JPH033441B2 - - Google Patents

Info

Publication number
JPH033441B2
JPH033441B2 JP20930485A JP20930485A JPH033441B2 JP H033441 B2 JPH033441 B2 JP H033441B2 JP 20930485 A JP20930485 A JP 20930485A JP 20930485 A JP20930485 A JP 20930485A JP H033441 B2 JPH033441 B2 JP H033441B2
Authority
JP
Japan
Prior art keywords
ferrotitanium
wear
sliding
titanium
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20930485A
Other languages
Japanese (ja)
Other versions
JPS6188701A (en
Inventor
Toshio Teraoka
Kunio Fukuhara
Masahide Mitani
Mototsugu Oohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP20930485A priority Critical patent/JPS6188701A/en
Publication of JPS6188701A publication Critical patent/JPS6188701A/en
Publication of JPH033441B2 publication Critical patent/JPH033441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/04Current collectors for power supply lines of electrically-propelled vehicles using rollers or sliding shoes in contact with trolley wire
    • B60L5/08Structure of the sliding shoes or their carrying means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は銅系焼結集電摺動材料に関する。 従来の技術及びその問題点 集電摺動材料に要求される性質として、例えば
相手材であるトロリー線に対して攻撃性の少ない
こと、充分な耐摩耗性を有すること、機械的な強
度を具備し、電気抵抗の小さいことが挙げられ
る。特にトロリー線の保守、寿命などを考える
と、攻撃性の少ないことが最も重要な性質とな
る。攻撃性を少なくするには材料の硬さを下げ、
潤滑性に富むことが絶対的に必要な条件となる。
材料が軟質であるいうことと潤滑性に富むことと
は傾向として一致するので好都合である。すなわ
ち潤滑剤を添加した場合、材料が軟質であればあ
るほど潤滑剤が突出しやすく、従つて相手材と潤
滑材の接触する機会が増加するからである。従来
の集電摺動用焼結合金はFeあるいはCuを主成分
とする基地中に耐摩性を向上するために各種の金
属を添加したものである。しかしながらこれらの
焼結合金はいずれも金属の基地中への拡散が著し
く、材質の硬化を伴つて必然的に潤滑性も減少
し、結果的にトロリー線に対する攻撃性が大とな
る。また電気抵抗は金属の添加とともに増加する
ので、これらの材料では潤滑剤として用いる元素
の添加量もかなり少量に制限され、潤滑性の低下
がさらに助長される結果となる。さらに電気抵抗
率の増加とあいまつて、これらの元素は機械強度
のうち、特に衝撃値を極端に低下させる。潤滑剤
として用いる元素も同様に作用するので、機械特
性の面からも添加量に制限を受ける。すなわち、
主として耐摩耗性を向上させる目的で添加する金
属は、トロリー線に対する攻撃性、電気抵抗率、
衝撃値などほとんどの因子に悪影響を及ぼし、こ
のことが従来焼結集電摺動材料において耐摩耗性
と潤滑性の双方を兼備することは矛循するとされ
てきた原因である。 問題点を解決するための手段 本発明はかかる問題点を改良するためにCuを
主成分とする基地をできるだけ軟かくしてトロリ
ー線に対する攻撃性を小さくし、かつ、耐摩耗性
に優れた集電摺動用材料を提供することを目的と
するものである。すなわち本発明は機械特性と電
気特性を所定の値に保持する程度の、最低限度の
金属を添加するのみで、主として耐摩耗性の向上
は予め窒化処理したチタンあるいはフエロチタン
により得ることが特徴とする銅系焼結集電摺動材
料に係る。 本発明においてチタンあるいはフエロチタンは
予め窒化処理して添加する。チタンあるいはフエ
ロチタンは容易に窒化されるが、これらの窒化物
は安定であり、いつたん窒化されると、なかなか
内部にまで窒化は進行しないので窒化された粉末
粒子は表面から厚さ約2μ以下の非常に硬い窒化
層と内部が軟かい純チタンあるいは純フエロチタ
ンから形成される。これらの窒化物を耐摩剤とし
て添加した本発明品の摺動状況のモデルを第1図
に示す。図に示す通り、実際に耐摩剤として作用
する部分は斜線を施した窒化層と相手材の接触界
面である。したがつて摺動面におけるチタンおよ
びフエロチタンの窒化層の占める面積の割合は極
めて微々たるものでありさらに摺動時にこれらの
窒化層が摩耗粉となつて欠損し摺動面を移動する
ときも窒化層がせいぜい約2μと非常に薄いため
相手材への攻撃性は少ない。本発明品の耐摩耗に
ついては後に実施例で示すが十分な耐摩耗特性を
発揮する。上記した通り耐摩耗特性を向上させる
のはチタンあるいはフエロチタンの窒化物という
よりも、厳密にいえばチタンあるいはフエロチタ
ンの窒化層ということができる。そしてこれらの
窒化層が摺動面に露出する面積が極く微小である
にもかかわらず、耐摩耗特性に顕著な効果を発揮
するのは第1に窒化層が非常に硬いことと、第2
にこれらの窒化層がミクロ的にみて摺動面から内
部へ連続していることに起因している。 第2の原因についてさらに詳細に説明する。窒
化層はチタンあるいはフエロチタンの粉末粒子の
極く表面にほぼ一様の厚みでちようど卵の殻のよ
うな形で存在している。本発明品が摺動状態にあ
るとき、この窒化層が摩耗するためにはいわゆる
上記の卵の殻を破壊するに足りる剪断応力が必要
となるが、この窒化層は内部の純チタンあるいは
純フエロチタンとは当然のことながらしつかりと
結合しており、破壊して摺動面外へ持ち去ること
はむずかしい。また相手材の摺動面が荒れた面で
あるとき、窒化層が徐々に破壊されていく摩耗で
なく、耐摩粒子全体がマトリツクスから離脱す
る、いわゆる“欠け落ち現象”が生じる危惧があ
るが、これは耐摩粒子としてフエロチタンの窒化
物を用いることによつて解決される。フエロチタ
ンを窒化処理すると窒化されやすいTiが優先窒
化し、Feは窒化されていないので、これをCuを
主成分とする基地中に添加するとフエロチタン中
のFeのみがマトリツクスに拡散し、結合が強固
となるからである。チタンの窒化物はほとんどマ
トリツクス中に拡散せず、フエロチタンについて
も上記の通りなので、マトリツクス自体は金属固
溶による硬化はほとんどみられない。このように
薄い窒化層を主として耐摩剤として用い、マトリ
ツクスが軟かいことによつて相手材を攻撃しない
ことが本発明品の大きな特徴である。チタニア、
シリカなどの酸化物もチタンの窒化層と同様、硬
い物質として知られているが、これらを耐摩粒子
として用いた場合、粒子全体が硬いので破壊して
摩耗する現象はむしろ“欠け落ち現象”による摩
耗の方が起こり易く、いずれの場合もその摩耗粉
は硬く粗いので相手材を攻撃し、またマトリツク
スとの結合がはかれないので耐摩剤としての効果
は期待できない。 本発明における上記チタンもしくはフエロチタ
ンの窒化物としては例えば約100〜200メツシユの
粒子を用いるのが好ましい。また実際に耐摩剤と
して作用する部分は粒子のごく表面に限られるか
ら粒度を調整することにより任意の耐摩耗特性が
得られる。チタンもしくはフエロチタンの量は約
0.5〜10重量%が好ましい。この範囲では十分な
耐摩性、潤滑性、機械的強度が得られる。 本発明の焼結集電摺動材料は上記のチタンもし
くはフエロチタンの窒化層を含むことを特徴とす
るもので、その他の構成は通常の銅系焼結集電摺
動材料と同じで良い。従つて通常の基地成分とし
てCu或いはCuを主成分とする合金、例えば青銅、
黄銅等の公知の基地成分を用いることができる。
また本発明では機械特性と電気特性を所定の値に
保持する程度の最低限度の量で、通常焼結集電摺
動材料に添加される金属等を添加することができ
る。これらの金属の例としては例えばNi,Mo,
Cu,Fe,Cr,pのような金属及びこれらの金属
の合金、代表例としてはFeMo,FeCr,CuCr等
のものを例示でき、これらは少なくとも1種以上
添加でき通常約0.3〜15wt%の範囲で用いられる
が、本発明ではこれら金属の量を従来のものに比
して少なくすることが可能で通常約0.3〜10wt%
の範囲で用いるのが特に好ましい。 本発明では上記以外に必要に応じてWS2
MoS2,C(黒鉛)、ボロンナイトライド等の潤滑
剤、Mo,Cr,FeMo,FeCr等の耐摩剤などを添
加することもできる。 本発明の焼結集電摺動材料は上記基地成分、金
属成分及び必要に応じその他の添加剤を配合した
ものに、チタンもしくはフエロチタンを予め窒化
処理して添加、成形して焼結することにより得ら
れる。窒化処理を行うには上記したように窒素ガ
ス、窒素と水素の混合ガス、アンモニアガス、ア
ンモニア分解ガスなどの窒素またはアンモニアを
含む雰囲気中、とりわけ中性または還元性雰囲気
中で約600〜1300℃で加熱するのが良い。成形は
約2.5〜7.5ton/cm2、焼結は通常約750〜900℃で
行うのが好ましい。該焼結は窒素、アンモニアガ
ス、アルゴン、水素、ヘリウム等のガスを含む雰
囲気或いは真空下の雰囲気等で行なえばよい。 以上のようにして得られる本発明の焼結集電摺
動材料においては、マトリツクスの硬さは純銅焼
結体以上の任意の値のものを得ることができる
が、機械強度、潤滑性、相手材(例えばトロリー
線)への攻撃性等の諸要件を考慮すると、通常ブ
リネル硬さで約50〜95、特には約60〜80のものが
好ましい。これらの硬さの範囲においては添加し
た潤滑剤が十分その効果を発揮する。 発明の効果 本発明集電摺動材料は、耐摩耗性に優れ、かつ
トロリー線に対する攻撃性が小さいという優れた
性質を具備するものである。 実施例 以下実施例を挙げて本発明を説明する。 実施例1〜2及び比較例1 表1にCuを主成分とする試料の組成を示す。
尚、表中の数値は重量%を示す。試料は表に示す
組成に各成分を混合し、4ton/cm2で成形し、焼結
温度860℃としてアンモニア分解ガス中で90分間
焼結して作成した。ただし表中の窒化物(FeTi
−N)は予めFeTiをアンモニア中で1000℃、1
時間保持して窒化物が生成したものを使用した。 得られた焼結体の物理特性を表2に、また耐摩
試験結果を表3に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a copper-based sintered current collector sliding material. Conventional technology and its problems Characteristics required for current collector sliding materials include, for example, low aggression against the mating material, the trolley wire, sufficient abrasion resistance, and mechanical strength. However, it has low electrical resistance. Especially when considering the maintenance and lifespan of the trolley wire, the most important characteristic is that it is less aggressive. To reduce aggressiveness, lower the hardness of the material,
Abundant lubricity is an absolutely necessary condition.
It is advantageous that the material is soft and has good lubricity, since these tend to coincide. That is, when a lubricant is added, the softer the material, the more likely the lubricant will protrude, and the more opportunities for the lubricant to come into contact with the mating material. Conventional sintered alloys for current collector sliding are made of a matrix mainly composed of Fe or Cu, with various metals added to improve wear resistance. However, in all of these sintered alloys, the metal diffuses significantly into the base, and as the material hardens, the lubricity inevitably decreases, resulting in increased aggressiveness against the trolley wire. Furthermore, since the electrical resistance increases with the addition of metal, the amount of elements used as lubricants added to these materials is limited to a fairly small amount, resulting in further deterioration of lubricity. Furthermore, together with the increase in electrical resistivity, these elements extremely reduce the mechanical strength, especially the impact value. Elements used as lubricants also act in a similar manner, so the amount added is also limited from the viewpoint of mechanical properties. That is,
Metals added mainly for the purpose of improving wear resistance improve aggressiveness to trolley wires, electrical resistivity,
It has a negative effect on most factors such as impact value, and this is the reason why it has been thought that it is contradictory to have both wear resistance and lubricity in sintered current collector sliding materials. Means for Solving the Problems The present invention aims to solve these problems by making the Cu-based base as soft as possible to reduce its attack on the trolley wire, and to provide a current collector with excellent wear resistance. The purpose is to provide materials for active use. In other words, the present invention is characterized in that only the minimum amount of metal is added to maintain the mechanical properties and electrical properties at predetermined values, and the improvement in wear resistance is mainly obtained by using titanium or ferrotitanium that has been nitrided in advance. Concerning copper-based sintered current collector sliding materials. In the present invention, titanium or ferrotitanium is added after being nitrided in advance. Titanium or ferrotitanium is easily nitrided, but these nitrides are stable, and once nitrided, the nitridation does not progress to the inside, so the nitrided powder particles have a thickness of about 2μ or less from the surface. It is made of a very hard nitride layer and a soft interior made of pure titanium or pure ferrotitanium. FIG. 1 shows a model of the sliding condition of the product of the present invention to which these nitrides are added as an anti-wear agent. As shown in the figure, the part that actually acts as an anti-wear agent is the hatched area where the nitride layer contacts the mating material. Therefore, the proportion of the area occupied by the titanium and ferrotitanium nitride layers on the sliding surface is extremely small.Furthermore, during sliding, these nitride layers become abrasion powder and break off, and nitridation occurs as the sliding surface moves. Because the layer is extremely thin, approximately 2μ at most, it is less likely to attack the mating material. The wear resistance of the product of the present invention will be shown in Examples later, but it exhibits sufficient wear resistance. As mentioned above, it is the nitride layer of titanium or ferrotitanium, rather than the nitride of titanium or ferrotitanium, that improves the wear resistance. Although the exposed area of these nitride layers on the sliding surface is extremely small, the reason why they exert a remarkable effect on wear resistance is firstly that the nitride layer is extremely hard, and secondly.
This is due to the fact that these nitride layers are microscopically continuous from the sliding surface to the inside. The second cause will be explained in more detail. The nitrided layer exists on the very surface of the titanium or ferrotitanium powder particles with a substantially uniform thickness and in the form of an eggshell. When the product of the present invention is in a sliding state, in order for this nitride layer to wear out, a shearing stress sufficient to destroy the so-called egg shell is required, but this nitride layer is made of pure titanium or pure ferrotitanium inside. Naturally, it is firmly connected to the sliding surface, and it is difficult to break it and remove it from the sliding surface. Furthermore, when the sliding surface of the mating material is rough, there is a risk that the so-called "chip-off phenomenon" will occur, in which the entire wear-resistant particles separate from the matrix, rather than wear that gradually destroys the nitrided layer. This is solved by using ferrotitanium nitride as the wear-resistant particle. When ferrotitanium is nitrided, Ti, which is easily nitrided, is preferentially nitrided, and Fe is not nitrided, so when it is added to a base mainly composed of Cu, only the Fe in ferrotitanium diffuses into the matrix, making the bond stronger. Because it will be. Since titanium nitride hardly diffuses into the matrix, and the same applies to ferrotitanium as described above, the matrix itself hardly shows any hardening due to metal solid solution. A major feature of the product of the present invention is that the thin nitride layer is used primarily as an anti-wear agent and the soft matrix does not attack the mating material. titania,
Oxides such as silica are also known to be hard substances, just like titanium nitride layers, but when these are used as wear-resistant particles, the entire particle is hard, so the phenomenon of breakage and wear is due to "chip-off" phenomenon. Abrasion is more likely to occur, and in either case, the abrasion powder is hard and coarse and attacks the mating material, and cannot be expected to be effective as an anti-wear agent because it cannot be bonded to the matrix. As the titanium or ferrotitanium nitride in the present invention, it is preferable to use particles of about 100 to 200 mesh, for example. Furthermore, since the part that actually acts as an anti-wear agent is limited to the very surface of the particles, desired wear-resistant properties can be obtained by adjusting the particle size. The amount of titanium or ferrotitanium is approx.
0.5-10% by weight is preferred. In this range, sufficient wear resistance, lubricity, and mechanical strength can be obtained. The sintered current collecting sliding material of the present invention is characterized by containing the above-mentioned titanium or ferrotitanium nitride layer, and the other configurations may be the same as those of the usual copper-based sintered current collecting sliding material. Therefore, Cu or Cu-based alloys such as bronze,
Known base components such as brass can be used.
Further, in the present invention, metals and the like that are normally added to sintered current collector sliding materials can be added in the minimum amount that maintains the mechanical properties and electrical properties at predetermined values. Examples of these metals include Ni, Mo,
Metals such as Cu, Fe, Cr, p, and alloys of these metals, typical examples include FeMo, FeCr, CuCr, etc., and at least one or more of these can be added, usually in a range of about 0.3 to 15 wt%. However, in the present invention, the amount of these metals can be reduced compared to conventional ones, and is usually about 0.3 to 10 wt%.
It is particularly preferable to use the range. In the present invention, in addition to the above, WS 2 ,
It is also possible to add lubricants such as MoS 2 , C (graphite), and boron nitride, and antiwear agents such as Mo, Cr, FeMo, and FeCr. The sintered current collector sliding material of the present invention is obtained by adding titanium or ferrotitanium to a mixture of the base component, metal component, and other additives as necessary, which has been nitrided in advance, and molding and sintering the material. It will be done. To perform the nitriding treatment, as mentioned above, the temperature is about 600 to 1300°C in an atmosphere containing nitrogen or ammonia, such as nitrogen gas, a mixed gas of nitrogen and hydrogen, ammonia gas, or ammonia decomposition gas, especially in a neutral or reducing atmosphere. It is best to heat it with Preferably, the molding is carried out at about 2.5 to 7.5 ton/cm 2 and the sintering is usually carried out at about 750 to 900°C. The sintering may be performed in an atmosphere containing a gas such as nitrogen, ammonia gas, argon, hydrogen, or helium, or in a vacuum atmosphere. In the sintered current collector sliding material of the present invention obtained as described above, the hardness of the matrix can be any value greater than that of pure copper sintered material, but the mechanical strength, lubricity, and mating material Considering various requirements such as aggressiveness to trolley wires (for example, trolley wires), a Brinell hardness of about 50 to 95, particularly about 60 to 80 is preferred. Within these hardness ranges, the added lubricant can sufficiently exhibit its effect. Effects of the Invention The current collector sliding material of the present invention has excellent properties such as excellent abrasion resistance and low aggressiveness against trolley wires. Examples The present invention will be explained below with reference to Examples. Examples 1 to 2 and Comparative Example 1 Table 1 shows the composition of samples containing Cu as a main component.
In addition, the numerical values in the table indicate weight %. Samples were prepared by mixing the components shown in the table, molding at 4 tons/cm 2 , and sintering in ammonia decomposition gas at a sintering temperature of 860° C. for 90 minutes. However, nitrides (FeTi
-N) is prepared by preparing FeTi in ammonia at 1000℃ for 1
The one in which nitrides were generated by holding for a certain period of time was used. The physical properties of the obtained sintered body are shown in Table 2, and the results of the wear resistance test are shown in Table 3.

【表】【table】

【表】【table】

【表】 摩耗試験は得られたすり板材から寸法形状10×
25×90mmを切り出し、集電摺動摩耗の試験片とし
た。試験条件は押付力5Kg/cm2、通電電流はAC
(21V)100A、摺動速度は50及び100Km/hを設
定した。相手側トロリー線は硬銅線を用い、直径
385mmに巻き付け接触摺面を6mm巾に仕上げた架
線構造とした。この場合、すり板の偏心率を10mm
に設け、電車に於けるパンタグラフの使用条件に
相似とした。試験項目のうち、摩擦係数はトルク
変動から算出し、すり板の摩耗量は各試験ごとに
取外し残量重量とマイクロメーターによる残有寸
法を測定した。 試料面状態、トロリー面状態の評価は次の通り
である。 ◎ 極めて良好 〇 良好 △ やや不良 × 不良 以上の表1〜3より明らかな通り、銅基地中に
チタン又はフエロチタンの窒化物を添加すること
により集電摺動材料として使用した場合にトロリ
ー線を損傷させずに耐摩性を向上させることが明
らかとなりその効果は大である。 実施例3及び比較例2 表4に示す組成(表中数値は重量%を表わす)
で各成分を混合し、4ton/cm2成形し、窒素雰囲気
中で880℃で2時間焼結させて銅系焼結体を得た。
尚表中のFeTi−Nは、予めFeTiをアンモニア中
で1000℃、1時間保持して、窒化物が生成したも
のを使用した。 得られた焼結体の物理特性及び耐摩耗試験結果
を表5に示す。試験方法は、摩耗試験において摺
動速度100Km/hで通電電流AC200Aとしたこと
以外は、実施例1〜2及び比較例1と同様とし
た。
[Table] The wear test was performed using the obtained slider material with dimensions and shape of 10×
A piece of 25 x 90 mm was cut out and used as a test piece for current collector sliding wear. The test conditions were a pressing force of 5Kg/cm 2 and an AC current.
(21V) 100A, sliding speed was set at 50 and 100km/h. The mating trolley wire is made of hard copper wire, and the diameter
The wire structure is wrapped around 385mm and has a contact sliding surface with a width of 6mm. In this case, the eccentricity of the slider plate should be set to 10mm.
The conditions for using pantographs on trains are similar to those for pantographs on trains. Among the test items, the friction coefficient was calculated from torque fluctuations, and the amount of wear on the slide plates was measured by removing them for each test and measuring the remaining weight and remaining dimensions using a micrometer. Evaluation of the sample surface condition and trolley surface condition is as follows. ◎ Very good 〇 Good △ Slightly poor × Poor As is clear from Tables 1 to 3 above, adding titanium or ferrotitanium nitride to the copper matrix causes damage to the trolley wire when used as a current collector sliding material. It has become clear that the wear resistance can be improved without increasing the wear resistance, and the effect is significant. Example 3 and Comparative Example 2 Compositions shown in Table 4 (numbers in the table represent weight %)
The components were mixed, molded at 4 tons/cm 2 , and sintered at 880° C. for 2 hours in a nitrogen atmosphere to obtain a copper-based sintered body.
Note that FeTi-N in the table was prepared by previously holding FeTi in ammonia at 1000° C. for 1 hour to form nitrides. Table 5 shows the physical properties and wear resistance test results of the obtained sintered body. The test method was the same as in Examples 1 and 2 and Comparative Example 1, except that in the wear test, the sliding speed was 100 Km/h and the current was 200 A AC.

【表】【table】

【表】 表5から明らかな通り窒化処理をしてない
FeTiを使用すると衝撃強さや耐摩耗性に劣るも
のとなることが判かる。
[Table] As is clear from Table 5, no nitriding treatment was performed.
It can be seen that when FeTi is used, the impact strength and abrasion resistance are inferior.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の焼結集電摺動材料の摺動状況
のモデルであり、1……相手材、2……摺動面、
3……窒化層、4……純チタンもしくはフエロチ
タン、5……マトリツクスを示す。
FIG. 1 is a model of the sliding situation of the sintered current collector sliding material of the present invention, 1... mating material, 2... sliding surface,
3...Nitride layer, 4...Pure titanium or ferrotitanium, 5...Matrix.

Claims (1)

【特許請求の範囲】[Claims] 1 予め窒化処理を施したチタン又はフエロチタ
ンを約0.5〜10重量%含有することを特徴とする
銅系焼結集電摺動材料。
1. A copper-based sintered current collector sliding material containing approximately 0.5 to 10% by weight of titanium or ferrotitanium that has been nitrided in advance.
JP20930485A 1985-09-20 1985-09-20 Copper sintered current collecting slide material Granted JPS6188701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20930485A JPS6188701A (en) 1985-09-20 1985-09-20 Copper sintered current collecting slide material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20930485A JPS6188701A (en) 1985-09-20 1985-09-20 Copper sintered current collecting slide material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5849080A Division JPS56153902A (en) 1980-04-30 1980-04-30 Sintered material for sliding current collector

Publications (2)

Publication Number Publication Date
JPS6188701A JPS6188701A (en) 1986-05-07
JPH033441B2 true JPH033441B2 (en) 1991-01-18

Family

ID=16570735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20930485A Granted JPS6188701A (en) 1985-09-20 1985-09-20 Copper sintered current collecting slide material

Country Status (1)

Country Link
JP (1) JPS6188701A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19944592A1 (en) 1999-09-16 2001-03-22 Hans Berns Process for the powder-metallurgical in-situ production of a wear-resistant composite material
CZ310039B6 (en) * 2007-09-27 2024-06-05 CSc. Veselka František doc. Ing. A current collector for providing power supply to electrically propelled vehicles from contact wires or power track

Also Published As

Publication number Publication date
JPS6188701A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
CA2355043C (en) Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same
JPH033441B2 (en)
JPH01255631A (en) Sintered alloy material and its manufacture
JPS6256721B2 (en)
JPS6133056B2 (en)
JP2001316688A (en) Self-lubricating light-alloy based composite material and manufacturing method therefor
JPS6086237A (en) Cu-alloy for slide member
JPH045745B2 (en)
JP7305732B2 (en) Pantograph slider material for lead-free Fe-based current collection
JPS6250445A (en) Fe-base sintered material for sliding member
JPS6346138B2 (en)
JPS6037180B2 (en) Iron-based or copper-based sintered sliding material containing manganese sulfide
JP2000328171A (en) Inorganic frictional material
JPS6362852A (en) Ferrous sintered sliding material for current collection
JPS589823B2 (en) Cu-based sintered alloy for brush materials
JP3803947B2 (en) Copper-based sintered bearing material and manufacturing method thereof
JP2000192169A (en) Sliding contact material
JPS60116751A (en) Sintered alloy as friction material
AU752484B2 (en) Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same
JPS61210155A (en) Iron-brass sintered sliding material
JPH03207837A (en) Ferrous sintered current collecting-sliding material
KR960003177B1 (en) Making method of fe-sintering alloy
JP3336949B2 (en) Synchronizer ring made of iron-based sintered alloy
JP6728081B2 (en) Current collecting sliding material
JPS60200927A (en) Production of sintered alloy