymer compositions
CN109370041A (en) A kind of polypropylene modified material and preparation method thereof having both good rigidity and high elongation at tear
EP0346840B1 (en) High-melt-flow fiber-reinforced polypropylene compositions
CN107226956A (en) A kind of Low-shrinkage polypropylene composition and preparation method thereof
JP4586372B2 (en) Polyolefin-based carbon fiber reinforced resin composition and molded article comprising the same
CN114410091A (en) High-temperature-resistant impact-resistant high-strength modified polylactic acid material and preparation method thereof
JPH03269037A (en) Ethylene propylene rubber-based blend
CN113896946A (en) Special composite additive for polypropylene geogrid and special material for polypropylene geogrid comprising same
JP7339535B2 (en) Rubber composition for tire
JP7038233B2 (en) Polycarbonate resin composition and its manufacturing method, masterbatch pellets, and molded product
CN108276725A (en) A kind of nanometer composite polypropylene material and preparation method thereof of super-high fluidity, high rigidity, high-impact
JP4742211B2 (en) Long fiber reinforced polypropylene resin composition and molded product
CN108276684A (en) A kind of nanometer composite polypropylene material and preparation method thereof for lightweight injection-moulded plastic part
JPH0335040A (en) Highly oriented acrylic fiber-reinforced rubber composition
CN111704767A (en) High-rigidity high-toughness polypropylene composite material and preparation method thereof
JPH0335038A (en) Acrylic fiber-reinforced rubber composition
JPH0337241A (en) Acrylic fiber-reinforced rubber composition
CN112457578A (en) Wollastonite modified polypropylene master batch and preparation method thereof
JPH0331336A (en) Acrylic fiber-reinforced rubber composition
JPH0335039A (en) Acrylic fiber-reinforced rubber composition
JPH0337242A (en) Hollow acrylic fiber-reinforced rubber composition
CN114854130B (en) High-impact-resistance halogen-free flame-retardant polypropylene composite material and preparation method thereof
JPH0328242A (en) Rubber composition reinforced with fine particle