JPH0334916B2 - - Google Patents

Info

Publication number
JPH0334916B2
JPH0334916B2 JP61296282A JP29628286A JPH0334916B2 JP H0334916 B2 JPH0334916 B2 JP H0334916B2 JP 61296282 A JP61296282 A JP 61296282A JP 29628286 A JP29628286 A JP 29628286A JP H0334916 B2 JPH0334916 B2 JP H0334916B2
Authority
JP
Japan
Prior art keywords
vacuum
crusher
mesh
product
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61296282A
Other languages
Japanese (ja)
Other versions
JPS63148966A (en
Inventor
Kozo Onda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP61296282A priority Critical patent/JPS63148966A/en
Publication of JPS63148966A publication Critical patent/JPS63148966A/en
Publication of JPH0334916B2 publication Critical patent/JPH0334916B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Formation And Processing Of Food Products (AREA)
  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Tea And Coffee (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は真空ベルト乾燥機に関するものであ
り、更に詳しくは液状、スラリー状もしくはペー
スト状の原料を真空乾燥し、顆粒状の乾燥製品と
して取出すための真空ベルト乾燥機の製品粉砕装
置に関するものである。 従来の技術 近年、食生活の多様化に伴つて数多くの種類の
加工食品材料やインスタント食品が市販されてい
る。このような食品加工分野に於いては、消費者
が製品を調理素材として使用する場合の溶解性と
即席性を所定の水準に維持すると共に、最終製品
に品質の低下と成分の変質を伴わない復元性を付
与する目的で、各種の常圧乾燥装置や真空乾燥装
置が使用されている。このような乾燥装置のなか
でも調理素材たる製品の溶解性を良好な水準に維
持することが比較的容易である点に着目され、真
空乾燥装置の使用分野が急速に増大しつつある。
汎用の真空乾燥装置としては、噴霧乾燥機や凍結
乾燥機が知られているが、前者は乾燥コストが安
価である反面、製品の溶解性と品質の保持性能あ
るいは成分変化の防止性能が幾分劣り、後者は氷
結・昇華工程を採用していることに起因して構造
の複雑化や乾燥コストの高騰という問題点を付随
せしめている。ここに於いて、上記噴霧乾燥機や
凍結乾燥機に認められている実用上の問題点の解
決手段として、真空ベルト乾燥機の開発が要請さ
れるに至つた。真空ベルト乾燥機は、真空容器内
に加熱ゾーンとベルト搬送装置を設け、液状、ス
ラリー状、もしくはペーストをなす食品材料を無
端搬送ベルト上に薄膜状に供給し、該無端搬送ベ
ルトの回動によつて食品材料を加熱ゾーンに導
き、比較的低温の乾燥条件下で真空乾燥を施すよ
うに構成されている。この際、ベルト上に薄膜状
を呈して載置された食品材料には内部に含有され
ている水分の激しい蒸発現象が生起し、前記食品
材料は膨化すると共に内部に多数の通気孔を形成
し、多孔質の中間製品としてクラツシヤーに送り
出される。このように真空ベルト乾燥機は、慣用
の噴霧乾燥機や凍結乾燥機の代替技術手段として
次第にその有用性が認識されつつある。 発明が解決しようとする問題点 真空ベルト乾燥機は、品質の保持性、成分変化
の防止性、あるいは乾燥コストの低減性に於い
て、公知の噴霧乾燥機や凍結乾燥機を大幅に上廻
る性能を発揮することができるが、乾燥処理を施
すべき食品材料の多様化に対応するためには構造
ならびに機能上更に改良を要する点が少なくな
い。 例えば、前記無端搬送手段の終端部には普通、
回転ブレード等の中間製品の粉砕装置が設けられ
ているが、このような粉砕装置を一段だけ配置し
ただけでは粉砕能力が不足する場合があり、これ
に対応するため乾燥速度、即ち無端搬送手段によ
る中間製品の搬送速度を遅くする等の方策が講じ
られていた。しかしながら、上記の如き乾燥時間
の増大は、過剰乾燥による製品の変質や生産性の
低下等の別の障害の発生原因となる場合があり、
反面、乾燥速度が速すぎると最終製品の粒径が大
きくなり、真空ベルト乾燥機から取出された顆粒
状製品を大気圧下で微粉砕しなければならない。
このような大気圧解放下の微粉砕は、時により吸
湿による製品の変質や真空乾燥工程の稼働率の低
下等の更に重大な障害を引起こす。 本考案の主要な目的は、在来の真空ベルト乾燥
機に認められた上記の如き問題点を解消し得る、
構造の簡易性と粉砕機能の安定性を具備した真空
ベルト乾燥機を提供することにある。 問題点を解決するための手段 上記目的を達成するため本発明は、液状、スラ
リー状、もしくはペースト状に調合された原材料
を真空乾燥し、顆粒状の乾燥製品として取出すた
めの真空ベルト乾燥機にに於いて、真空容器内に
回動自在に架装された無端搬送ベルトの原材料排
出端に、流体圧シリング機構と剪断刃からなるプ
レクラツシヤーを配設すると共に、このプレクラ
ツシヤーの下方に、回転刃とその周囲を略半周に
亘つて囲繞するメツシユ金網からなるメインクラ
ツシヤーを多段配置し、このメインクラツシヤー
に於ける前記乾燥製品の導入側から排出側に向か
つて、メツシユ金網の網目間隔が漸減し、且つ、
回転刃の回転数ならびに回転方向に沿つて測つた
歯幅が漸増する多段粉砕機構を構成した真空ベル
ト乾燥機を提供するものである。 作 用 液状、スラリー状、もしくはペースト状に調合
された加工食品の原材料は、無端搬送ベルト上に
延展された状態で真空乾燥され、この後プレクラ
ツシヤー、ならびに回転刃とその周囲を略半周に
亘つて囲繞するメツシユ金網からなる多数構造の
メインクラツシヤーによつて段階的に粉砕され、
顆粒状の製品として真空ロツク機構を具えた製品
取出チヤンバー内に落下し、回分方式で系外に取
出される。 実施例 第1図は、本発明装置の全体構造を例示する一
部分を断面にした正面図である。また、第2図乃
至第4図は、本発明装置の要部構造の説明図であ
る。 第1図に於いて真空容器18の本体には、公知
の真空ポンプ19、コールドトラツプ20、なら
びにチラーユニツト21からなる真空発生装置2
8が配設されており、この真空発生装置を作動す
ることによつて原材料の乾燥時に真空容器の本体
18内は10Torr前後の真空度を保持する 一方、真空容器18の内部には、無端搬送ベル
ト1の移動経路に原材料供給側から製品送出側に
向かつて、内部に熱水の流路を形成してなる第1
乃至第3の加熱プレート6a,6b,6cと、内
部に冷却水の流路を形成してなる冷却プレート7
が順次配設されており、これに対応して前記加熱
プレートと冷却プレートによつて構成された真空
乾燥装置8に所定温度に調整された熱水ならびに
冷却水を供給するため、前記真空容器18の本体
には、熱水循環ライン加熱器として機能する公知
のチユーブ式もしくはプレート式熱交換器22、
エアー加圧により熱水の循環を促進する膨張タン
ク23、ならびに温度制御回路(図示省略)に接
続された循環ポンプ24からなる加熱媒体と冷却
媒体の循環装置が接続されている。 無端搬送装置は、第2図に見られるように基本
的にはモータ(図示省略)、ドライブローラ26、
ドリブンローラ27、ならびに合成繊維糸条、例
えばポリエステル繊維糸条の編織布を無端状に接
続してなるメツシユベルト1から構成されてお
り、このメツシユベルトを前記ドライブローラ2
6とドリブンローラ27に巻回してなる駆動系を
構成することによつて0.05乃至0.5m/minの搬送
速度を有する恒速搬送装置を形成している。メツ
シユベルト1は、無端搬送装置に要求される一般
的な特性を考慮し、強度、摩擦係数、耐熱性およ
び伝熱性に優れた合成繊維糸条の編織布から製作
するが、本発明装置に於いては真空乾燥された中
間製品の剥離性、織目や編目からの原材料や中間
製品の洩れ防止性、ならびに洗浄性を所定の水準
に維持するため、ポリエステルのマルチフイラメ
ントヤーンの織成布から無端搬送ベルトを製作し
ている。尚、メツシユベルト1は、上記の要求特
性に鑑みて、シリコンやポリテトラフルオルエチ
レン等の樹脂で表面処理を施すことが望ましい。 原材料供給装置5のノズル3からメツシユベル
ト1上に供給された加工食品の原材料は、恒速移
動するメツシユベルト上に延展した状態で真空容
器18内を移動し、この間に熱水循環式の真空乾
燥・冷却装置8によつて真空乾燥処理を施こされ
る。 第1の加熱プレート6aによつて構成された第
1加熱ゾーンに導入された薄膜状の原材料は多量
の水分を含んでいるが、加熱プレート6a内を流
れる高温の熱水から伝達される熱エネルギーによ
つて原材料が乾燥され表面と内部で同時に水分の
蒸発が始まるため、薄膜状に延展された原材料は
激しく膨化しながら真空乾燥を施される。この第
加熱ゾーンは恒率乾燥状態に保持されているか
ら、原材料自身の温度は殆ど上昇せず、原材料は
保有水分の略半分を蒸発させた状態で後続の第
加熱ゾーンに送り出される。 第加熱ゾーンを形成する第2の加熱プレート
6b内には、前記第1の加熱プレート6a内に供
給される熱水よりも稍低温の熱水が導入されてお
り、原材料は恒率乾燥によつて保有水分の大部分
を蒸発させる。このため原材料の膨化厚さと表面
形状は殆ど変化せず、原材料の表面は多少硬化す
ると共に原材料自身の温度も上昇し始める。この
第加熱ゾーンに於いては、原材料の熱伝導率が
多少低下するので、加熱プレート6b内に導入す
る熱水の温度を第加熱ゾーンよりも少し低目に
設定し、且つ、熱流束も幾分小さくなるように乾
燥処理条件を調節する。斯くして原材料は、含有
水分の略90パーセントを蒸発せしめた状態で第
加熱ゾーンから後続の第加熱ゾーンに送り出さ
れる。 第3の加熱プレート6cによつて形成された第
加熱ゾーンに導入された原材料は、前記第加
熱ゾーンならびに第加熱ゾーンよりも更に低い
水分保有量を有し、膨化現象を伴うことなく最終
水分率迄緩やかに真空乾燥される。即ち、第加
熱ゾーンに於いては、原材料は減率乾燥され、表
面を硬化させると共にそれ自体の温度を上昇せし
める。この第加熱ゾーンに於いては原材料の熱
伝導率が大幅に低下するので、前記第加熱ゾー
ンおよび第加熱ゾーンよりも加熱プレート6c
内に導入すべき熱水の温度を更に低く設定し、小
さな熱流束の作用下に原材料に真空乾燥を施し後
続の冷却ゾーンに送り出す。 冷却ゾーンに送り込まれた原材料は、冷却プレ
ート7内に導入された低温の水によつて冷却さ
れ、原材料自身の温度を低下させると共にその硬
度を増大させ、これによつて中間製品の剥離性向
上ならびに吸湿性減少に好適な最終乾燥状態を取
得する。このようにして真空下に加熱・冷却され
た中間製品、即ち膨化製品は、多質ケーキとな
り、メツシユベルト1上に供液形状に対応したト
レースを残しながら無端搬送経路の終端に到着す
る。 ここに於いて、前記無端搬送経路の終端には、
第2図に見られるように流体圧シリンダ機構9
と、この流体圧シリンダ機構の往復動ピストン3
8に固設された剪断刃10からなるプレクラツシ
ヤー11が設けられている。従つて、無端搬送経
路の終端に到達した中間製品は、メツシユベルト
1の反転部から突出した状態で前記剪断刃10の
上下動により一次粉砕され、本体下部出口ダクト
39内へ多孔質ケーキの破砕片として落下する。
尚、無端搬送経路の終端には、上方から下方に回
転しながら反転したメツシユベルト1の表面か
ら、付着している残存ケーキを剥離するためのス
クレーバー40が設けられている。スクレーバー
40は第3図に例示するように、真空容器18の
本体に固設された支持ブラケツト41にルーロン
軸受49を介して回転自在に支承されたシヤフト
42、このシヤフトから延びるアーム43,44
に刃押えプレート45を介して固定されたフツ素
樹脂製のケーキ掻取りブレード46、このケーキ
掻取りブレード46の刃先をメツシユベルト1に
対し弾性的に押し付けるため、前記アーム43と
支持ブラケツト41の基端部を支持するベースプ
レート47との間に懸架された引張りスプリング
48から構成されており、ケーキ掻取りブレード
46をメツシユベルト1の反転部の稍下方で前記
引張りスプリング48による付勢下にメツシユベ
ルトの略全幅に亘つて押し付けることによつて残
存ケーキをメツシユベルト1の表面から剥離す
る。 一方、前記プレクラツシヤー11の下方に位置
する本体下部出口ダクト39内には、第4図に示
すように付設されたモータ(図示少略)によつて
異なつた速度で回転駆動されるシヤフト51a,
51b,51cに、支持プレート52a,52
b,52cを介して固定されたフツ素樹脂製のプ
レート形回転刃13a,13b,13cと、この
回転刃の回動経路の下方略半周を囲繞するように
回転刃13a,13b,13cの刃先と所定の間
隔を置いて配設されたメツシユ金網14a,14
b,14cからなるメインクラツシヤー15が設
けられている。本発明に係る多段構造のメインク
ラツシヤー15に於いては、乾燥製品の導入側か
ら排出側に向かつてメツシユ金網14a,14
b,14cの網目を漸次密にすると共に、回転刃
13a,13b,14bの回転数ならびに回転方
向に沿つて測つた刃幅W1,W2,W3を漸次増大
させることによつて多段粉砕機構を構成してい
る。 プレクラツシヤー11によつて一次粉砕された
中間製品、つまり多孔質ケーキの破砕片は、前記
多段粉砕機構を具えたメインクラツシヤー15に
導入され、回転刃13a,13b,13cの回転
によつて所定の網目寸法を有するメツシユ金網1
4a,14b,14cに圧接され、二次粉砕され
た顆粒として真空ロツク機構16を具えた製品取
出チヤンバー17内に落下し、真空状態保持下に
貯溜される。 下記第1表に前記多段構造のメインクラツシヤ
ー15を構成する回転刃13a,13b,13c
ならびにメツシユ金網14a,14b,14cの
寸法的特性を例示する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a vacuum belt dryer, and more particularly to a vacuum belt dryer for vacuum drying liquid, slurry, or paste raw materials and removing them as granular dry products. It is related to the device. BACKGROUND ART In recent years, with the diversification of dietary habits, many types of processed food materials and instant foods have become commercially available. In this field of food processing, it is important to maintain the solubility and ready-to-ready properties at a specified level when consumers use the product as a cooking ingredient, and to ensure that the final product does not suffer from deterioration in quality or alteration of ingredients. Various normal pressure drying devices and vacuum drying devices are used for the purpose of imparting restorability. Among such drying devices, attention has been paid to the fact that it is relatively easy to maintain the solubility of products as cooking ingredients at a good level, and the field of use of vacuum drying devices is rapidly increasing.
Spray dryers and freeze dryers are known as general-purpose vacuum drying equipment, but while the former has low drying costs, it has somewhat poor performance in maintaining product solubility and quality or preventing changes in components. On the other hand, the latter method employs a freezing/sublimation process, resulting in problems such as a complicated structure and a rise in drying costs. At this time, there has been a demand for the development of a vacuum belt dryer as a means of solving the practical problems observed in the above-mentioned spray dryers and freeze dryers. A vacuum belt dryer is equipped with a heating zone and a belt conveying device in a vacuum container, and supplies food material in the form of a liquid, slurry, or paste onto an endless conveyor belt in the form of a thin film. Thus, the food material is introduced into the heating zone and vacuum dried under drying conditions at a relatively low temperature. At this time, the food material placed in a thin film form on the belt undergoes a strong evaporation phenomenon of the water contained inside, causing the food material to swell and form numerous ventilation holes inside. , and sent to the crusher as a porous intermediate product. Vacuum belt dryers are thus increasingly being recognized as an alternative technology to conventional spray dryers and freeze dryers. Problems to be Solved by the Invention Vacuum belt dryers have performance that significantly exceeds known spray dryers and freeze dryers in terms of quality retention, prevention of component changes, and reduction of drying costs. However, in order to respond to the diversification of food materials to be subjected to drying processing, there are many points that require further improvements in terms of structure and function. For example, at the end of the endless conveying means,
A grinding device such as a rotating blade for intermediate products is provided, but the grinding capacity may be insufficient if only one stage of such grinding device is arranged. Measures were taken, such as slowing down the transport speed of intermediate products. However, the increase in drying time as described above may cause other problems such as deterioration of the product and reduction in productivity due to excessive drying.
On the other hand, if the drying rate is too fast, the final product will have a large particle size, and the granular product removed from the vacuum belt dryer must be pulverized under atmospheric pressure.
Such pulverization under atmospheric pressure sometimes causes more serious problems such as deterioration of the product due to moisture absorption and a reduction in the operating rate of the vacuum drying process. The main purpose of the present invention is to solve the above-mentioned problems found in conventional vacuum belt dryers.
An object of the present invention is to provide a vacuum belt dryer having a simple structure and a stable crushing function. Means for Solving the Problems In order to achieve the above object, the present invention provides a vacuum belt dryer for vacuum drying raw materials prepared in liquid, slurry, or paste form and taking out dry products in the form of granules. In this process, a precrusher consisting of a fluid pressure silling mechanism and a shearing blade is disposed at the raw material discharge end of an endless conveyor belt rotatably mounted in a vacuum container, and a rotary blade and a rotary blade are disposed below the precrusher. A main crusher made of a mesh wire mesh surrounding the main crusher approximately halfway around the main crusher is arranged in multiple stages. gradually decreases, and
The present invention provides a vacuum belt dryer configured with a multistage crushing mechanism in which the number of rotations of a rotary blade and the tooth width measured along the direction of rotation gradually increase. Function Processed food raw materials prepared in liquid, slurry, or paste form are spread on an endless conveyor belt and dried under vacuum, after which they are passed through a pre-crusher, a rotary blade, and its surroundings for approximately half a circumference. It is crushed in stages by a main crusher with multiple structures consisting of surrounding mesh wire mesh.
The product falls as a granular product into a product removal chamber equipped with a vacuum lock mechanism, and is taken out of the system in batches. Embodiment FIG. 1 is a partially sectional front view illustrating the overall structure of the apparatus of the present invention. Further, FIGS. 2 to 4 are explanatory diagrams of the main structure of the apparatus of the present invention. In FIG. 1, the main body of the vacuum vessel 18 is equipped with a vacuum generator 2, which includes a known vacuum pump 19, a cold trap 20, and a chiller unit 21.
By operating this vacuum generator, a vacuum level of around 10 Torr is maintained inside the main body 18 of the vacuum container during drying of raw materials. The first belt 1 has a flow path for hot water formed in the movement path of the belt 1 from the raw material supply side to the product delivery side.
to third heating plates 6a, 6b, 6c, and a cooling plate 7 having a cooling water flow path formed therein;
are arranged in sequence, and correspondingly, in order to supply hot water and cooling water adjusted to a predetermined temperature to the vacuum drying device 8 constituted by the heating plate and the cooling plate, the vacuum vessel 18 The main body includes a known tube or plate heat exchanger 22, which functions as a hot water circulation line heater.
A heating medium and cooling medium circulation device is connected, which includes an expansion tank 23 that promotes circulation of hot water by pressurizing air, and a circulation pump 24 connected to a temperature control circuit (not shown). As shown in FIG. 2, the endless conveyance device basically consists of a motor (not shown), a drive roller 26,
It is composed of a driven roller 27 and a mesh belt 1 formed by endlessly connecting knitted or woven fabrics of synthetic fiber threads, for example, polyester fiber threads, and this mesh belt is connected to the drive roller 2.
6 and driven roller 27 to form a drive system, a constant speed conveyance device having a conveyance speed of 0.05 to 0.5 m/min is formed. The mesh belt 1 is manufactured from a knitted fabric made of synthetic fiber yarn with excellent strength, coefficient of friction, heat resistance, and heat conductivity in consideration of the general characteristics required for an endless conveying device. In order to maintain the peelability of vacuum-dried intermediate products, the leakage prevention of raw materials and intermediate products from weaves and stitches, and the washability at a specified level, we use endless conveyance from a woven fabric of polyester multifilament yarn. We are making belts. Note that, in view of the above-mentioned required characteristics, the mesh belt 1 is preferably surface-treated with a resin such as silicone or polytetrafluoroethylene. The processed food raw materials supplied onto the mesh belt 1 from the nozzle 3 of the raw material supply device 5 move within the vacuum container 18 in a state of being spread on the mesh belt moving at a constant speed, and during this time, the processed food raw materials are subjected to a vacuum drying process using hot water circulation. A vacuum drying process is performed by the cooling device 8. Although the thin film raw material introduced into the first heating zone constituted by the first heating plate 6a contains a large amount of water, thermal energy is transferred from the high temperature hot water flowing inside the heating plate 6a. As the raw material is dried, water begins to evaporate on the surface and inside at the same time, so the raw material spread into a thin film is subjected to vacuum drying while expanding vigorously. Since this first heating zone is maintained in a constant dry state, the temperature of the raw material itself hardly rises, and the raw material is sent to the subsequent second heating zone in a state in which approximately half of its retained moisture has been evaporated. Hot water at a slightly lower temperature than the hot water supplied to the first heating plate 6a is introduced into the second heating plate 6b forming the second heating zone, and the raw materials are subjected to constant rate drying. Most of the retained moisture is evaporated. Therefore, the expanded thickness and surface shape of the raw material hardly change, the surface of the raw material hardens to some extent, and the temperature of the raw material itself begins to rise. In this first heating zone, the thermal conductivity of the raw material decreases to some extent, so the temperature of the hot water introduced into the heating plate 6b is set slightly lower than that in the first heating zone, and the heat flux is also set to a certain level. Adjust the drying conditions so that the size is reduced by 30 minutes. In this way, the raw material is sent from the first heating zone to the subsequent second heating zone in a state in which approximately 90 percent of the moisture content has been evaporated. The raw material introduced into the third heating zone formed by the third heating plate 6c has a lower moisture content than the first heating zone and the third heating zone, and has a final moisture content without swelling phenomenon. It is vacuum dried slowly until the end. That is, in the first heating zone, the raw material is dried at a reduced rate, hardening the surface and raising its own temperature. Since the thermal conductivity of the raw material in this first heating zone is significantly reduced, the heating plate 6c is lower than that in the first heating zone and the third heating zone.
The temperature of the hot water introduced into the chamber is set even lower, and the raw material is subjected to vacuum drying under the influence of a small heat flux and sent to the subsequent cooling zone. The raw material fed into the cooling zone is cooled by low-temperature water introduced into the cooling plate 7, lowering the temperature of the raw material itself and increasing its hardness, thereby improving the peelability of the intermediate product. as well as obtaining a final drying condition suitable for reducing hygroscopicity. The intermediate product, that is, the expanded product heated and cooled under vacuum in this manner becomes a multi-layered cake and reaches the end of the endless conveyance path while leaving a trace corresponding to the shape of the supplied liquid on the mesh belt 1. Here, at the end of the endless conveyance path,
As seen in FIG. 2, the hydraulic cylinder mechanism 9
and the reciprocating piston 3 of this fluid pressure cylinder mechanism.
A pre-crusher 11 consisting of a shearing blade 10 fixedly attached to the shaft 8 is provided. Therefore, the intermediate product that has reached the end of the endless conveyance path is primarily crushed by the vertical movement of the shearing blade 10 while protruding from the reversing part of the mesh belt 1, and the crushed pieces of the porous cake are sent into the outlet duct 39 at the bottom of the main body. fall as.
Incidentally, a scraper 40 is provided at the end of the endless conveyance path for peeling off residual cake adhering from the surface of the mesh belt 1 which has been inverted while rotating from above to below. As illustrated in FIG. 3, the scraper 40 includes a shaft 42 rotatably supported via a Rulon bearing 49 on a support bracket 41 fixed to the main body of the vacuum vessel 18, and arms 43, 44 extending from the shaft.
A cake scraping blade 46 made of fluororesin is fixed to the mesh belt 1 through a blade holding plate 45, and in order to elastically press the cutting edge of the cake scraping blade 46 against the mesh belt 1, It consists of a tension spring 48 suspended between a base plate 47 that supports the end of the mesh belt 1, and the cake scraping blade 46 is moved slightly below the reversed portion of the mesh belt 1 under the bias of the tension spring 48. The remaining cake is peeled off from the surface of the mesh belt 1 by pressing it over the entire width. On the other hand, in the main body lower outlet duct 39 located below the pre-crusher 11, there are shafts 51a, which are rotated at different speeds by motors (not shown) attached as shown in FIG.
51b, 51c, support plates 52a, 52
plate-shaped rotary blades 13a, 13b, 13c made of fluororesin fixed via b, 52c; and mesh wire meshes 14a, 14 arranged at a predetermined interval.
A main crusher 15 consisting of b and 14c is provided. In the main crusher 15 having a multi-stage structure according to the present invention, mesh wire meshes 14a, 14 are arranged from the dry product introduction side to the discharge side.
Multi-stage pulverization is achieved by gradually making the meshes of b and 14c denser and gradually increasing the number of rotations of the rotary blades 13a, 13b, and 14b as well as the blade widths W 1 , W 2 , and W 3 measured along the rotation direction. It constitutes a mechanism. The intermediate product, that is, the crushed pieces of the porous cake, which have been primarily crushed by the pre-crusher 11, are introduced into the main crusher 15 equipped with the multi-stage crushing mechanism, and are crushed into a predetermined shape by the rotation of the rotary blades 13a, 13b, and 13c. Mesh wire mesh 1 having a mesh size of
4a, 14b, and 14c, and fall as secondary pulverized granules into a product take-out chamber 17 equipped with a vacuum locking mechanism 16, where they are stored while maintaining a vacuum state. Table 1 below shows the rotary blades 13a, 13b, 13c that constitute the multi-stage main crusher 15.
Also, the dimensional characteristics of the mesh wire meshes 14a, 14b, and 14c are illustrated.

【表】 本実施例に於ける回転刃13a,13b,13
cの刃幅は、第1段階乃至第3段階の何れに於い
ても同一であるが、代替手段としてシヤフト51
a,51b,51cに固着する回転刃の刃数を乾
燥製品の導入側から排出側に向かつて漸増させる
ことによつて、メツシユ金網14a,14b,1
4cと回転刃13a,13b,13cの間に形成
される粉砕域の長さを段階的に増大させ、これに
よつて金網メツシユおよび回転刃回転数の漸増と
共働する多段粉砕機構を形成している。 一方、真空ロツク機構16は、製品取出しチヤ
ンバー17と、その上部に設けられた第1のエア
ロツク弁53と、製品取出しチヤンバー17の下
部に設けられた第2のエアロツク弁54とによつ
て構成されており、更に必要に応じて、製品の吸
湿または酸化防止手段として、チツ素ガス等の不
活性ガスの供給弁を製品取出しチヤンバー17に
付設している。 顆粒状に粉砕された製品は、第1のエアロツク
弁53を開き第2のエアロツク弁54を閉じるこ
とによつて真空状態に維持されている製品取出し
チヤンバー17内に貯溜されるが、製品の収納量
が予め決められた水準に到達した時点で第1のエ
アロツク弁53を閉じ、且つ、第2のエアロツク
弁54を開いて製品取出しチヤンバー17内の真
空状態を解除し、大気圧下で製品の取出し作業を
開始する。この製品の取出し作業が終了した時点
で真空容器18の本体に洗浄処理を施し、この
後、第1のエアロツク弁53と第2のエアロツク
弁54を操作して製品取出しチヤンバー17内を
真空状態に復元させ、同時に前記真空ポンプ1
9、コールドトラツプ20、ならびにチラーユニ
ツト21からなる真空発生装置28を起動して前
記真空容器の本体18内の真空度を真空乾燥処理
の再開に必要な所定の水準に調整する。この状態
で前記同様の運転要領に従つて真空乾燥・冷却装
置8による乾燥条件を調整して原材料の真空乾燥
作業を再開する。 以上、本発明の好適な実施態様を図面の例示に
基づいて説明したが、本発明の要旨は、このよう
な例示説明によつて限定解釈されらるべきもので
はなく、特許請求の範囲に特定された基本的構成
要件に基づく種々の応用例を包含することができ
る。例えば、上記メインクラツシヤー15を2段
あるいは4段以上の多段粉砕装置として構成した
り、製品取出しチヤンバー17の容量が大きい場
合に、製品取出しチヤンバーから真空容器18内
にに系外からの空気が流入するのを防止するた
め、製品取出しチヤンバー17の専用の第2の真
空発生装置を設たりすることができる。更に仕掛
銘柄の変更に際し真空容器18の内部を殺菌した
り洗浄したりするためのスチーム加熱殺菌装置や
洗浄装置を付設することができる。尚、本発明の
実施に際し前記真空ポンプ19、コールドトラツ
プ20、チラーユニツト21、ならびに真空乾
燥・冷却装置8等の容量は、真空度ならびに乾燥
度の保持だけでなく、真空容器18の本体内部の
結露防止機構をも考慮して決定することが望まし
い。 更に本発明の応用例として、複数段の無端搬送
ベルト1,1……を真空容器18の内部に架装し
複数の乾燥段を具えた真空ベルト乾燥機を構成す
ることもできる。 発明の効果 以上の説明から理解し得る如く、本発明装置に
於いては、無端搬送手段の終端部にプレクラツシ
ヤーと、複数段の回転刃とメツシユ金網から構成
された多段構造のメインクラツシヤーとを設け、
これを真空乾燥・冷却装置と供働させることによ
つて、粒径調節の容易な、且つ、粉砕負荷の漸減
機能を具えた顆粒化粉砕装置を構成している。本
発明装置を使用することによつて、粒径の揃つた
最終商品、例えば即席コーヒー、粉末スープ、粉
末みそ等の顆粒状加工食品を安定した負荷分担条
件に従つて製造することができる。 斯しくて、本発明に係る真空ベルト乾燥機は、
在来装置に認められた粉砕時の過負荷や粒径の不
均一等の欠点を全面的に解消し得るものとして、
加工食品の品質向上ならびに製造コストの低減に
特筆すべき効果を発揮することができる。
[Table] Rotary blades 13a, 13b, 13 in this embodiment
The blade width of c is the same in any of the first to third stages, but as an alternative, the shaft 51
By gradually increasing the number of rotary blades fixed to the mesh wire meshes 14a, 14b, 1 from the dry product introduction side to the dry product discharge side.
4c and the rotary blades 13a, 13b, 13c, thereby forming a multi-stage crushing mechanism that cooperates with the wire mesh and the gradual increase in the rotational speed of the rotary blades. ing. On the other hand, the vacuum lock mechanism 16 is composed of a product take-out chamber 17, a first air lock valve 53 provided above the product take-out chamber 17, and a second air lock valve 54 provided at the bottom of the product take-out chamber 17. Furthermore, if necessary, a supply valve for supplying an inert gas such as nitrogen gas is attached to the product take-out chamber 17 as a means for preventing moisture absorption or oxidation of the product. The product pulverized into granules is stored in the product take-out chamber 17, which is maintained in a vacuum state by opening the first airlock valve 53 and closing the second airlock valve 54. When the amount reaches a predetermined level, the first airlock valve 53 is closed and the second airlock valve 54 is opened to release the vacuum state in the product removal chamber 17, and the product is removed under atmospheric pressure. Start the extraction work. When this product removal work is completed, the main body of the vacuum container 18 is cleaned, and then the first airlock valve 53 and the second airlock valve 54 are operated to bring the inside of the product removal chamber 17 into a vacuum state. At the same time, the vacuum pump 1
9. The vacuum generator 28 consisting of the cold trap 20 and the chiller unit 21 is activated to adjust the degree of vacuum within the main body 18 of the vacuum container to a predetermined level necessary for restarting the vacuum drying process. In this state, the drying conditions of the vacuum drying/cooling device 8 are adjusted according to the same operating procedure as described above, and the vacuum drying operation of the raw materials is resumed. Although preferred embodiments of the present invention have been described above based on the illustrations of the drawings, the gist of the present invention should not be construed as limited by such illustrative descriptions, but rather should be A variety of applications can be included based on the basic building blocks identified. For example, if the main crusher 15 is configured as a multi-stage crusher with two or four or more stages, or if the capacity of the product take-out chamber 17 is large, air from outside the system may enter the vacuum vessel 18 from the product take-out chamber. In order to prevent the inflow of the product, a second vacuum generator can be provided specifically for the product removal chamber 17. Furthermore, a steam heating sterilizer or a cleaning device may be attached to sterilize or clean the inside of the vacuum container 18 when changing the product in progress. In carrying out the present invention, the capacity of the vacuum pump 19, cold trap 20, chiller unit 21, vacuum drying/cooling device 8, etc. is determined not only to maintain the degree of vacuum and dryness, but also to maintain the inside of the main body of the vacuum container 18. It is desirable to make a decision taking into consideration the dew condensation prevention mechanism. Further, as an application example of the present invention, a vacuum belt dryer having a plurality of drying stages can be constructed by mounting a plurality of stages of endless conveyor belts 1, 1, . . . inside the vacuum container 18. Effects of the Invention As can be understood from the above explanation, the apparatus of the present invention has a pre-crusher at the end of the endless conveying means, and a main crusher with a multi-stage structure consisting of multiple stages of rotating blades and a mesh wire mesh. established,
By cooperating with a vacuum drying/cooling device, a granulation/pulverization device is constructed that allows easy particle size adjustment and has a function to gradually reduce the crushing load. By using the apparatus of the present invention, final products of uniform particle size, such as granular processed foods such as instant coffee, powdered soup, powdered miso, etc., can be produced under stable load sharing conditions. Thus, the vacuum belt dryer according to the present invention has the following features:
As a device that can completely eliminate the drawbacks of conventional equipment, such as overload during crushing and uneven particle size,
It can have a remarkable effect on improving the quality of processed foods and reducing manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の全体構造を例示する一部
分を断面にした正面図である。第2図乃至第4図
は、本発明装置の要部構造の説明図である。 1……無端搬送ベルト、9……流体圧シリンダ
機構、10……剪断刃、11……プレクラツシヤ
ー、13n……回転刃、14n……メツシユ金
網、15……メインクラツシヤー、16……真空
ロツク機構、17……製品取出しチヤンバー。
FIG. 1 is a partially sectional front view illustrating the overall structure of the device of the present invention. FIGS. 2 to 4 are explanatory diagrams of the main structure of the apparatus of the present invention. DESCRIPTION OF SYMBOLS 1... Endless conveyor belt, 9... Fluid pressure cylinder mechanism, 10... Shearing blade, 11... Precrusher, 13n... Rotating blade, 14n... Mesh wire mesh, 15... Main crusher, 16... Vacuum Lock mechanism, 17...Product removal chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 液状、スラリー状、もしくはペースト状に調
合された原材料を真空乾燥し、顆粒状の乾燥製品
として取出すための真空ベルト乾燥機に於いて、
真空容器内に回動自在に架装された無端搬送ベル
トの原材料排出端に、流体圧シリング機構と剪断
刃からなるプレクラツシヤーを配設すると共に、
このプレクラツシヤーの下方に、回転刃とその周
囲を略半周に亘つて囲繞するメツシユ金網からな
るメインクラツシヤーを多段配置し、このメイン
クラツシヤーに於ける前記乾燥製品の導入側から
排出側に向かつて、メツシユ金網の網目間隔が漸
減し、且つ、回転刃の回転数ならびに回転方向に
沿つて測つた歯幅が漸増する多段粉砕機構を構成
したことを特徴とする真空ベルト乾燥機。
1. In a vacuum belt dryer for vacuum drying raw materials prepared in liquid, slurry, or paste form and extracting them as granular dry products,
At the raw material discharge end of an endless conveyor belt rotatably mounted in a vacuum container, a pre-crusher consisting of a fluid pressure silling mechanism and a shearing blade is installed.
Below this pre-crusher, a main crusher consisting of a rotary blade and a mesh wire mesh surrounding the rotating blade approximately half its circumference is arranged in multiple stages, and the main crusher is arranged from the inlet side to the discharge side of the dried product in this main crusher. A vacuum belt dryer comprising a multistage crushing mechanism in which the mesh spacing of the mesh wire mesh gradually decreases, and the rotational speed of the rotary blade and the tooth width measured along the rotation direction gradually increase.
JP61296282A 1986-12-11 1986-12-11 Vacuum belt drier Granted JPS63148966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61296282A JPS63148966A (en) 1986-12-11 1986-12-11 Vacuum belt drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61296282A JPS63148966A (en) 1986-12-11 1986-12-11 Vacuum belt drier

Publications (2)

Publication Number Publication Date
JPS63148966A JPS63148966A (en) 1988-06-21
JPH0334916B2 true JPH0334916B2 (en) 1991-05-24

Family

ID=17831543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61296282A Granted JPS63148966A (en) 1986-12-11 1986-12-11 Vacuum belt drier

Country Status (1)

Country Link
JP (1) JPS63148966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192307A (en) * 2016-04-18 2017-10-26 キッコーマン株式会社 Powder soy source, seasoning composition and manufacturing method of powder soy source

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194359A (en) * 1993-12-30 1995-08-01 Nippon Ceratec Kk Pulverization process for food, pharmaceutical, etc.
US6175704B1 (en) 1998-05-27 2001-01-16 Nec Corporation Electrophotographic printer using replaceable photosensitive belt cartridge
JP4571896B2 (en) * 2005-09-08 2010-10-27 焼津水産化学工業株式会社 Method for producing dried food
ITMI20070343A1 (en) * 2007-02-22 2008-08-23 Magaldi Ricerche E Brevetti Srl AUTOMATIC STORAGE SYSTEM FOR DEHUMIDIFICATION AND RECOVERY OF PETCOKE FROM PARK COVERED
JP2013078292A (en) * 2011-10-05 2013-05-02 Nikken Foods Co Ltd Granular dry soup and method for producing the same
CN110094938A (en) * 2019-04-04 2019-08-06 张家港欣欣高纤股份有限公司 A kind of polyester fiber production slices synthesis method drying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192307A (en) * 2016-04-18 2017-10-26 キッコーマン株式会社 Powder soy source, seasoning composition and manufacturing method of powder soy source

Also Published As

Publication number Publication date
JPS63148966A (en) 1988-06-21

Similar Documents

Publication Publication Date Title
KR900003729B1 (en) Depressurizing, swelling and drying apparatus
CN100407946C (en) Production of sweeled apple crisp by microwave-pressure differential process
CA1105314A (en) Method for manufacturing dried and foamed noodles of alpha-type
JPH0334916B2 (en)
RU2008104704A (en) METHOD AND MACHINE FOR RESTORATION OF VEGETABLE POWDERS
US7029716B2 (en) Method and system for producing a dehydrated whole food product
US6481117B2 (en) Apparatus for continuously drying vegetables, particularly leaf vegetables
JPH03504634A (en) Method and apparatus for drying granular materials
JPS61223481A (en) Vacuum belt drier
US3303578A (en) Continuous freeze-drying apparatus
US3308552A (en) Freeze-drying apparatus
JPS61223480A (en) Vacuum belt drier
US6195908B1 (en) Method and device for thermal drying of a solid product in small pieces
JPS61226405A (en) Belt-feed vacuum drier
RU2302740C1 (en) Plant material drying apparatus
JPH0334917B2 (en)
KR20160131303A (en) Rapid Manufacturing System for Low Salt Kimchi
US1047760A (en) Manufacture of a fish food.
JPH0429752Y2 (en)
JPH03124609A (en) Snaking preventing device for conveyor belt in vacuum belt drier
JPS6339570A (en) Liquid feeding method in vacuum belt dryer and apparatus therefor
US1982116A (en) Fruit drier
US2949363A (en) Process for increasing the solubility of powdered milk
JPS61223482A (en) Vacuum belt drier
JP3837421B2 (en) Residue drying equipment