JPH0334816A - Manufacture of annular film - Google Patents

Manufacture of annular film

Info

Publication number
JPH0334816A
JPH0334816A JP16940389A JP16940389A JPH0334816A JP H0334816 A JPH0334816 A JP H0334816A JP 16940389 A JP16940389 A JP 16940389A JP 16940389 A JP16940389 A JP 16940389A JP H0334816 A JPH0334816 A JP H0334816A
Authority
JP
Japan
Prior art keywords
solution
cylindrical
paint
film
cylindrical mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16940389A
Other languages
Japanese (ja)
Other versions
JP2614322B2 (en
Inventor
Shoichi Shimura
志村 正一
Tomoji Ishihara
友司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16940389A priority Critical patent/JP2614322B2/en
Publication of JPH0334816A publication Critical patent/JPH0334816A/en
Application granted granted Critical
Publication of JP2614322B2 publication Critical patent/JP2614322B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an annular film uniform in thickness by applying solution in a straight and continuous jet to the outer surface of a cylindrical mold without atomizing the solution from a discharge port capable of moving from one end to the other end of the cylind. CONSTITUTION:A cylindrical or pillar-shaped mold 01 for forming an annular film is set on a cylindrical or pillar-shaped mold supporting and rotating shaft 02, and rotated by a rotational motor 03. In a gun 05, an ejection port 12 for applying organic polymer or the solution of precursor thereof is provided, wherein the solution is supplied via a solution extraction pipe 07, and discharged straightly without atomizing from the protruded port 12, and thus a film is formed on the outer peripheral surface of the cylindrical or pillar-shaped mold. As an organic polymer, there being no limitation in particular, noncrystal thermoplastic resin relatively soluble in a flux such as polystyrene, polymethyl methacrylate, polycarbonate or the like is suitable. And, there also being no limitation in particular as to the precursor, thermosetting resin such as polyamic acid or polyamideimide resin, diallylphthalate or silicone resin or the like as being the precursor of the polyimide is suitable therefor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一般の搬送ベルトにはもちろん画像形成装置
の搬送フィルム、転写フィルムや定着フィルムにも適用
出来る継ぎ目のない環状フィルムの製造方法に関するも
のである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a seamless annular film that can be applied not only to general conveyor belts but also to conveyor films, transfer films, and fixing films of image forming apparatuses. It is something.

〔従来の技術〕[Conventional technology]

一般に搬送ベルトや画像形成装置の搬送フィルム、転写
フィルムや定着フィルムは通常の場合、継ぎ目がなく、
その上内周面が平滑であったり、場合によっては内周面
に決められた凹凸形状を持つ環状フィルムが必要とされ
ている。このような内周面形状を持つ、継ぎ目のない環
状フィルムを製造する際し、通常は円筒状或は円柱状型
の外周面に必要な形状の処理を施し、そこにフィルムを
形成する方法、すなわち円筒状或は円柱状型の外周面に
フィルムを形成し、そのフィルムの内周面に円筒状型の
外周面に施された形状を転写させる方法がとられている
In general, conveyor belts, conveyor films of image forming devices, transfer films, and fixing films usually have no seams.
Moreover, there is a need for an annular film with a smooth inner circumferential surface, or in some cases with a predetermined uneven shape on the inner circumferential surface. When manufacturing a seamless annular film having such an inner circumferential surface shape, a method is usually performed in which the outer circumferential surface of a cylindrical or cylindrical mold is subjected to a necessary shape treatment and a film is formed thereon. That is, a method is used in which a film is formed on the outer peripheral surface of a cylindrical or cylindrical mold, and the shape formed on the outer peripheral surface of the cylindrical mold is transferred to the inner peripheral surface of the film.

従来、このように円筒状或は円柱状型の外周面を使用し
、フィルムを形成する方法としては円筒状型或は円柱状
型の外周面に有機重合体又は、その前駆体の溶液を、吐
出口より霧化し、塗布するスプレー法や、又、他の方法
としては円筒状或は円柱状の有機重合体、又はその前駆
体の溶液中に浸漬し、徐々に引き上げることにより円筒
状或は円柱状型と有機重合体又はその前駆体溶液の表面
張力を利用して塗布する浸漬塗布方法が知られている。
Conventionally, a method for forming a film using the outer circumferential surface of a cylindrical or cylindrical mold as described above involves applying a solution of an organic polymer or its precursor to the outer circumferential surface of the cylindrical or cylindrical mold. There is a spray method in which the material is atomized and applied from a discharge port, and another method is to immerse it in a solution of a cylindrical or cylindrical organic polymer or its precursor and gradually pull it up. A dip coating method is known that utilizes the surface tension of a cylindrical mold and an organic polymer or its precursor solution.

従来は、上記のようにして形成された塗膜を乾燥固化又
は反応終了後、円筒状型或は円柱状型の外周面からはく
すし、環状フィルムを得ている。
Conventionally, after the coating film formed as described above is dried and solidified or the reaction is completed, it is removed from the outer peripheral surface of a cylindrical mold or columnar mold to obtain an annular film.

〔発明が解決しようとしている課題〕[Problem that the invention is trying to solve]

しかし、従来のスプレー法には以下のような問題欠点が
あった。
However, the conventional spray method has the following problems and drawbacks.

(1)塗膜表面が凹凸になりやすい。(1) The surface of the coating film tends to become uneven.

(2)溶液が圧力等により霧化されて放射状になるため
溶液の型への付着効率が低く、経済的に不利である。
(2) Since the solution is atomized by pressure or the like and becomes radial, the efficiency of adhesion of the solution to the mold is low, which is economically disadvantageous.

(3)塗膜表面が粗れてしまい、部分的にエアーを巻き
込んだ状態になり物性が著しく低下する。
(3) The surface of the coating becomes rough and air is partially trapped, resulting in a significant drop in physical properties.

又、浸漬塗布方法には、以下のような問題があった。Furthermore, the dip coating method has the following problems.

(1)使用すべき溶液が多量に必要である。(1) A large amount of solution is required to be used.

(2)溶液の濃度管理を充分に行う必要がある。(2) It is necessary to adequately control the concentration of the solution.

(3)浸漬部分は塗布されるので塗布を必要としない部
分にも塗膜が形成され溶液のロスが多(なり経済的に不
利となる。
(3) Since the immersed area is coated, a coating film is formed even on areas that do not require coating, resulting in a large loss of solution (which is economically disadvantageous).

(4)揮発速度の遅い溶剤を使用した溶液の場合、乾燥
固化する迄の時間がかかりその間に液だれか発生し塗膜
の不均一化が生じる。尚、回転装置に装着すればこの問
題は解決出来るが回転装置に装着する工程が増え、作業
能率が低下してしまう。
(4) In the case of a solution using a solvent with a slow volatilization rate, it takes time for the solution to dry and solidify, during which time a liquid drip occurs and the coating film becomes uneven. Incidentally, this problem can be solved by attaching it to the rotating device, but the process of attaching it to the rotating device increases, and the work efficiency decreases.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来例の問題点を解決すべくなされたも
のである。
The present invention has been made to solve the problems of the above-mentioned conventional example.

〔発明の概要〕[Summary of the invention]

本発明は、回転している円筒状又は円柱状型の外面に有
機重合体または、その前駆体の溶液を塗布し、乾燥固化
又は反応終了後前記円筒状型よりはくりして環状フィル
ムを製造する方法において、前記溶液を円筒状型の外面
上の一端から他−端迄移動可能な吐出口から実質的に霧
化せず筋状に連続して飛翔させ塗布することを特徴とす
る環状フィルムの製造方法に関する。
The present invention produces an annular film by applying a solution of an organic polymer or its precursor to the outer surface of a rotating cylindrical or cylindrical mold, and peeling it off from the cylindrical mold after drying and solidification or completion of the reaction. In the method, the annular film is coated by continuously spraying the solution in a streaky manner without substantially atomizing it from a movable discharge port on the outer surface of the cylindrical mold from one end to the other end. Relating to a manufacturing method.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明によれば回転している円筒状又は円柱状型の外面
に有機重合体、またはその前駆体の溶液を塗布し、乾燥
固化又は反応完了後、はくすし環状フィルムを製造する
方法に゛おいて、前記溶液を前記円筒状型の外面上の一
端から他一端迄移動可能な吐出口からビーム塗布するこ
とにより必要最低限の溶剤または溶液の使用量で、特に
揮発速度の遅い溶剤を使わざるを得ない有機重合体又は
、前駆体から厚みの均一な環状フィルムの製造が可能と
なった。
According to the present invention, a solution of an organic polymer or its precursor is applied to the outer surface of a rotating cylindrical or cylindrical mold, and after drying and solidification or completion of the reaction, an annular film is produced. By applying the solution with a beam from a movable discharge port on the outer surface of the cylindrical mold from one end to the other end, it is possible to use the minimum amount of solvent or solution necessary, especially a solvent with a slow volatilization rate. It has become possible to produce an annular film with uniform thickness from organic polymers or precursors.

本発明において、溶剤に可溶な有機重合体またはその前
駆体の溶液が使用される。
In the present invention, a solution of a solvent-soluble organic polymer or its precursor is used.

前記の有機重合体としては特に制限はないが、ポリスチ
レン、ポリメチルメタクリレート、ポリカーボネート、
ポリフェニレンエーテル、ポリスルホン、ボリアリレー
ト、ポリエーテルイミド、ポリエーテルサルフオン等の
比較的溶剤に溶解しやすい非品性熱可塑性樹脂が好適で
ある。
The organic polymer mentioned above is not particularly limited, but includes polystyrene, polymethyl methacrylate, polycarbonate,
Non-grade thermoplastic resins that are relatively easily soluble in solvents, such as polyphenylene ether, polysulfone, polyarylate, polyetherimide, and polyethersulfone, are suitable.

又、前駆体についても特に制限はないがポリイミドの前
駆体であるポリアミック酸やポリアミドイミド樹脂、ポ
リベンズイミダゾール樹脂、更に、エポキシ樹脂、不飽
和ポリエステル、ジアリルフタレートやシリコン樹脂等
の熱硬化性樹脂が好適である。
There are no particular restrictions on the precursor, but polyamic acid, polyamideimide resin, polybenzimidazole resin, which is a precursor of polyimide, and thermosetting resins such as epoxy resin, unsaturated polyester, diallyl phthalate, and silicone resin are used. suitable.

更に、使用する溶剤についても前記有機重合体またはそ
の前駆体が可溶なものであれば特に制限はない。
Furthermore, there are no particular limitations on the solvent used as long as the organic polymer or its precursor is soluble therein.

以下、図面を参照しつつ本発明を説明する。The present invention will be described below with reference to the drawings.

第1図が本発明の環状フィルムを製造する際に用いられ
るビーム塗布を行うための装置の概要図である。
FIG. 1 is a schematic diagram of an apparatus for beam coating used in manufacturing the annular film of the present invention.

ここで01は環状フィルムを形成させるための円筒状又
は円柱状型であり、02の円筒状又は円柱状型保持兼用
回転軸にセットされ03の回転モーターにより回転して
いる。
Here, 01 is a cylindrical or cylindrical mold for forming an annular film, which is set on a rotating shaft 02 that also holds the cylindrical or cylindrical mold, and is rotated by a rotary motor 03.

05が有機重合体又はその前駆体の溶液を塗布するため
の突出口12が設けられているガンであり溶液が溶液導
出管07を経て、供給され、突出口より実質的に霧化せ
ず筋状に吐出し、円筒状又は円柱状型の外周面上に塗膜
が形成される。
05 is a gun provided with a protrusion 12 for applying a solution of an organic polymer or its precursor; the solution is supplied through a solution outlet pipe 07, and the solution is supplied from the protrusion without being substantially atomized. A coating film is formed on the outer peripheral surface of the cylindrical or cylindrical mold.

尚、第2図及び第3図が塗膜が形成される際の概念を表
わしている。
Incidentally, FIGS. 2 and 3 represent the concept when a coating film is formed.

ここで、溶液の供給方法としては例えば09のようなエ
アー圧での供給が可能であるが、他の方法としてはギア
ポンプによる供給も可能である。
Here, as a method of supplying the solution, it is possible to supply the solution by using air pressure as shown in 09, for example, but as another method, it is also possible to supply the solution by using a gear pump.

又、本発明に於いて円筒状型の回転速度としては、50
RPM以上が有効であるが、好ましくは50RPM以上
300RPM以下の回転速度が用いられる。
In addition, in the present invention, the rotational speed of the cylindrical mold is 50
RPM or more is effective, but preferably a rotation speed of 50 RPM or more and 300 RPM or less is used.

又、円筒状型の材質としてはガウス、アルミ、鉄、真ち
ゅう、ステンレスや使用される溶剤に浸されない樹脂等
、特に制限はない。
Further, the material of the cylindrical mold is not particularly limited, and may include Gauss, aluminum, iron, brass, stainless steel, and resin that is not immersed in the solvent used.

更に、後のはくりを考慮し、フッ素系、シリコン系等の
離型剤をその外面に塗布することも可能である。
Furthermore, in consideration of later peeling, it is also possible to apply a fluorine-based, silicone-based, etc. mold release agent to the outer surface.

次に、円筒状又は円柱状型の外径に関しては特に制限は
ないが好ましくは、φ10mm以上のものが使用できる
。又、長さに関しても特に制限はなく、装置に装着可能
な範囲であれば何ら問題はない。
Next, there is no particular restriction on the outer diameter of the cylindrical or cylindrical mold, but preferably one having a diameter of 10 mm or more can be used. Further, there is no particular restriction on the length, and there will be no problem as long as it is within a range that can be attached to the device.

本発明において使用される有機重合体又はその前駆体溶
液の粘度としては0.01〜500ポイズ(常温時)が
好ましく塗膜面の平滑さを考慮すると10ポイズ以下が
望ましい。
The viscosity of the organic polymer or its precursor solution used in the present invention is preferably 0.01 to 500 poise (at room temperature), and preferably 10 poise or less in consideration of the smoothness of the coating surface.

次に吐出口と円筒状型内面との距離については2〜10
0mm、特に5〜50mmの範囲であることが好ましい
Next, the distance between the discharge port and the inner surface of the cylindrical mold is 2 to 10
0 mm, particularly preferably in the range of 5 to 50 mm.

以下、添付図面を参照しながら本発明をより詳細に説明
する。
Hereinafter, the present invention will be explained in more detail with reference to the accompanying drawings.

本発明では、塗膜の成膜性を向上させるために、微小開
口部から吐出される塗料を第3図に示すように実質的に
霧化せずに筋状に飛翔させることにより塗料が専有する
空間体積の割合を高めて塗料の空気との接触を少なくし
て、塗料中の揮発成分の揮発等による塗料の変性を防止
するものである。
In the present invention, in order to improve the film-forming properties of the paint film, the paint discharged from the micro-openings is not substantially atomized and is flown in a streaky manner as shown in FIG. This is to increase the proportion of the space volume of the paint to reduce the contact of the paint with air, thereby preventing deterioration of the paint due to volatilization of volatile components in the paint.

塗料が専有する空間体積の割合は、塗料の変性防止の点
からは100%、すなわち霧化しないで筋状に被塗布物
に到達することが本発明の主たる特長であるが、従来の
スプレー塗布の如き塗布方法における塗料が専有する空
間体積の割合は0.1〜0.001%と著しく低いこと
と比較すると、吐出角度を3°以下とした場合にも塗料
が専有する空間体積の割合が95〜100%程度となり
塗料中の揮発成分の揮発が少なく塗料の変性がなくなる
ことから実質的に本発明の主旨と同じ効果が得られた。
The main feature of the present invention is that the proportion of the space occupied by the paint is 100% from the viewpoint of preventing denaturation of the paint, that is, it reaches the object to be coated in streaks without being atomized. Compared to the extremely low proportion of space volume occupied by paint in coating methods such as 0.1 to 0.001%, even when the discharge angle is set to 3 degrees or less, the proportion of space volume occupied by paint is extremely low. It was approximately 95 to 100%, and the volatilization of volatile components in the paint was small, and the paint was not denatured, so substantially the same effect as the gist of the present invention was obtained.

従って、本発明における微小開口部から塗料を吐出し塗
膜を形成する方法においては、実質的に霧化しない状態
とは吐出角度が3°以下好ましくは0℃の筋状に連続し
て飛翔する状態を示すものである。
Therefore, in the method of the present invention for forming a coating film by discharging paint from a minute opening, a state in which the paint is not substantially atomized means that the discharge angle is 3 degrees or less, preferably 0 degrees Celsius, and the paint continuously flies in a streak shape. It indicates the condition.

さらに、従来の塗布方法では20〜50%と非常に低い
塗料の付着効率であり、50〜80%の塗料を損失して
いたものが、荊記のように実質的に霧化をさせないこと
により、塗料が微小領域に集中するため、塗料の付着効
率が95%以上となり、また、非塗膜形成部分への塗料
付着がなくなり、他の部分への塗料のまわり込みを生ず
ることがなくなる。
Furthermore, with conventional coating methods, the paint adhesion efficiency was extremely low at 20-50%, resulting in a loss of 50-80% of the paint. Since the paint is concentrated in a minute area, the paint adhesion efficiency is 95% or more, and there is no paint adhesion to areas where no paint film is formed, so the paint does not run around to other areas.

一方、塗料が微小領域に集中することから、塗料の飛翔
エネルギーが密度的に高くなり、塗膜の表面性を粗面化
する傾向にあり、従来のような高速吐出(スプレー法で
は吐出速度100〜200m / s e c程度)で
は被塗布物表面への影響を生じやすくなる。特に、はな
はだしい場合には、塗膜中に気泡を生じさせることにな
り、塗膜欠陥となる。そこで塗膜の表面性をさらによく
するには、塗料の微小領域への集中化(基板上では塗料
が若干広がるため面積で約1/100に集中)を考慮す
ると吐出速度は30m/sec以下が好ましく、さらに
は25m/ s e c 〜2m/ s e cの範囲
、特には10m/ s e c 〜5m/ s e c
の範囲が好ましい。
On the other hand, since the paint concentrates in a minute area, the flying energy of the paint increases densely, which tends to roughen the surface of the paint film. ~200 m/sec), the surface of the object to be coated is likely to be affected. In particular, if it is severe, bubbles will be generated in the coating film, resulting in coating defects. Therefore, in order to further improve the surface properties of the paint film, the discharge speed should be 30 m/sec or less, considering the concentration of the paint in a minute area (the paint spreads slightly on the substrate, so it is concentrated in about 1/100 of the area). Preferably, even in the range 25 m/sec to 2 m/sec, especially 10 m/sec to 5 m/sec
A range of is preferred.

吐出速度を30m/see以下にすることにより、塗料
が被塗布物に付着したときのエネルギーが小さくなり、
塗料が反射散乱することなく、被塗布物上に総べて付着
し、従来の塗布方法では大きな問題であったオーバーミ
スト処理(被塗布物に付着しなかった塗料が塗膜にブツ
、ハジキ、光沢損失の原因となるため排気設備をそなえ
系外へ排出した。公害防止のため排出時に集塵設備等で
回収を要する。)を著しく軽減するとともに、塗料付着
防止手段を設けることなく非塗膜形成部分への塗料付着
がなくなる。
By setting the discharge speed to 30 m/see or less, the energy when the paint adheres to the object to be coated is reduced,
The paint completely adheres to the object to be coated without reflection and scattering, and overmist treatment (paint that did not adhere to the object to be coated forms spots, repellents, and (Because it causes loss of gloss, an exhaust system was installed to discharge it out of the system. To prevent pollution, it must be collected using dust collection equipment, etc. at the time of discharge.) In addition to significantly reducing the amount of waste, it also eliminates the need to install a means to prevent paint adhesion. Paint will no longer adhere to the formed part.

本発明の塗布方法においては、被塗布物と微小開口部と
の距離は2〜100mm、特には5〜50mmの範囲で
あることが好ましい。塗料は溶剤中に固形分を溶解ある
いは分散させたものや、固形分のみのものなど広く適用
することができる。また、溶剤は揮発性のものはもちろ
んであるが不揮発性のものも適用することができる。ま
た塗料の粘度は、基板上に塗料が付着後表面張力により
平滑化するために、1000cps、さらには200c
ps以下、特には50cps〜4cpsの範囲とするの
が好ましい。
In the coating method of the present invention, the distance between the object to be coated and the minute opening is preferably in the range of 2 to 100 mm, particularly 5 to 50 mm. Paints can be widely applied, including those in which solids are dissolved or dispersed in a solvent, and those containing only solids. Furthermore, not only volatile solvents but also nonvolatile solvents can be used. In addition, the viscosity of the paint is 1000 cps, or even 200 cps, since the paint is smoothed by surface tension after adhering to the substrate.
ps or less, particularly preferably in the range of 50 cps to 4 cps.

また、微小開口部の吐出口口径は、200μm以下が好
ましく、さらには50μm〜1.80μmの範囲、特に
は60μm〜150μmの範囲が1 好ましい。微少開口部からの塗料の吐出圧は3K g 
f / c g以下が好ましく、さらには0. 3Kg
f/crrr 〜1.5Kgf/cmの範囲、特には0
.5Kgf/ci〜I K g f / c rr?の
範囲が好ましい。塗料の吐出量は20cc/分以下、特
には0.8cc/分〜15cc/分の範囲であることが
好ましい。
Further, the discharge port diameter of the minute opening is preferably 200 μm or less, more preferably in the range of 50 μm to 1.80 μm, particularly preferably in the range of 60 μm to 150 μm. The discharge pressure of paint from a minute opening is 3Kg.
f/c g or less is preferable, and more preferably 0. 3Kg
f/crrr ~1.5Kgf/cm, especially 0
.. 5Kgf/ci~IKgf/crr? A range of is preferred. The amount of paint discharged is preferably 20 cc/min or less, particularly in the range of 0.8 cc/min to 15 cc/min.

第1図において、01は基体シリンダーであり、これは
シリンダーの保持を兼用する回転軸02に固定される。
In FIG. 1, 01 is a base cylinder, which is fixed to a rotating shaft 02 which also serves to hold the cylinder.

又、回転軸02は回転モーター03により所定の回転速
度で回転される。
Further, the rotating shaft 02 is rotated by a rotating motor 03 at a predetermined rotational speed.

一方、ビーム状の塗布液04を吐出するためのガン05
は、横送り機構の架台06に乗せられており、基体シリ
ンダー01の回転軸方向と平行方向に移動する。また、
ガン05は、フィルター08および導出管07を経由し
てタンク09に接続されている。エアーパイプ10で導
入された圧縮エアーにより、ゲージ11で定めた圧力に
タンク09内の塗料は加圧され、フィルター08および
導出管07を経由してガン05の先端ノズルチツ2 ブ(不図示)から吐出される。
On the other hand, a gun 05 for discharging a beam-shaped coating liquid 04
is placed on a pedestal 06 of a transverse feed mechanism, and moves in a direction parallel to the rotation axis direction of the base cylinder 01. Also,
Gun 05 is connected to tank 09 via filter 08 and outlet pipe 07. Compressed air introduced by the air pipe 10 pressurizes the paint in the tank 09 to the pressure determined by the gauge 11, and the paint is sent from the tip nozzle 2 of the gun 05 (not shown) via the filter 08 and the outlet pipe 07. It is discharged.

この装置を用いて実際に塗布する場合、ガンの横送り機
構のスイッチとガン・ニードルのエアースイッチをセッ
トし、基体シリンダー01の所定位置からビーム04を
吐出する。同時に回転モーターのスイッチも入れ、基体
シリンダー保持の回転軸を回転させる。第2図に示した
ように、ガン05の先端に設けられたノズルチップ17
から吐出したビーム状の塗布液04は、基体シリンダー
01上にネジを切ったようなパターン16で糸巻き状(
らせん状)に付着し、レベリングすることにより塗膜1
5が成膜される。レベリングによる塗膜の生成工程は、
以下に示すとおりである。すなわち、基体シリンダー0
1上の付着した糸巻き状塗料は、塗料の衝突エネルギー
および塗料の表面張力ならびに被塗布物の表面張力の為
、徐々に幅広く拡がっていき、隣接する塗料がたがいに
接触し被塗布物の塗布面をすきなくおおう。そして、塗
料の表面張力および拡散性ならびに被塗布物の表面張力
により適切な時間経過後、ピッチに応じて生じていた当
初の塗膜凹凸がレベリングしならされて平滑な面として
成膜される。なお、糸巻き状に付着する塗料は、塗料の
端部どうじが重なり合うように付着してもよい。更に、
塗料の溶剤蒸気を制御する為にフードを併用すれば表面
をより平滑にすることも可能である。
When actually applying coating using this device, the switch for the transverse feed mechanism of the gun and the air switch of the gun needle are set, and the beam 04 is discharged from a predetermined position of the base cylinder 01. At the same time, turn on the rotation motor and rotate the rotating shaft holding the base cylinder. As shown in FIG. 2, a nozzle tip 17 provided at the tip of the gun 05
The beam-shaped coating liquid 04 discharged from the base cylinder 01 has a thread-like pattern 16 on the base cylinder 01.
By adhering in a spiral shape and leveling, the coating film 1
5 is deposited. The coating film generation process by leveling is
It is as shown below. That is, the base cylinder 0
Due to the collision energy of the paint, the surface tension of the paint, and the surface tension of the object to be coated, the adhered spool-shaped paint shown in step 1 gradually spreads over a wide area, causing adjacent paints to come into contact with each other and cause the coating surface of the object to be coated. cover it without any gaps. Then, after an appropriate amount of time has elapsed due to the surface tension and diffusivity of the paint and the surface tension of the object to be coated, the initial unevenness of the coating film, which had occurred in accordance with the pitch, is leveled and a smooth surface is formed. Note that the paint applied in a spool shape may be applied so that the ends of the paint overlap. Furthermore,
It is also possible to make the surface smoother by using a hood to control paint solvent vapor.

第4a図及び第4b図に塗料の吐出口の具体例を示す。FIGS. 4a and 4b show specific examples of paint discharge ports.

第4a図は標準的な単一吐出口を有するノズルチップ1
2(a)を示すが、塗布速度を早める為に、第4b図の
如く3つの吐出口を有するノズルチップ12(b)の形
態のように多数の吐出口を有する形態をとってもよい。
Figure 4a shows a standard single outlet nozzle tip 1.
2(a), but in order to increase the coating speed, the nozzle chip 12(b) may have a large number of ejection ports, such as the nozzle chip 12(b) having three ejection ports as shown in FIG. 4b.

以下、実施例にもとづいて本発明を説明する。The present invention will be explained below based on Examples.

又、形成された塗膜の乾燥速度を早めるために円筒状又
は円柱状型全体を加熱することは効果的である。
Furthermore, it is effective to heat the entire cylindrical or cylindrical mold in order to speed up the drying rate of the formed coating film.

以上により製造される環状フィルムの厚みとしては、円
筒状型の回転速度、吐出口の移動速度、溶液の吐出速度
、溶液の濃度等によって決まるが通常−5μ以上のもの
が好適に製造し得る。
The thickness of the annular film produced in the above manner is determined by the rotational speed of the cylindrical mold, the moving speed of the discharge port, the discharge speed of the solution, the concentration of the solution, etc., but a thickness of -5 μm or more can usually be suitably produced.

以下実施例により本発明を更に説明する。The present invention will be further explained below with reference to Examples.

実施例−1 ポリイミド樹脂の前駆体であるポリアミック酸をN、N
’ −ジメチルアセトアミドで固形分10%となるよう
に調整した。尚、このときの溶液の粘度は30°Cにお
いて2ポイズであった。
Example-1 Polyamic acid, which is a precursor of polyimide resin, was
The solid content was adjusted to 10% with '-dimethylacetamide. The viscosity of the solution at this time was 2 poise at 30°C.

円筒状型として、ステンレス製の内径50mm、外径5
5mm、長さ300mmのものを用い保持具にセットし
た後、120RPMの回転速度で回転した。次いで口径
100μmの1穴タイプの吐出口を用い、吐出圧を2 
K g / c rdとなるようにエアー圧を調整し、
円筒状型の外周面の長手方向10mmから290mmの
幅に溶液を吐出し塗膜を形成した。尚、この時の塗布条
件は、吐出口の移動速度を200mm/分吐出口と円筒
状型との距離を1.0 m mとした。塗布後、120
RPMの回転速度を保ち、ドライヤーで円筒状型を10
0℃に加熱し、30分間乾燥させた後、円筒状型を取り
はずし、350℃にセットされた高温炉中で15分間焼
成イミド化を行った。
As a cylindrical type, made of stainless steel with an inner diameter of 50 mm and an outer diameter of 5 mm.
After setting it in a holder using one with a diameter of 5 mm and a length of 300 mm, it was rotated at a rotation speed of 120 RPM. Next, using a single-hole type discharge port with a diameter of 100 μm, the discharge pressure was set to 2.
Adjust the air pressure so that it becomes K g / c rd,
A coating film was formed by discharging the solution over a width of 10 mm to 290 mm in the longitudinal direction of the outer peripheral surface of a cylindrical mold. The coating conditions at this time were such that the moving speed of the discharge port was 200 mm/min, and the distance between the discharge port and the cylindrical mold was 1.0 mm. After application, 120
Keeping the rotation speed at RPM, dry the cylindrical mold with a hair dryer for 10 minutes.
After heating to 0°C and drying for 30 minutes, the cylindrical mold was removed, and firing imidization was performed for 15 minutes in a high-temperature furnace set at 350°C.

5 次いで、高温炉から取り出した円筒状型を水中に浸漬し
、常温迄冷却した後、円筒状型から環状に形成されたポ
リイミドフィルムをはくすした。
5 Next, the cylindrical mold taken out from the high-temperature furnace was immersed in water and cooled to room temperature, and then the polyimide film formed into an annular shape was peeled off from the cylindrical mold.

尚、得られた環状ポリイミドフィルムの厚みは形成され
た環状フィルムの長平方向5mmから275mmの範囲
内で平均30μmで全体の厚みのムラは±2μm以下で
あった。又、エアー面の表面粗さはR,=0.3〜0.
4μmであった。
The thickness of the obtained annular polyimide film was 30 μm on average within the range of 5 mm to 275 mm in the longitudinal direction of the formed annular film, and the overall thickness unevenness was ±2 μm or less. Also, the surface roughness of the air surface is R, = 0.3 to 0.
It was 4 μm.

比較例−1 実施例1と同様の溶液を用いて、スプレー塗布を行った
。尚、乾燥及びイミド化の条件は実施例1と同条件で行
った。その結果、円筒状型と接触していない反対の面(
エアー面)の表面粗さの測定結果ではR,=3.0〜4
.0μmで、又部分的に気泡の入った環状フィルムにな
り、円筒状型からはくすする際に切断されてしまった。
Comparative Example-1 Spray coating was performed using the same solution as in Example 1. The drying and imidization conditions were the same as in Example 1. As a result, the opposite surface that is not in contact with the cylindrical mold (
The measurement results of the surface roughness of the air surface are R, = 3.0 to 4.
.. It became an annular film with a diameter of 0 μm and some air bubbles, and was cut off from the cylindrical mold when it was removed.

比較例−2 実施例1と同様に調整されたポリアミック酸溶液、及び
実施例1と同形状同材質の円筒状型を用6 い、円筒状型をポリアミック酸溶液中に浸漬し、円筒状
型内面にポリアミック酸溶液の塗膜を形成させた。
Comparative Example-2 Using a polyamic acid solution prepared in the same manner as in Example 1 and a cylindrical mold having the same shape and material as in Example 1, the cylindrical mold was immersed in the polyamic acid solution, and the cylindrical mold was A coating film of polyamic acid solution was formed on the inner surface.

次いで、塗膜の形成された円筒状型を立てた状態で10
0℃にセットされた乾燥器中で30分間乾燥した後、実
施例1と同様の方法でイミド化、更にはくすして環状ポ
リイミドフィルムを得た。
Next, the cylindrical mold with the coating film was placed in an upright position for 10 minutes.
After drying for 30 minutes in a dryer set at 0° C., it was imidized in the same manner as in Example 1 and further combed to obtain a cyclic polyimide film.

尚、この環状フィルムの厚みはフィルムの長手方向5m
mから295mmの間で平均25μであったが全体の厚
みムラは±10μmとなり、乾燥時に円筒状型の立てた
状態の上から下に相当する部分に行くにつれて厚みは増
していた。又、不必要な部分である円筒状型の内面にも
ポリイミドフィルムが形成されてしまった。
The thickness of this annular film is 5 m in the longitudinal direction of the film.
The average thickness was 25 μm between m and 295 mm, but the overall thickness unevenness was ±10 μm, and the thickness increased from the top to the bottom of the cylindrical mold during drying. Moreover, the polyimide film was also formed on the inner surface of the cylindrical mold, which was an unnecessary part.

〔他の実施例〕[Other Examples]

実施例−2 それぞれが口径100μmの3穴タイプの吐出口を用い
、更に吐出口の移動速度を600 mm/分、エアー圧
を6 K g / c gとした以外は実施例1と同様
にして、環状ポリイミドフィルムを製造7 した結果、やはり平均25μmで全体の厚みムラに関し
ては±2μmの環状ポリイミドフィルムが得られた。
Example 2 The procedure was the same as in Example 1, except that three-hole type discharge ports each having a diameter of 100 μm were used, and the moving speed of the discharge ports was 600 mm/min, and the air pressure was 6 K g / c g. As a result of manufacturing a cyclic polyimide film 7, a cyclic polyimide film with an average thickness of 25 μm and an overall thickness unevenness of ±2 μm was obtained.

実施例−3 有機重合体としてポリエーテルイミド、溶剤として塩化
メチレンを使用し、固形分10%となるように溶液を調
整した。円筒状型としてはガウス製の内径100mm、
外径110mm、長さ300mmのものを用い、円筒状
型ホルダーにセットした後、12ORPMの回転速度で
回転し、特に加熱せず維持した。次いで口径100μm
の1穴タイプの吐出口を用い、ギアポンプで吐出圧3K
g/crdとし溶液を円筒状型の外面の長手方向10m
mから290mmの幅に溶液を吐出し、塗膜を形成した
。尚、この時の塗布条件は吐出口の移動速度を200 
mm/分、吐出口と円筒状型の内面との距離を10mm
とした。塗布後10分間12ORPMの回転速度を保ち
、乾燥させた後、円筒状型を円筒状型ホルダーから取り
はずし、水中に浸漬し、円筒状型外面から形成され8 た環状ポリイミドをはくすした。尚、得られた環状ポリ
イメドフイルムの厚みは形成されたフィルムの長平方向
5mmから275mmの範囲内で平均30μmで全体の
厚みムラは±3μm以下であった。
Example 3 Using polyetherimide as an organic polymer and methylene chloride as a solvent, a solution was adjusted to have a solid content of 10%. The cylindrical type is made of Gauss and has an inner diameter of 100 mm.
A device with an outer diameter of 110 mm and a length of 300 mm was used, and after being set in a cylindrical holder, it was rotated at a rotational speed of 12 ORPM and maintained without being heated. Next, the diameter is 100μm
Using a 1-hole type discharge port, the discharge pressure is 3K with a gear pump.
g/crd and the solution is 10 m in the longitudinal direction of the outer surface of the cylindrical mold.
The solution was discharged in a width of 290 mm from m to form a coating film. The coating conditions at this time are that the moving speed of the discharge port is 200
mm/min, the distance between the discharge port and the inner surface of the cylindrical mold is 10 mm
And so. After coating and drying by keeping the rotation speed at 12 ORPM for 10 minutes, the cylindrical mold was removed from the cylindrical mold holder, immersed in water, and the annular polyimide formed from the outer surface of the cylindrical mold was peeled off. The thickness of the obtained annular polyimed film was 30 μm on average within the range of 5 mm to 275 mm in the longitudinal direction of the formed film, and the overall thickness unevenness was ±3 μm or less.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明の環状フィルムの製造方法によれ
ば、有機重合体又はその前駆体を円筒状又は円柱状型の
外周面にビーム塗布法により塗布することにより、従来
のスプレー法と比ベエアー面の粗さが良く更にエアーを
巻き込まない物性の安定した環状フィルムの製造が可能
となった。
As described above, according to the method for producing an annular film of the present invention, by applying an organic polymer or its precursor to the outer peripheral surface of a cylindrical or cylindrical mold by a beam coating method, it is possible to apply the organic polymer or its precursor to the outer peripheral surface of a cylindrical or cylindrical mold. It has become possible to produce an annular film with stable physical properties that has a good air surface roughness and does not entrain air.

更に、浸漬塗布方法と比べ、必要最低限の溶液使用量で
、しかも、揮発速度の遅い溶剤を使用せざるを得ない有
機重合体、又はその前駆体から厚みの均一な環状フィル
ムの成形が容易に出来るようになった。
Furthermore, compared to the dip coating method, it uses the minimum amount of solution required, and it is easy to form an annular film of uniform thickness from an organic polymer or its precursor, which requires the use of a solvent with a slow volatilization rate. Now I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は円筒状或は円柱状型の外周面に有機重合体、又
はその前駆体溶液をビーム塗布を行うた9 めの装置の概要図を示し、 第2図は、第1図の塗布部分の拡大図を示し、第3図は
、本発明になる塗膜形成の概念図を示し、 第4a図及び第4b図は溶液の吐出口の具体例。 01・・・円筒状又は円柱状型 02・・・円筒状又は円柱状型保持兼用回転軸03・・
・回転モーター 04・・・塗布液ビーム 05・・・ガン 06・・・横送り機構の架台 07・・・溶液導出管 08・・・フィルター 09・・・溶液ペイント・タンク 10・・・エアーパイプ 11・・・圧力ゲージ 12・・・ノズルチップ 12(a)・・・1穴ビーム用チツプ(側面図)13・
・・1穴ビーム用デツプ(正面図)0 2(b)・・・3穴ビーム用(側面図)4・・・3穴ビ
ーム用チツプ(正面図)5・・・レベリングした状態の
塗膜 6・・・レベリングする前の状態の塗膜6 15
Figure 1 shows a schematic diagram of an apparatus for beam coating an organic polymer or its precursor solution onto the outer peripheral surface of a cylindrical or cylindrical mold. FIG. 3 shows a conceptual diagram of coating film formation according to the present invention, and FIGS. 4a and 4b show specific examples of solution discharge ports. 01...Cylindrical or cylindrical mold 02...Rotating shaft for holding cylindrical or cylindrical mold 03...
・Rotary motor 04...Coating liquid beam 05...Gun 06...Horizontal feeding mechanism frame 07...Solution outlet pipe 08...Filter 09...Solution paint tank 10...Air pipe 11...Pressure gauge 12...Nozzle tip 12(a)...1-hole beam tip (side view) 13.
...Dip for 1-hole beam (front view) 0 2(b)...For 3-hole beam (side view) 4...Tip for 3-hole beam (front view) 5...Coating film in leveled state 6... Paint film before leveling 6 15

Claims (1)

【特許請求の範囲】[Claims] (1)回転している円筒状又は円柱状型の外面に有機重
合体または、その前駆体の溶液を塗布し、乾燥固化又は
反応終了後前記円筒状型よりはくりして環状フィルムを
製造する方法において、前記溶液を円筒状型の外面上の
一端から他一端迄移動可能な吐出口から実質的に霧化せ
ず筋状に連続して飛翔させ塗布することを特徴とする環
状フィルムの製造方法。
(1) A solution of an organic polymer or its precursor is applied to the outer surface of a rotating cylindrical or cylindrical mold, and after drying and solidification or completion of the reaction, it is peeled off from the cylindrical mold to produce an annular film. A method for producing an annular film, characterized in that the solution is sprayed continuously in a streaky manner without being substantially atomized from a movable discharge port on the outer surface of a cylindrical mold from one end to the other end. Method.
JP16940389A 1989-06-30 1989-06-30 Manufacturing method of annular film Expired - Fee Related JP2614322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16940389A JP2614322B2 (en) 1989-06-30 1989-06-30 Manufacturing method of annular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16940389A JP2614322B2 (en) 1989-06-30 1989-06-30 Manufacturing method of annular film

Publications (2)

Publication Number Publication Date
JPH0334816A true JPH0334816A (en) 1991-02-14
JP2614322B2 JP2614322B2 (en) 1997-05-28

Family

ID=15885957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16940389A Expired - Fee Related JP2614322B2 (en) 1989-06-30 1989-06-30 Manufacturing method of annular film

Country Status (1)

Country Link
JP (1) JP2614322B2 (en)

Also Published As

Publication number Publication date
JP2614322B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JP2515431B2 (en) Curing device for cylindrical and belt-shaped substrates
JPH03215931A (en) Formation of photoresist
JPH0334816A (en) Manufacture of annular film
US6500375B1 (en) Fabrication of seamless tube
JPH03193161A (en) Preparation of cylindrical coating body
JP2614323B2 (en) Manufacturing method of annular film
JP2005238169A (en) Coating film forming apparatus
JP4647592B2 (en) Direct coating method
JP3707574B2 (en) Method and apparatus for producing ceramic green sheet
JP2667913B2 (en) Method for forming multilayer endless film for heat fixing
JP2002079162A (en) Ultrasonic coating head and coater using the same
JP2746304B2 (en) Electrophotographic photoreceptor
JP2667912B2 (en) Method for forming multilayer endless film for heat fixing
JPH0231863A (en) Method for applying and maturating coating material
JP2844784B2 (en) Immersion coating equipment
JPH0429773A (en) Dip coating apparatus
JP2003290699A (en) Web cooling device
JP2002134388A (en) Resist discharge opening cleaning method and apparatus, and resist applying method and apparatus
JPH02272567A (en) Production of electrophotographic sensitive body
JP2003051499A (en) Method and device for thin film formation
TWM644201U (en) Temperature-controlled roller coating equipment
JPH07251117A (en) Pretreating device for coating
JP6821280B2 (en) Manufacturing method of cellulose nanofiber film
JPH057812A (en) Dip coating device
JPH02272565A (en) Production of electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees