JPH0334582A - Solar cell fitted with cover glass - Google Patents

Solar cell fitted with cover glass

Info

Publication number
JPH0334582A
JPH0334582A JP1170049A JP17004989A JPH0334582A JP H0334582 A JPH0334582 A JP H0334582A JP 1170049 A JP1170049 A JP 1170049A JP 17004989 A JP17004989 A JP 17004989A JP H0334582 A JPH0334582 A JP H0334582A
Authority
JP
Japan
Prior art keywords
thickness
adhesive
cell
cover glass
interconnector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1170049A
Other languages
Japanese (ja)
Other versions
JPH0716023B2 (en
Inventor
Hideki Yoshioka
秀起 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1170049A priority Critical patent/JPH0716023B2/en
Publication of JPH0334582A publication Critical patent/JPH0334582A/en
Publication of JPH0716023B2 publication Critical patent/JPH0716023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To thin the thickness of an adhesive inside a cell so as to relax the weight by thickening the thickness of the adhesive at the periphery of the bonding face between the cell and the cover glass than the thickness of an adhesive at the inner bonding face. CONSTITUTION:When the thickness of an adhesive at a cell inner region A is t1, the thickness of an adhesive at a peripheral region B on the side where it does not has an interconnector, is t2, the thickness of an adhesive, which includes the thickness of an interconnector 2, at the peripheral region C on the side where it has an interconnector, is t3, and the thickness of the interconnector is defined as t4, it is given a relation of, for example, t1<t2<=(t3-t4). The thickness t3 includes the thickness of a surface electrode 14. The thickness of the surface electrode 14 is usually extremely thin. According to this structure, the thickness of the adhesive at the region A inside the cell is thinned as far as possible, and to prevent the exfoliation of the adhesive arising at the periphery of the cell by the thermal stress by the temperature cycle circumstance in space, the thickness of the adhesive at the peripheral regions B and C is thickened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はカバーガラスを表面に接着した太陽電池の構造
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a solar cell having a cover glass adhered to its surface.

(従来の技術) 太陽電池セル(以下セルともいう)の表面に対して放射
線の被暴及び紫外線の遮断のために、カバーガラスを接
着したものが用いられている。特に宇宙用の太陽電池に
使用されている。その接着剤の厚さは、軽量化の要求に
よりできるだけ薄くする場合と、温度サイクル環境によ
る熱ストレスのため、セルの周辺部から発生する接着剤
剥離を防止するための信頼性向上の要求により、できる
だけ厚くする場合と、さらに両方の要求を満足させるた
めに、中間的な厚さとする場合等がある。
(Prior Art) A cover glass is used to bond the surface of a solar cell (hereinafter also referred to as a cell) to block radiation exposure and ultraviolet rays. It is especially used in solar cells for space applications. The thickness of the adhesive is made as thin as possible due to demands for weight reduction, and also due to demands for improved reliability to prevent adhesive peeling from the periphery of the cell due to thermal stress caused by temperature cycle environments. There are cases where the thickness is made as thick as possible, and cases where an intermediate thickness is used to satisfy both requirements.

筐た、カバーガラスをセルに接着するための接着剤の塗
布方法は、注射器により接着剤をセル又はカバーガラス
上に一滴または数滴滴下させ、セルとカバーガラスとを
貼り合せて接着剤を広げる製造方法と、一定開口率のメ
ツシュスクリーンを用いて、セル!たはカバーガラス全
体に接着剤を塗布する方法がある。
The method of applying adhesive to bond the case and cover glass to the cell is to use a syringe to drop one or several drops of the adhesive onto the cell or cover glass, and then bond the cell and cover glass to spread the adhesive. Using a manufacturing method and a mesh screen with a constant aperture ratio, Cell! Alternatively, there is a method of applying adhesive to the entire cover glass.

注射器による接着剤塗布方法で製造されたカバーガラス
付セルの接着剤厚さは、滴下した接着剤を、セルまたは
カバーガラスの重量で押し広げて貼り合せるため、セル
及びカバーガラスの形状、特にその反りの状態に大きく
影響される。接着剤の厚さの制御は、注射器により1滴
当りの吐出量の調節によって行われる。
The adhesive thickness of cells with cover glasses manufactured using the adhesive application method using a syringe depends on the shapes of the cells and cover glasses, especially their It is greatly affected by the state of warpage. The thickness of the adhesive is controlled by adjusting the amount discharged per drop using a syringe.

一定開口率のメツシュスクリーンによる接着剤の塗布方
法で製造されたカバーガラス付セルの接着剤厚さは、は
ぼ均一なものとなる。接着剤厚さの制御は、メツシュス
クリーンの開口率の大小によって行われる。
The adhesive thickness of the cover glass-equipped cell manufactured by the adhesive application method using a mesh screen with a constant aperture ratio is almost uniform. The adhesive thickness is controlled by adjusting the aperture ratio of the mesh screen.

第4図〜第6図は、注射器により接着剤を滴下させてセ
ルとカバーガラスを接着する場合を説明する図面である
。第4図の断面図に示されるように、カバーガラス7の
方向に凸の反りを有するセル8を用い、注射器により接
着剤を1滴又は数滴、セル8の表面に又はカバーガラス
70表面に吐出し、両者を圧着して貼り合せると、接着
剤の厚さはセル8及びカバーガラス7の形状特に反りに
大きく影響され、第5図の平面図に示されるように、カ
バーガラス付セル1の内部の接着剤等圧1s18は例え
ばセルの中心付近を中心とするほぼ楕円状となる。第6
図は第5図Y−Y’の断面図であって、接着剤6の厚さ
は、中央部で薄く、周辺部でやや厚くなる。図において
は、カバーガラス7が湾曲しセル8が平面になっている
が、この逆の場合、または両者が湾曲することもあり得
る。これらの図において2はインタコネクタ、14は表
電極である。
FIGS. 4 to 6 are diagrams illustrating a case where a cell and a cover glass are bonded by dropping an adhesive using a syringe. As shown in the cross-sectional view of FIG. 4, using a cell 8 having a convex curvature in the direction of the cover glass 7, apply one or several drops of adhesive with a syringe onto the surface of the cell 8 or the surface of the cover glass 70. When the adhesive is discharged and bonded together by pressure bonding, the thickness of the adhesive is greatly influenced by the shape of the cell 8 and the cover glass 7, especially the warp, and as shown in the plan view of FIG. For example, the adhesive constant pressure 1s18 inside the cell has a substantially elliptical shape centered near the center of the cell. 6th
The figure is a sectional view taken along line YY' in FIG. 5, and the thickness of the adhesive 6 is thinner at the center and slightly thicker at the periphery. In the figure, the cover glass 7 is curved and the cell 8 is flat, but the opposite may be true, or both may be curved. In these figures, 2 is an interconnector, and 14 is a front electrode.

下記のvg1表は、第4図に示されるようなカバーガラ
ス方向に凸の反りを有する50μm厚さで、2×4c!
R寸法のセル8に、100μm厚さで、2×43寸法の
カバーガラス7を接着した際のカバーガラス付セルlの
全体としての厚さのデータを示す。第1表中のA〜■は
第8図に示されるセル8の各点A−lに対応する。
The vg1 table below has a 2×4c!
Data on the overall thickness of a cell with a cover glass 1 is shown when a cover glass 7 with a size of 2×43 and a thickness of 100 μm is adhered to a cell 8 with an R dimension. A to ■ in Table 1 correspond to each point A-1 of cell 8 shown in FIG.

第1表 セル厚50坤 カバーガラス厚100m 第1表に明らかなように、セル8の中央部りにかける接
着剤6の厚さ10〜87μm程度であるのに対し、周逮
部A、B、C,E、F、Gでは、50〜187μmと厚
くなっていることがわかる。
Table 1: Cell thickness: 50 m Cover glass thickness: 100 m As is clear from Table 1, the thickness of the adhesive 6 applied to the center of the cell 8 is approximately 10 to 87 μm, while the circumferential portions A, B , C, E, F, and G, it can be seen that the thickness is 50 to 187 μm.

この構造のカバーガラス付太陽電池セルは、宇宙におけ
る温度サイクル環境をシくレージ書ンした温度サイクル
試験(−180℃〜+140℃、1時間保持、5サイク
ル)にも十分耐え得ることが確認されている。
It has been confirmed that a solar cell with a cover glass of this structure can sufficiently withstand a temperature cycle test (-180°C to +140°C, held for 1 hour, 5 cycles) that depicts the temperature cycle environment in space. ing.

また、一定開口率のメツシュスクリーンを用いて、カバ
ーガラス7tたはセル8に接着剤6を塗布する方法によ
り製造された場合は、第7図の断面図に示されるように
、接着剤6の厚さは、はぼ均一なものが得られる。下記
の第2表は、50μm厚さで4×60寸法のセル8に、
100μm厚さで4X651寸法のカバーガラス7を接
着した場合のカバーガラス付セル全体の厚さのデータを
示す。
In addition, when the mesh screen with a fixed aperture ratio is used and the adhesive 6 is applied to the cover glass 7t or the cells 8, the adhesive 6 is applied as shown in the cross-sectional view of FIG. A fairly uniform thickness can be obtained. Table 2 below shows that for cell 8 of 4 x 60 dimensions with a thickness of 50 μm,
Data on the total thickness of a cell with a cover glass when a cover glass 7 of 4×651 dimensions with a thickness of 100 μm is adhered is shown.

第2表中のA′〜l′は第9図に示されるセル8の各点
A′〜l′に対応する。
A'-l' in Table 2 correspond to points A'-l' of cell 8 shown in FIG.

余白 第2表 第2表に明らかなように、この方法によると、セル全体
にわたり接着剤の厚さは、はぼ均一で、14〜75μm
と薄くなっていることがわかる。
As is clear from Table 2 of Margin Table 2, according to this method, the thickness of the adhesive is almost uniform throughout the cell, ranging from 14 to 75 μm.
You can see that it is getting thinner.

(発明が解決しようとする課題) 夷4〜第6図に示されるような注射器を用いて接着剤を
滴下させる方法では、セルの寸法が大きくなると、多量
の接着剤を滴下しないと、セル全体に接着剤が広がらな
いという製造上の問題があること及び軽量化のために接
着剤の厚さを薄くすると、セルの周辺部で発生するせん
断心力が大きくなり、温度サイクルを繰返すことにより
、接着剤剥離が生じることがある。
(Problems to be Solved by the Invention) In the method of dropping adhesive using a syringe as shown in Figures 4 to 6, when the size of the cell becomes large, unless a large amount of adhesive is dropped, the entire cell There is a manufacturing problem in which the adhesive does not spread, and when the thickness of the adhesive is reduced to reduce weight, the shear core force generated at the periphery of the cell increases, and repeated temperature cycles cause the adhesive to weaken. Peeling of the agent may occur.

また、第7図に示されるような一定開口率のメツシュス
クリーンを使用する場合は、接着剤6の厚さは、全体と
しては、注射器を使用した場合より偏差は小さいが、軽
fit化要求のため接着剤6の厚とを薄くすると、特に
インタコネクタ上の接着剤6の厚さがインタコネクタの
厚さ分だけ更に薄くなる。従って、温度サイクルによる
熱ストレスが大きくなり、接着剤剥離が生じ易い。また
、インターコネクタ2の付近の接着剤の厚さを一定以上
確保する場合は、全体の重量が大きくなってし!い、近
年のカバーガラス付太陽電池に要求されている軽量化が
実現されない。
Furthermore, when using a mesh screen with a constant opening ratio as shown in FIG. Therefore, when the thickness of the adhesive 6 is reduced, the thickness of the adhesive 6 on the interconnector becomes even thinner by the thickness of the interconnector. Therefore, thermal stress due to temperature cycles increases, and adhesive peeling is likely to occur. Also, if the thickness of the adhesive near the interconnector 2 is to be more than a certain level, the overall weight will increase! However, the weight reduction required for recent solar cells with cover glasses cannot be achieved.

以上のように、軽量化の要求と信頼性の要求の双方を満
足させることは、困難であった。
As described above, it has been difficult to satisfy both the requirements for weight reduction and reliability.

(!!題を解決するための手段) 本発明においては、前述の課題を解決するため、セルと
カバーガラスとの接着面の周辺部における接着剤の厚さ
を、内側の接着面接着剤の厚さより厚くさせた。
(Means for Solving the Problem) In the present invention, in order to solve the above-mentioned problem, the thickness of the adhesive at the periphery of the adhesive surface between the cell and the cover glass is adjusted to the thickness of the adhesive on the inner adhesive surface. I made it thicker than the thickness.

(作 用) 本発明によれば、せん断応力の大きく作用する部分の接
着剤の厚さを厚くすることにより、接着強度を強くする
と同時に重量を軽減することができる。
(Function) According to the present invention, by increasing the thickness of the adhesive in the portion where a large shear stress acts, it is possible to increase the adhesive strength and at the same time reduce the weight.

(実施例) 集1図は本発明の一実施例の平面図であって、第2図の
断面図に示されるように、セル内側領域Aの接着剤の厚
さtl、インターコネクタを有しない側の周辺部領域B
の接着剤の厚さを+2、インターコネクタを有する側の
周辺部領域Cのインターコネクタ2の厚さを含む接着剤
の厚さを°t8とし、インタコネクタ2の厚さを【4と
したとき、例えば tl<tg≦(+3−+4)      ・・・+1)
となる関係を有するようにさせる。第1図のX −X′
 断面図が第2図である。厚さ+8 には表電極14の
厚さも含1れている。表’Etf14の厚さは、通常極
めて薄い。この構造によれば、セル内側の領域Aの接着
剤の厚さをできるだけ薄くし、宇宙における温度サイク
ル環境による熱ストレスによりセルの周辺部に発生する
接着剤の剥離を防止するため、周辺部の領域B及びCの
接着剤の厚さを厚くしている。特に、インターコネクタ
2の接続部を含む周辺部領域C付近の接着剤の厚さ(t
B−+4)  は、他の周辺部の接着剤の厚さ+2より
更に厚いことが望筐しい。
(Embodiment) Figure 1 is a plan view of an embodiment of the present invention, and as shown in the cross-sectional view of Figure 2, the thickness of the adhesive in the cell inner area A is tl, and there is no interconnector. Side peripheral area B
When the thickness of the adhesive is +2, the thickness of the adhesive including the thickness of the interconnector 2 in the peripheral area C on the side with the interconnector is °t8, and the thickness of the interconnector 2 is [4]. , for example, tl<tg≦(+3-+4)...+1)
The relationship is as follows. X −X′ in Figure 1
A cross-sectional view is shown in FIG. The thickness +8 also includes the thickness of the front electrode 14. The thickness of Table 'Etf14 is usually very thin. According to this structure, the thickness of the adhesive in the area A inside the cell is made as thin as possible, and in order to prevent the adhesive from peeling off at the periphery of the cell due to thermal stress caused by the temperature cycle environment in space. The thickness of the adhesive in areas B and C is increased. In particular, the thickness of the adhesive (t
B-+4) is desirably thicker than the thickness of the adhesive in the other peripheral areas +2.

このような接着剤の厚さの変化は、第3図に示されるよ
うなメツシュスクリーン9を使用して、セル8の表面又
はカバーガラス7の表面に、接着剤を塗布することによ
って行われる。セル8又はカバーガラスの内側の領域A
に対応するメツシュスクリーン9の内側の領域aの開口
率をPl 、セル8又はカバーガラス7のインターコネ
クタ2を有しない側の周辺部領域Bに対応するメツシュ
スクリーン9の周辺部の領域すの開口率をP2 、セル
8又はカバーガラス7のインターコネクタ2を有する側
の周辺部領域Cに対応するメツシュスクリーン9の周辺
部の領域Cの開口率をP8とすると、例えば、 Pl<P2 <P8           ・・・(2
)とする。このようなメツシュスクリーンを用いて接着
剤を塗布すると、領域A、B、Cには、それぞれ所望の
厚さの接着剤が塗布されるが、それらの境界部はその中
間の厚さで順次変化する。領域Aと領域Bとの中間を領
域(A a B)、領域Bと領域Cとの中間を領域(B
# C)、領域Aと領域Cとの中間を領域(A、C)、
領域Aと領域Bと領域Cとの中間を領域(A、B、C)
とする。これらの関係は(1)式に加えて、 【1≦領域(A、B)の摩さ≦t2≦領域<B、 c)
の厚さ≦t8              ・・・(3
)及び、 tl ≦領域(A e c )の厚さ≦t3    ・
・・(4)及び tl ≦領域(A、B、C)の厚さ≦【8 ・・・(5
)とする。
Such a change in the thickness of the adhesive is performed by applying the adhesive to the surface of the cell 8 or the surface of the cover glass 7 using a mesh screen 9 as shown in FIG. . Area A inside cell 8 or cover glass
Pl is the aperture ratio of the inner area a of the mesh screen 9 corresponding to Assuming that the aperture ratio of is P2 and the aperture ratio of the peripheral region C of the mesh screen 9 corresponding to the peripheral region C of the cell 8 or the cover glass 7 on the side having the interconnector 2 is P8, then, for example, Pl<P2 <P8...(2
). When adhesive is applied using such a mesh screen, the desired thickness of adhesive is applied to each of areas A, B, and C, but the boundary between these areas is sequentially applied with an intermediate thickness. Change. The area between area A and area B is area (A a B), and the area between area B and area C is area (B).
#C), the middle between area A and area C is area (A, C),
The area between area A, area B, and area C is the area (A, B, C)
shall be. In addition to equation (1), these relationships are as follows: [1≦fineness of area (A, B)≦t2≦area<B, c)
Thickness≦t8...(3
) and tl ≦thickness of region (A e c )≦t3 ・
...(4) and tl≦Thickness of region (A, B, C)≦[8 ...(5
).

下記の第3表は、本発明により試作したカバーガラス付
太陽電池セルの全体の厚さのデータの一例を示すもので
ある。第1表及び第2表の例と同じくセルの厚さは50
μm1カバーガラスの厚さは100μmである。但し、
面積は両者とも4×6cmとした。MrJB表中のA′
〜I′は第9図のA′〜■′の各点に対応する。
Table 3 below shows an example of data on the overall thickness of a solar cell with a cover glass manufactured as a prototype according to the present invention. As in the examples in Tables 1 and 2, the cell thickness is 50
The thickness of the μm1 cover glass is 100 μm. however,
The area for both was 4 x 6 cm. A' in MrJB table
-I' correspond to each point A' to ■' in FIG.

第8表に明らかなように、セルの内側領域Aの、第9図
の例えば点E′における接着剤の厚さは、2〜15μm
と薄く、周適部領域Bの例えば点B I。
As is clear from Table 8, the thickness of the adhesive in the inner region A of the cell, for example at point E' in FIG.
For example, point B I in the circumferential proper region B.

cl、 vl、 Hl、 xl における接着剤の厚さ
は44〜88/l mとやや厚く、周辺部領域Cの例え
ば点A’、D’。
The thickness of the adhesive at cl, vl, Hl, xl is somewhat thick, 44-88/l m, and for example at points A', D' in the peripheral region C.

G′における接着剤の厚さは82〜118μmと厚くな
っている。また、インターコネクタの厚さが80μmと
すると、インターコネクタ上の接着剤の厚さは、52〜
88μmとなり、前述の式(1)〜(5)の範囲内とな
る。この構造のカバーガラス付太陽電池セルは、前述の
温度サイクル試験によっても、接着剤剥離が発生しない
ことが確認されている。
The thickness of the adhesive at G' is as thick as 82 to 118 μm. Furthermore, if the thickness of the interconnector is 80 μm, the thickness of the adhesive on the interconnector is 52 to 50 μm.
It is 88 μm, which falls within the range of formulas (1) to (5) described above. It has been confirmed that the solar battery cell with a cover glass having this structure does not cause adhesive peeling even in the above-mentioned temperature cycle test.

本発明による構造が、接着剤の剥離に関して信頼性が高
いことを、−次元の簡単な応力式により説明すると以下
のようになる。
The fact that the structure according to the present invention is highly reliable with respect to adhesive peeling can be explained using a simple -dimensional stress equation as follows.

第10図において、カバーガラス7及びセル8は、剛性
が高く、かつ接着剤6を介して互に変位に対し影響を受
けないものとする。また、接着剤6は剛性が低く、カバ
ーガラス7及びセル8によ(丁 り変位の影響を杢1ものとする。長さ−Lなるカバーガ
ラス7、接着剤6、セル8のそれぞれの厚さをrttT
slTgとする。また、接着剤6の横弾性常数を08と
し、カバーガラス7及びセル8のX軸応力をそれぞれg
’1.g2とする。筐た、カバーガラス7及びセル8の
接着剤6との界面せん断応力を両者が等しいものとしτ
とする。
In FIG. 10, it is assumed that the cover glass 7 and the cell 8 have high rigidity and are not affected by mutual displacement via the adhesive 6. In addition, the adhesive 6 has low rigidity, and the cover glass 7 and the cells 8 (assuming the effect of curling displacement is 1). Sawo rttT
Let it be slTg. In addition, the transverse elastic constant of the adhesive 6 is 08, and the X-axis stress of the cover glass 7 and cell 8 is g
'1. Let it be g2. Assume that the interfacial shear stress between the casing, the cover glass 7, and the adhesive 6 of the cell 8 is equal to τ.
shall be.

このとき ここで、Xはセル中央部よりの距離を示す。At this time Here, X indicates the distance from the center of the cell.

各応力は下式で示される。Each stress is expressed by the formula below.

El、E2はそれぞれカバーガラス7、セル8のヤング
率を示す。
El and E2 indicate the Young's modulus of the cover glass 7 and the cell 8, respectively.

ul、u2は各層のX軸方向の変位を、αl、α2は各
層の線膨張係数を、 JTは温度変化量を示す。
ul and u2 indicate the displacement of each layer in the X-axis direction, αl and α2 indicate the linear expansion coefficient of each layer, and JT indicates the amount of temperature change.

Ql)式を用いて(ト)式の解を求めると、σ2 = 
−m g l m=T1/′r2、 n = ”/E! となる。
When the solution to equation (G) is found using equation (Ql), σ2 =
−m g l m=T1/′r2, n=”/E!

接着剤の厚さT8の関数として整理すると、となる。When arranged as a function of the adhesive thickness T8, it becomes as follows.

第11図はセル8の厚さ、カバーガラス7の厚さ、各構
成材料の物性値を任意に固定した場合の、せん断芯力τ
の相対比較を、接着剤6の厚さT8及びセル8の中心か
らの距離Xをパラメータとして示す。接着剤の厚さT2
が小さくなる程、筐た、セルの寸法が大きくなる程、セ
ル周辺部の接着剤6に生ずるせん断応力が、指数関数的
に大きくなることがわかる。
Figure 11 shows the shear core force τ when the thickness of the cell 8, the thickness of the cover glass 7, and the physical property values of each constituent material are arbitrarily fixed.
A relative comparison is shown using the thickness T8 of the adhesive 6 and the distance X from the center of the cell 8 as parameters. Adhesive thickness T2
It can be seen that as the size of the cell becomes smaller and the dimensions of the cell and the cell become larger, the shear stress generated in the adhesive 6 around the cell increases exponentially.

上記の説明はメツシュスクリーンを用いた例について行
ったが、細いノズルから接着剤を吐出し式(2)の条件
を満足するような接着剤の分布を得ることによっても実
現できるであろう。
Although the above explanation has been made regarding an example using a mesh screen, it may also be realized by discharging the adhesive from a narrow nozzle and obtaining a distribution of the adhesive that satisfies the condition of formula (2).

(発明の効果) 以上のように、本発明によるカバーガラス付太陽電池セ
ルは、周辺部の接着剤の厚さが厚いので、熱セトレスに
対する信頼性が向上し、セル内側の接着剤の厚さを薄く
できるから、重量を軽減できる。太陽電池が大型化して
も接着剤の重量軽減に効果的である。
(Effects of the Invention) As described above, in the solar cell with a cover glass according to the present invention, since the thickness of the adhesive in the peripheral part is thick, the reliability against thermal settling is improved, and the thickness of the adhesive inside the cell is increased. Since it can be made thinner, the weight can be reduced. This is effective in reducing the weight of the adhesive even as solar cells become larger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の平面図、第2図は第1図の
x−x’ 断面図、第8図は本発明に使用されるメツシ
ュスクリーンの平面図、第4図はカバーガラスとセルと
の接着状態の一例の断面図、第5図は従来の一例の平面
図、第6図はそのY−Y’断面図、第7図は従来の他の
例の断面図、第8図は第5図の例のデータ測定の各点の
位置を示す平面図、第9図は+$7図の例のデータ測定
の各点の位置を示す平面図、第10図は応力式説明のた
めの斜視図、第11図はせん断応力とセル中心からの距
離との関係を示すグラフである。 l・・・カバーガラス付太陽電池セル、2・・・インタ
ーコネクタ、6・・・接着剤、7・・・カバーガラス、
8・・・セル、18・・・接着剤等厚縁、14・・・表
電極第 図 第 図 第 図
FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2 is a sectional view taken along line xx' in FIG. 1, FIG. 8 is a plan view of a mesh screen used in the present invention, and FIG. 5 is a plan view of a conventional example, FIG. 6 is a Y-Y' sectional view thereof, and FIG. 7 is a sectional view of another conventional example, Fig. 8 is a plan view showing the position of each point of data measurement in the example of Fig. 5, Fig. 9 is a plan view showing the position of each point of data measurement in the example of Fig. +$7, and Fig. 10 is a plan view showing the position of each point of data measurement in the example of Fig. 5. FIG. 11, a perspective view for explaining the formula, is a graph showing the relationship between shear stress and distance from the cell center. l...Solar cell with cover glass, 2...Interconnector, 6...Adhesive, 7...Cover glass,
8...Cell, 18...Thick edge of adhesive etc., 14...Top electrode diagram diagram diagram diagram

Claims (1)

【特許請求の範囲】 1、太陽電池セルとカバーガラスの接着面の接着剤の厚
さを、 セル中心部の接着剤の厚さ<インタコネクタを有しない
周辺部の接着剤の厚さ≦インタコネクタを有する周辺部
の接着剤の厚さ としたことを特徴とするカバーガラス付太陽電池セル
[Claims] 1. The thickness of the adhesive on the bonding surface between the solar cell and the cover glass is defined as: thickness of adhesive at the center of the cell <thickness of adhesive at the periphery where there is no interconnector ≤interconnector A solar cell with a cover glass, characterized in that the thickness of the adhesive on the periphery of the connector is increased.
JP1170049A 1989-06-30 1989-06-30 Solar cell with cover glass Expired - Fee Related JPH0716023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1170049A JPH0716023B2 (en) 1989-06-30 1989-06-30 Solar cell with cover glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170049A JPH0716023B2 (en) 1989-06-30 1989-06-30 Solar cell with cover glass

Publications (2)

Publication Number Publication Date
JPH0334582A true JPH0334582A (en) 1991-02-14
JPH0716023B2 JPH0716023B2 (en) 1995-02-22

Family

ID=15897672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170049A Expired - Fee Related JPH0716023B2 (en) 1989-06-30 1989-06-30 Solar cell with cover glass

Country Status (1)

Country Link
JP (1) JPH0716023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129644A (en) * 1991-10-31 1993-05-25 Sharp Corp Cover glass for solar cell
JPH05235385A (en) * 1992-02-21 1993-09-10 Sharp Corp Silicon solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129644A (en) * 1991-10-31 1993-05-25 Sharp Corp Cover glass for solar cell
JPH05235385A (en) * 1992-02-21 1993-09-10 Sharp Corp Silicon solar cell

Also Published As

Publication number Publication date
JPH0716023B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
JPH02113584A (en) Manufacture of thin film integrated circuit whose performance is not deteriorated by bending
KR950004445A (en) Thin Film Forming Device
US6717749B2 (en) Cemented lens group
JPH0334582A (en) Solar cell fitted with cover glass
CN109411624B (en) Double-sided adhesive film for flexible display panel, preparation method of double-sided adhesive film and flexible display panel
US3341391A (en) Spherical shaped plastic filter for cathode ray tube
JPH01292343A (en) Pellicle
US7563382B2 (en) Mask and method of fabricating the same, and method of machining material
CN106608615A (en) Method for manufacturing MEMS device
CN111115551A (en) MEMS inertial device for reducing packaging stress through transition layer structure
JP2641791B2 (en) Method for manufacturing solar cell with cover glass
CN106647047B (en) The driving method of liquid crystal display panel, the method for manufacturing liquid crystal display panel and liquid crystal display panel
US11740426B2 (en) Optical element, optical system and optical device
US4455744A (en) Method of making a precision resistor with improved temperature characteristics
US20210397012A1 (en) Optical element
JPH07209121A (en) Pressure sensor and its production method
KR102428904B1 (en) Swelling tape and manufacturing method thereof
CN218187052U (en) Soft support pelvic girdle
JPH11108783A (en) Capacitance type pressure sensor and fixing structure thereof
JPS6364021A (en) Liquid crystal display device
JP2883479B2 (en) Cover glass for solar cells
JPS55120187A (en) Fabricating method of bimorph made of high molecular film
JPH01286333A (en) Semiconductor device
JPH0222626A (en) Liquid crystal display element
TW201013245A (en) Manufacturing method a wafer lens module and structure of

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees