JPH0334565B2 - - Google Patents

Info

Publication number
JPH0334565B2
JPH0334565B2 JP58201411A JP20141183A JPH0334565B2 JP H0334565 B2 JPH0334565 B2 JP H0334565B2 JP 58201411 A JP58201411 A JP 58201411A JP 20141183 A JP20141183 A JP 20141183A JP H0334565 B2 JPH0334565 B2 JP H0334565B2
Authority
JP
Japan
Prior art keywords
wave
radar
distance
echo
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201411A
Other languages
Japanese (ja)
Other versions
JPS6093317A (en
Inventor
Yoshizo Hagino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP58201411A priority Critical patent/JPS6093317A/en
Publication of JPS6093317A publication Critical patent/JPS6093317A/en
Publication of JPH0334565B2 publication Critical patent/JPH0334565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 本発明は、航行中の船舶等から波浪の波頭の高
さを直接に測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for directly measuring the height of wave crests from a ship or the like in transit.

従来、洋上等で使用する波高計は、波浪の伝ぱ
ん方向における圧力差を検出する方法、ブイ等に
加速計を搭載してその出力を積分することによ
り、上,下の変動する高さを求める方法等があ
り、これらが洋上での波高を測定する方法であつ
た。
Conventionally, wave height meters used at sea etc. detect the pressure difference in the wave propagation direction, or by installing an accelerometer on a buoy or the like and integrating the output, it is possible to measure the fluctuating height of the waves upward and downward. There are several methods for measuring wave height at sea.

また、他の方法として超音波距離計や圧力計を
海岸近効の海底に設置して波高を測定する方法が
あるが、これらは、いずれも航行中の船舶からの
測定ができない方法であつた。
Another method is to measure wave height by installing an ultrasonic distance meter or pressure gauge on the seabed near the coast, but these methods cannot be used to measure wave heights from a ship in transit. .

なお、これまで研究的には電波高度計を用い、
航行中の船舶直下の海面までの距離を測定すると
ともに、船舶にきわめて精度のよい加速計を搭載
して、その出力を積分する動揺計により船舶の
上,下変動量を算出し、前記電波高度計の測定値
との差から波頭の高さを算出する方法もあるが、
測定精度は上記動揺計の精度に左右される。
In addition, in research so far, we have used radio altimeters,
In addition to measuring the distance to the sea surface directly below the ship during navigation, the ship is equipped with an extremely accurate accelerometer, and a sway meter that integrates the output is used to calculate the amount of vertical movement of the ship. There is also a method of calculating the height of the wave crest from the difference between the measured value of
The measurement accuracy depends on the accuracy of the vibration meter.

本発明はこのような点に鑑み、航行中の船舶に
おいて備えられた既存のレーダを用い、そのレー
ダアンテナの高さと、波浪の波長とを既知情報と
し、距離に対して波浪の波長により該レーダ信号
に周期性が発生することを利用し、レーダアンテ
ナから見て波浪の波頭によつて生じる陰の部分が
発生する波浪までの距離の測定から波高を測定す
ることを特徴とするレーダ波高測定装置を提供す
るものである。
In view of these points, the present invention uses an existing radar installed on a ship while sailing, uses the height of the radar antenna and the wave wavelength as known information, and calculates the radar according to the wave wavelength with respect to the distance. A radar wave height measurement device that uses the occurrence of periodicity in signals to measure the wave height by measuring the distance from the radar antenna to the wave where the shadow part caused by the wave crest is generated. It provides:

以下、本発明を一実施例の第1図及びその動作
原理説明の第2図により説明する。
The present invention will be explained below with reference to FIG. 1 showing an embodiment and FIG. 2 illustrating its operating principle.

第1図は、波高レーダ受信系のブロツク図で、
無線周波部1、中間周波部2、低レベル信号検出
回路3、距離測定回路5、波高計算器7及び波高
値表示器10で構成される。
Figure 1 is a block diagram of the wave height radar receiving system.
It is composed of a radio frequency section 1, an intermediate frequency section 2, a low level signal detection circuit 3, a distance measuring circuit 5, a pulse height calculator 7, and a pulse height value display 10.

受信動作及び波高値の測定動作はつぎのとおり
である。
The reception operation and peak value measurement operation are as follows.

第2図に示すレーダ送信部のアンテナ20から
レーダパルスが洋上(海面)のうねり(波浪)に
放射され、その反射による受信エコーが無線周波
部1により受信され、中間周波部2へ導かれる。
該中間周波部2では、方位ゲート回路2−1に付
属する方位ゲートダイヤル2−2を、レーダ画像
から判断して波浪の到来方向に設定することで方
位ゲート回路2−1は設定された方位のレーダエ
コーのみを出力する。この方位ゲート回路2−1
は2海里以内のレーダエコーを取り出すように
し、この出力は対数特性回路2−3へ導かれ、エ
コーの強さに対する増幅利得を対数特性とし、ダ
イナミツクレンジを拡大させる。前記対数特性回
路2−3の出力を距離利得補正回路2−4へ導
く。波のうねり(波浪)から反射されるレーダエ
コーは距離に対して周期性になるが、該補正回路
2−4は、このエコー振幅を距離に対して、ほぼ
一定ならしめる利得特性を備えている。ここで、
ほぼ一定振幅となつた中間周波のエコー信号は、
検波回路2−5により、ビデオ信号として、次の
低レベル信号検出回路3へ導かれる。
Radar pulses are emitted from the antenna 20 of the radar transmitter shown in FIG.
In the intermediate frequency section 2, by setting the azimuth gate dial 2-2 attached to the azimuth gate circuit 2-1 to the arrival direction of the waves as determined from the radar image, the azimuth gate circuit 2-1 is set to the set azimuth. Outputs only the radar echo of This direction gate circuit 2-1
is designed to extract radar echoes within 2 nautical miles, and this output is led to a logarithmic characteristic circuit 2-3, which makes the amplification gain with respect to the strength of the echo a logarithmic characteristic and expands the dynamic range. The output of the logarithmic characteristic circuit 2-3 is led to a distance gain correction circuit 2-4. Radar echoes reflected from wave undulations (waves) become periodic with respect to distance, but the correction circuit 2-4 has a gain characteristic that makes the echo amplitude approximately constant with respect to distance. . here,
The intermediate frequency echo signal with almost constant amplitude is
The detection circuit 2-5 leads the signal to the next low level signal detection circuit 3 as a video signal.

該低レベル信号検出回路3では、検出しようと
する微弱信号のレベルが、レベル設定ダイヤル3
−1によつて設定される。この設定ダイヤル3−
1は波浪の周期性の中から降雨や、波しぶき等の
状況に対して変化する低レベル部分の信号のみを
取出すことができるように設定するためのもので
ある。低レベル信号検出回路3は設定された微弱
レベル値以下で最初に到来する波浪からのエコー
が検出される。
In the low level signal detection circuit 3, the level of the weak signal to be detected is determined by the level setting dial 3.
-1. This setting dial 3-
1 is for setting so that only a signal of a low level portion that changes depending on conditions such as rain and sea spray from the periodicity of waves can be extracted. The low level signal detection circuit 3 detects the echo from the wave that arrives first at a level below a set weak level value.

波浪観測のレーダにおいては、レーダアンテナ
20から見て波浪の波頭により陰になる海面が存
在し、受信されるレーダエコー中の微弱信号の部
分が、その陰の部分に相当している。低レベル信
号検出回路3は、検出された該微弱信号からその
信号の到来時間を正確に示すようにパルス状のシ
ヤドウ発生信号4を出力し、距離測定回路5へ導
く。該回路5においては、送信トリガ信号6とシ
ヤドウ発生信号4との間の時間差を測定して距離
測定値信号5−1を波高計算器7へ導く。
In radar for wave observation, there is a sea surface that is shaded by the wave crest when viewed from the radar antenna 20, and the portion of the weak signal in the received radar echo corresponds to the shaded portion. The low level signal detection circuit 3 outputs a pulsed shadow generation signal 4 from the detected weak signal so as to accurately indicate the arrival time of the signal, and guides it to the distance measurement circuit 5. In the circuit 5, the time difference between the transmission trigger signal 6 and the shadow generation signal 4 is measured and a distance measurement value signal 5-1 is guided to the pulse height calculator 7.

波高計算器7には、別途に求めた波浪の波長を
表わす波長計測定値信号8とレーダの送信するパ
ルス幅の半分に相当する距離を表わすレーダパル
ス幅値信号9とが入力される。波高計算器7では
レーダパルス幅値信号9により、シヤドウ発生信
号4へ加わつたパルス幅の半分に相当する時間を
該信号4から差引く。また波高計算器7にはレー
ダアンテナ高設定ダイヤル7−1及び波浪波形関
数選択スイツチ7−2を備え、それぞれアンテナ
の高さ及び使用時の海面の状況に応じて最適と思
われる波浪関数を選択し設定できるようになつて
いる。
The wave height calculator 7 receives a wavelength meter measurement value signal 8 representing a separately determined wave wavelength and a radar pulse width value signal 9 representing a distance corresponding to half the pulse width transmitted by the radar. The pulse height calculator 7 subtracts from the radar pulse width value signal 9 a time corresponding to half the pulse width added to the shadow generation signal 4. The wave height calculator 7 is also equipped with a radar antenna height setting dial 7-1 and a wave waveform function selection switch 7-2, each of which selects the wave function considered to be optimal depending on the height of the antenna and the sea surface situation at the time of use. It is now possible to configure settings.

つぎに波高計算器7の波高測定の動作原理をの
べる。第2図はレーダアンテナ20からレーダ波
が送信されたときに生じたレーダ波の陰を幾何学
的に説明するための図であり、第2図A及びBは
同じ波長Lであるが、波高がh1>h2とそれぞれ異
なる例を示している。ここで、波高h1で高い波浪
のときのA1の距離、波高h2で低い波浪のときの
B1の距離を、それぞれ波頭(イ)及び(い)に
よつて陰にならない波浪の限界の距離とする。そ
して、これより遠い波頭(ロ)(ハ)……、(ろ)
(は)……に対しては、斜線で示すように陰が生
ずる。この場合、(イ)あるいは(い),(ロ)あ
るいは(ろ)の間の距離A1,B1,A2,B2におい
て、波頭が進行しているときには、陰の長さの変
化が受信されるエコーの中における微弱信号部分
の時間幅の変化となつて現われる。この微弱なエ
コーの部分において船から見て最初に設定値21
以下のレベルになつたときの最短距離と、レーダ
アンテナの高さHと、波浪の波長Lとを、波浪の
形を表わす波形関数に対して幾何学的計算を行う
と波高が計算できる。
Next, the operating principle of wave height measurement by the wave height calculator 7 will be described. Fig. 2 is a diagram for geometrically explaining the shadow of the radar wave that occurs when the radar wave is transmitted from the radar antenna 20. Fig. 2 A and B have the same wavelength L, but the wave height shows different examples where h 1 > h 2 . Here, the distance of A 1 when the wave height is h 1 and the waves are high, and the distance when the waves are low and the wave height is h 2 .
Let the distance of B 1 be the limit distance of waves that are not shaded by wave crests (a) and (a), respectively. And the wave crest further away than this (ro) (ha)..., (ro)
For ()..., a shadow appears as shown by the diagonal line. In this case, when the wave front is progressing at the distances A 1 , B 1 , A 2 , B 2 between (a) or (i), (b) or (ro), the change in the length of the shadow is This appears as a change in the time width of the weak signal portion in the received echo. In this weak echo area, the initial setting value is 21 when viewed from the ship.
The wave height can be calculated by geometrically calculating the shortest distance when the following level is reached, the height H of the radar antenna, and the wavelength L of the wave with respect to a waveform function representing the shape of the wave.

波浪関数は正弦波と双曲線関数とを、海面の状
況に応じた数種類の組合わせで、波高計算器7に
内蔵させておき、使用時に海面の状況に応じて最
適と思われる波浪関数を選択スイツチ7−2で選
択する。波高計算器7で計算された波高値は、
次々と到来する波頭ごとに波高値表示器10に表
示され、波高値を確認できる。
Wave functions include several combinations of sine waves and hyperbolic functions depending on sea surface conditions, and are built into the wave height calculator 7. When using the wave height calculator 7, a switch can be used to select the wave function considered to be optimal according to sea surface conditions. Select with 7-2. The wave height value calculated by the wave height calculator 7 is
Each successive wave crest is displayed on the wave height value display 10, and the wave height value can be confirmed.

以上説明したように、本発明はレーダから放射
され、波頭から反射されるエコーのつぎに到来す
る微弱なエコーの部分が設定値になつたときの距
離と、レーダアンテナの高さHと波浪の波長Lと
をデータ情報とし、波浪の形を表わす波形関数に
対して幾何学的計算から波高を求め表示するよう
にしたものである。これは航行中の船舶から測定
できる利点があるので船舶の安全航行に有益なも
のとなる。
As explained above, the present invention is based on the distance when the part of the weak echo that arrives next to the echo emitted from the radar and reflected from the wave crest reaches the set value, the height H of the radar antenna, and the distance of the wave. The wavelength L is used as data information, and the wave height is determined and displayed by geometric calculation for a waveform function representing the wave shape. This has the advantage of being measurable from a ship in transit, and is therefore useful for safe navigation of ships.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である波高レーダ受
信系のブロツク図、第2図は本発明の波高測定原
理を示す図である。 1:無線周波部、2:中間周波部、2−1:方
位ゲート回路、2−2:方位ゲートダイヤル、2
−3:対数特性回路、2−4:距離利得補正回
路、2−5:検波回路、3:低レベル信号検出回
路、3−1:レベル設定ダイヤル、4:シヤドウ
発生信号、5:距離測定回路、6:送信トリガ信
号、7:波高計算器、8:波長計測値信号、9:
レーダパルス幅値信号、10:波高値表示器、2
0:レーダアンテナ、21:微弱なエコーに対す
る設定値。
FIG. 1 is a block diagram of a wave height radar receiving system which is an embodiment of the present invention, and FIG. 2 is a diagram showing the principle of wave height measurement of the present invention. 1: Radio frequency section, 2: Intermediate frequency section, 2-1: Direction gate circuit, 2-2: Direction gate dial, 2
-3: Logarithmic characteristic circuit, 2-4: Distance gain correction circuit, 2-5: Detection circuit, 3: Low level signal detection circuit, 3-1: Level setting dial, 4: Shadow generation signal, 5: Distance measurement circuit , 6: Transmission trigger signal, 7: Wave height calculator, 8: Wavelength measurement value signal, 9:
Radar pulse width value signal, 10: Wave height value indicator, 2
0: Radar antenna, 21: Setting value for weak echo.

Claims (1)

【特許請求の範囲】[Claims] 1 受信したレーダエコー信号の中から設定した
波浪方向と特定距離内のレーダエコー信号のみを
抽出する手段と、抽出したレーダエコー信号を振
幅に対して対数変換し、距離に対してほぼ一定振
幅に補正し、これを検波してエコーのビデオ信号
を得る手段と、設定した微弱レベル値以下で検出
される波浪からのエコーによるビデオ信号の発生
時点を示すシヤドウ発生信号を出力する手段と、
レーダ送信トリガ信号と該シヤドウ発生信号との
間の時間差からシヤドウ発生最短距離を求める手
段と、波浪状況に応じて代表的波浪波形を表現す
る波形関数計算式を記憶しておき波浪の波高を計
算する手段とを備えてレーダアンテナ設置高と別
途求めた波浪の波長と前記シヤドウ発生最短距離
と前記波形関数計算式とを基にして波浪の波高を
算出するようにしたことを特徴とするレーダ波高
測定装置。
1 A means for extracting only radar echo signals within a set wave direction and a specific distance from the received radar echo signals, and a means for logarithmically converting the amplitude of the extracted radar echo signal so that the amplitude is approximately constant with respect to distance. means for correcting and detecting the echo to obtain an echo video signal; and means for outputting a shadow generation signal indicating a point in time when a video signal is generated due to an echo from waves detected below a set weak level value;
Means for determining the shortest shadow generation distance from the time difference between the radar transmission trigger signal and the shadow generation signal, and a waveform function calculation formula that expresses a typical wave waveform according to wave conditions are memorized and the wave height of the waves is calculated. The radar wave height is calculated based on the radar antenna installation height, the wavelength of the waves separately determined, the shortest shadow generation distance, and the waveform function calculation formula. measuring device.
JP58201411A 1983-10-27 1983-10-27 Radar crest measuring device Granted JPS6093317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201411A JPS6093317A (en) 1983-10-27 1983-10-27 Radar crest measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201411A JPS6093317A (en) 1983-10-27 1983-10-27 Radar crest measuring device

Publications (2)

Publication Number Publication Date
JPS6093317A JPS6093317A (en) 1985-05-25
JPH0334565B2 true JPH0334565B2 (en) 1991-05-23

Family

ID=16440634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201411A Granted JPS6093317A (en) 1983-10-27 1983-10-27 Radar crest measuring device

Country Status (1)

Country Link
JP (1) JPS6093317A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719373B2 (en) * 2001-04-23 2011-07-06 次清 平山 Wave height calculation device, wave height calculation method, and computer-readable medium
WO2007142433A1 (en) * 2006-06-02 2007-12-13 Yeon Engineering Co., Ltd. Calibration method of significant wave height in radar type wave gauge system
JP6785421B2 (en) * 2016-01-27 2020-11-18 国立大学法人千葉大学 Wave measuring device and target detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948667A (en) * 1982-09-13 1984-03-19 Fujitsu Ltd Apparatus for measuring swell wave height value

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443324Y2 (en) * 1985-11-08 1992-10-13
JPH0298994A (en) * 1988-10-06 1990-04-11 Ibiden Co Ltd Formation of conductor layer on polyimide insulation layer
JPH11238595A (en) * 1997-11-27 1999-08-31 Toray Ind Inc Static eliminator and static eliminating method
JP2006176275A (en) * 2004-12-22 2006-07-06 Konica Minolta Photo Imaging Inc Sheet peeling device
JP5195397B2 (en) * 2008-12-24 2013-05-08 大日本印刷株式会社 Static eliminator for rotary press

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948667A (en) * 1982-09-13 1984-03-19 Fujitsu Ltd Apparatus for measuring swell wave height value

Also Published As

Publication number Publication date
JPS6093317A (en) 1985-05-25

Similar Documents

Publication Publication Date Title
US4229809A (en) Acoustic under sea position measurement system
US4532617A (en) System for locating a towed marine object
US8971150B2 (en) Method for measuring sea waves by means of ultrasonic waves, as well as sea wave measuring system
EP2153181B1 (en) Position correction in sodar and meteorological lidar systems
US5481504A (en) Method and device for determining target speed and distance with frequency modulated pulses
US4559621A (en) Telemetering acoustic method for determining the relative position of a submerged object with respect to a vehicle and device therefor
WO1993007506A1 (en) Feature location and display apparatus
KR101238387B1 (en) Towing tank using ultrasonic measurement of ice thickness measurement system and method
CN109084864B (en) Slender straight pipe type ultrasonic liquid level measuring device and measuring method
US3766518A (en) Apparatus for determining distance
RU2009110868A (en) METHOD FOR SHOOTING AQUATORIA BOTTOM RELIEF AND DEVICE FOR ITS IMPLEMENTATION
US3673553A (en) Measuring instrument for piloting ship for docking or leaving
US4176338A (en) High resolution acoustic navigation system
JPH0334565B2 (en)
JPH0228116B2 (en)
Pettigrew et al. An evaluation of a bottom-mounted Doppler acoustic profiling current meter
CN111596286B (en) Distance measuring method and device
JP3413677B2 (en) Flow velocity measuring device
JPH0815427A (en) Sound measuring buoy
RU53454U1 (en) UNDERWATER MEASUREMENT OF DEPTH OF A RESERVOIR AND AVERAGE VERTICAL VELOCITY OF SPEED OF SOUND IN WATER
JP3156012B2 (en) Concrete structure thickness measurement method
JPH02115782A (en) Estimated stranding distance instrument
Mai et al. Applicability of radar level gauges in wave monitoring
US3336800A (en) System for measuring sea surface characteristics from a submerged submarine
CN217484507U (en) Underwater speed measuring device based on electronic gyroscope